Vacuum free energy, quark condensate shifts and magnetization in three-flavor chiral perturbation theory to O(p6) in a uniform magnetic field

We study three-flavor QCD in a uniform magnetic field using chiral perturbation theory (χPT). We construct the vacuum free energy density, quark condensate shifts induced by the magnetic field and the renormalized magnetization to O(p6) in the chiral expansion. We find that the calculation of the fr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nuclear physics. B Ročník 997; s. 116389
Hlavní autoři: Adhikari, Prabal, Strümke, Inga
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2023
Elsevier
ISSN:0550-3213, 1873-1562
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study three-flavor QCD in a uniform magnetic field using chiral perturbation theory (χPT). We construct the vacuum free energy density, quark condensate shifts induced by the magnetic field and the renormalized magnetization to O(p6) in the chiral expansion. We find that the calculation of the free energy is greatly simplified by cancellations among two-loop diagrams involving charged mesons. In comparing our results with recent 2+1-flavor lattice QCD data, we find that the light quark condensate shift at O(p6) is in better agreement than the shift at O(p4). We also find that the renormalized magnetization, due to its small-ness, possesses large uncertainties at O(p6) due to the uncertainties in the low-energy constants.
AbstractList We study three-flavor QCD in a uniform magnetic field using chiral perturbation theory (χPT). We construct the vacuum free energy density, quark condensate shifts induced by the magnetic field and the renormalized magnetization to O(p6) in the chiral expansion. We find that the calculation of the free energy is greatly simplified by cancellations among two-loop diagrams involving charged mesons. In comparing our results with recent 2+1-flavor lattice QCD data, we find that the light quark condensate shift at O(p6) is in better agreement than the shift at O(p4). We also find that the renormalized magnetization, due to its small-ness, possesses large uncertainties at O(p6) due to the uncertainties in the low-energy constants.
ArticleNumber 116389
Author Adhikari, Prabal
Strümke, Inga
Author_xml – sequence: 1
  givenname: Prabal
  orcidid: 0000-0002-1322-6119
  surname: Adhikari
  fullname: Adhikari, Prabal
  email: adhika1@stolaf.edu
  organization: Physics Department, Faculty of Natural Sciences and Mathematics, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, United States
– sequence: 2
  givenname: Inga
  surname: Strümke
  fullname: Strümke, Inga
  email: inga.strumke@ntnu.no
  organization: Department of Computer Science, Faculty of Information Technology and Electrical Engineering, NTNU, Norwegian University of Science and Technology, Sem Sælandsvei 9, N-7491 Trondheim, Norway
BookMark eNqFkc1u1DAUhS1UJKaFZ8BLkMjgv9jJsqr4qVSpG2BrOfb1xEPGHmyn0vAOvDOZhnbL3Vzp6pxP5-pcoouYIiD0lpItJVR-3G_jbKfjeCrDlhHGt5RK3vUv0IZ2ije0lewCbUjbkoYzyl-hy1L2ZJlFtUF_fhg7zwfsMwCGCHl3-oB_zSb_xDZFB7GYCriMwdeCTXT4YHYRavhtakgRh4jruFgbP5mHlLEdQzYTPkKucx5WTR0h5ROuCd-_O8r3Z4_Bcww-5cMTzmIfYHKv0UtvpgJv_u0r9P3zp283X5u7-y-3N9d3jWWC1YZzkFQY74TynlkiWqkUZ8ZJwunQu8ESw6hTCjohpLBuaK2hXHlnWgmt5VfoduW6ZPb6mMPB5JNOJujHQ8o7bfKSagLdD52SXkniiRCKir4H6IgUgx8Wcs8WllpZNqdSMvhnHiX63JDe6-eG9LkhvTa0OK9XJyyvPgTIutgA0YILGWxdsoT_Mv4CiJqikw
Cites_doi 10.1016/0550-3213(85)90492-4
10.1016/S0370-2693(99)01414-8
10.1103/PhysRev.82.664
10.1134/S1063778812030052
10.1016/0003-4916(84)90242-2
10.1016/j.physletb.2021.136384
10.1007/BF01566663
10.1016/0550-3213(96)00021-1
10.1016/0378-4371(79)90223-1
10.1016/j.physletb.2009.11.017
10.1140/epja/s10050-021-00491-y
10.1103/PhysRevD.39.3478
10.1016/j.nuclphysb.2009.10.008
10.1016/0003-4916(91)90304-Q
10.1007/JHEP04(2013)023
10.1103/PhysRevD.66.014004
10.1146/annurev-nucl-102313-025528
10.1103/PhysRevC.77.065202
10.1103/PhysRevC.80.015203
10.1103/RevModPhys.88.025001
10.1016/S0370-2693(97)00441-3
10.1006/aphy.1999.5982
10.1016/j.nuclphysa.2008.10.010
10.1103/PhysRevC.76.055201
10.1140/epjc/s10052-008-0584-8
10.1140/epjs/s11734-021-00023-1
10.1007/BF01018812
10.1103/PhysRevLett.73.3499
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.nuclphysb.2023.116389
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-1562
ExternalDocumentID oai_doaj_org_article_9b876f760f04471499ee8064bfb64c92
10_1016_j_nuclphysb_2023_116389
S0550321323003188
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACKIV
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFMIJ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIBLX
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
ER.
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HME
HVGLF
HZ~
IHE
IPNFZ
IXB
J1W
KOM
KQ8
LZ4
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSQ
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
YYP
~G-
9DU
AAFWJ
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPKN
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c242t-33e614afd47ff2c04567732ad6031b9dbc0a21d77e84464cdb5ca137fda56e5c3
IEDL.DBID DOA
ISSN 0550-3213
IngestDate Tue Oct 14 18:39:22 EDT 2025
Sat Nov 29 07:15:44 EST 2025
Sat Apr 13 16:38:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-33e614afd47ff2c04567732ad6031b9dbc0a21d77e84464cdb5ca137fda56e5c3
ORCID 0000-0002-1322-6119
OpenAccessLink https://doaj.org/article/9b876f760f04471499ee8064bfb64c92
ParticipantIDs doaj_primary_oai_doaj_org_article_9b876f760f04471499ee8064bfb64c92
crossref_primary_10_1016_j_nuclphysb_2023_116389
elsevier_sciencedirect_doi_10_1016_j_nuclphysb_2023_116389
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Nuclear physics. B
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Klimenko (br0160) 1991; 89
Zyla (br0380) 2020; 2020
Adhikari, Andersen (br0350) 2021
Bali, Bruckmann, Endrődi, Gruber, Schaefer (br0340) 2013; 2013
Bijnens, Colangelo, Ecker (br0090) 2000; 280
Kabat, Lee, Weinberg (br0300) 2002; 66
Kharzeev, Landsteiner, Schmitt, Yee (br0010) 2013
Adhikari, Tiburzi (br0410) 2023; 107
Gradshteyn, Ryzhik (br0370) 2014
Andersen, Naylor, Tranberg (br0020) 2016; 88
Bali, Bruckmann, Endrődi, Fodor, Katz, Schäfer (br0240) 2012; 86
Gusynin, Miransky, Shovkovy (br0190) 1996; 462
D'Elia, Negro (br0230) 2011; 83
Unterdorfer, Pichl (br0400) 2008; 55
Hofmann (br0310) 2021; 818
Tiburzi (br0360) 2008; 814
Schwinger (br0120) 1951; 82
Werbos (br0290) 2008; 77
Endrődi (br0330) 2013; 2013
Shushpanov, Smilga (br0100) 1997; 402
Klimenko (br0150) 1992; 54
Ding, Schmidt, Tomiya, Wang (br0250) 2020; 102
Cohen, Werbos (br0320) 2009; 80
Buividovich, Chernodub, Luschevskaya, Polikarpov (br0200) 2010; 682
Andersen (br0270) 2012; 2012
Bandyopadhyay, Farias (br0030) 2021; 230
Gasser, Leutwyler (br0070) 1985; 250
Buividovich, Chernodub, Luschevskaya, Polikarpov (br0210) 2010; 826
Braguta, Buividovich, Kalaydzhyan, Kuznetsov, Polikarpov (br0220) 2012; 75
Agasian, Shushpanov (br0280) 2000; 472
Andersen (br0040) 2021; 57
Gusynin, Miransky, Shovkovy (br0180) 1994; 73
Weinberg (br0050) 1979; 96
Bijnens, Ecker (br0390) 2014; 64
Klevansky, Lemmer (br0130) 1989; 39
Cohen, McGady, Werbos (br0110) 2007; 76
Bijnens, Colangelo, Ecker (br0080) 1999; 1999
Suganuma, Tatsumi (br0140) 1991; 208
Gasser, Leutwyler (br0060) 1984; 158
Klimenko (br0170) 1992; 90
Andersen (br0260) 2012; 86
Bijnens (10.1016/j.nuclphysb.2023.116389_br0090) 2000; 280
Adhikari (10.1016/j.nuclphysb.2023.116389_br0410) 2023; 107
D'Elia (10.1016/j.nuclphysb.2023.116389_br0230) 2011; 83
Klimenko (10.1016/j.nuclphysb.2023.116389_br0160) 1991; 89
Endrődi (10.1016/j.nuclphysb.2023.116389_br0330) 2013; 2013
Weinberg (10.1016/j.nuclphysb.2023.116389_br0050) 1979; 96
Cohen (10.1016/j.nuclphysb.2023.116389_br0110) 2007; 76
Gusynin (10.1016/j.nuclphysb.2023.116389_br0190) 1996; 462
Andersen (10.1016/j.nuclphysb.2023.116389_br0020) 2016; 88
Gasser (10.1016/j.nuclphysb.2023.116389_br0070) 1985; 250
Schwinger (10.1016/j.nuclphysb.2023.116389_br0120) 1951; 82
Buividovich (10.1016/j.nuclphysb.2023.116389_br0200) 2010; 682
Buividovich (10.1016/j.nuclphysb.2023.116389_br0210) 2010; 826
Bijnens (10.1016/j.nuclphysb.2023.116389_br0080) 1999; 1999
Bali (10.1016/j.nuclphysb.2023.116389_br0240) 2012; 86
Tiburzi (10.1016/j.nuclphysb.2023.116389_br0360) 2008; 814
Klimenko (10.1016/j.nuclphysb.2023.116389_br0150) 1992; 54
Agasian (10.1016/j.nuclphysb.2023.116389_br0280) 2000; 472
Bandyopadhyay (10.1016/j.nuclphysb.2023.116389_br0030) 2021; 230
Bijnens (10.1016/j.nuclphysb.2023.116389_br0390) 2014; 64
Gusynin (10.1016/j.nuclphysb.2023.116389_br0180) 1994; 73
Klevansky (10.1016/j.nuclphysb.2023.116389_br0130) 1989; 39
Braguta (10.1016/j.nuclphysb.2023.116389_br0220) 2012; 75
Werbos (10.1016/j.nuclphysb.2023.116389_br0290) 2008; 77
Kharzeev (10.1016/j.nuclphysb.2023.116389_br0010) 2013
Hofmann (10.1016/j.nuclphysb.2023.116389_br0310) 2021; 818
Suganuma (10.1016/j.nuclphysb.2023.116389_br0140) 1991; 208
Ding (10.1016/j.nuclphysb.2023.116389_br0250) 2020; 102
Kabat (10.1016/j.nuclphysb.2023.116389_br0300) 2002; 66
Cohen (10.1016/j.nuclphysb.2023.116389_br0320) 2009; 80
Shushpanov (10.1016/j.nuclphysb.2023.116389_br0100) 1997; 402
Bali (10.1016/j.nuclphysb.2023.116389_br0340) 2013; 2013
Gasser (10.1016/j.nuclphysb.2023.116389_br0060) 1984; 158
Andersen (10.1016/j.nuclphysb.2023.116389_br0270) 2012; 2012
Andersen (10.1016/j.nuclphysb.2023.116389_br0040) 2021; 57
Andersen (10.1016/j.nuclphysb.2023.116389_br0260) 2012; 86
Unterdorfer (10.1016/j.nuclphysb.2023.116389_br0400) 2008; 55
Zyla (10.1016/j.nuclphysb.2023.116389_br0380) 2020; 2020
Klimenko (10.1016/j.nuclphysb.2023.116389_br0170) 1992; 90
Gradshteyn (10.1016/j.nuclphysb.2023.116389_br0370) 2014
Adhikari (10.1016/j.nuclphysb.2023.116389_br0350)
References_xml – volume: 82
  start-page: 664
  year: 1951
  ident: br0120
  publication-title: Phys. Rev.
– volume: 64
  start-page: 149
  year: 2014
  ident: br0390
  publication-title: Annu. Rev. Nucl. Part. Sci.
– volume: 250
  start-page: 465
  year: 1985
  ident: br0070
  publication-title: Nucl. Phys. B
– volume: 280
  start-page: 100
  year: 2000
  ident: br0090
  publication-title: Ann. Phys.
– volume: 86
  year: 2012
  ident: br0260
  publication-title: Phys. Rev. D
– volume: 2012
  start-page: 1
  year: 2012
  ident: br0270
  publication-title: J. High Energy Phys.
– volume: 814
  start-page: 74
  year: 2008
  ident: br0360
  publication-title: Nucl. Phys. A
– volume: 39
  start-page: 3478
  year: 1989
  ident: br0130
  publication-title: Phys. Rev. D
– volume: 80
  year: 2009
  ident: br0320
  publication-title: Phys. Rev. C
– volume: 462
  start-page: 249
  year: 1996
  ident: br0190
  publication-title: Nucl. Phys. B
– volume: 75
  start-page: 488
  year: 2012
  ident: br0220
  publication-title: Phys. At. Nucl.
– volume: 472
  start-page: 143
  year: 2000
  ident: br0280
  publication-title: Phys. Lett. B
– volume: 96
  start-page: 327
  year: 1979
  ident: br0050
  publication-title: Physica A
– volume: 1999
  year: 1999
  ident: br0080
  publication-title: J. High Energy Phys.
– volume: 54
  start-page: 323
  year: 1992
  ident: br0150
  publication-title: Z. Phys. C, Part. Fields
– volume: 682
  start-page: 484
  year: 2010
  ident: br0200
  publication-title: Phys. Lett. B
– volume: 102
  year: 2020
  ident: br0250
  publication-title: Phys. Rev. D
– volume: 402
  start-page: 351
  year: 1997
  ident: br0100
  publication-title: Phys. Lett. B
– volume: 230
  start-page: 719
  year: 2021
  ident: br0030
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 826
  start-page: 313
  year: 2010
  ident: br0210
  publication-title: Nucl. Phys. B
– volume: 73
  start-page: 3499
  year: 1994
  ident: br0180
  publication-title: Phys. Rev. Lett.
– volume: 107
  year: 2023
  ident: br0410
  publication-title: Phys. Rev. D
– year: 2021
  ident: br0350
– volume: 83
  year: 2011
  ident: br0230
  publication-title: Phys. Rev. D
– volume: 158
  start-page: 142
  year: 1984
  ident: br0060
  publication-title: Ann. Phys.
– volume: 2013
  start-page: 1
  year: 2013
  ident: br0340
  publication-title: J. High Energy Phys.
– volume: 55
  start-page: 273
  year: 2008
  ident: br0400
  publication-title: Eur. Phys. J. C
– volume: 208
  start-page: 470
  year: 1991
  ident: br0140
  publication-title: Ann. Phys.
– volume: 77
  year: 2008
  ident: br0290
  publication-title: Phys. Rev. C
– volume: 76
  year: 2007
  ident: br0110
  publication-title: Phys. Rev. C
– year: 2014
  ident: br0370
  article-title: Table of Integrals, Series, and Products
– year: 2013
  ident: br0010
  article-title: Strongly Interacting Matter in Magnetic Fields: A Guide to This Volume
– volume: 57
  start-page: 189
  year: 2021
  ident: br0040
  publication-title: Eur. Phys. J. A
– volume: 89
  start-page: 211
  year: 1991
  ident: br0160
  publication-title: Teor. Mat. Fiz.
– volume: 88
  year: 2016
  ident: br0020
  publication-title: Rev. Mod. Phys.
– volume: 66
  year: 2002
  ident: br0300
  publication-title: Phys. Rev. D
– volume: 86
  year: 2012
  ident: br0240
  publication-title: Phys. Rev. D
– volume: 818
  year: 2021
  ident: br0310
  publication-title: Phys. Lett. B
– volume: 90
  start-page: 1
  year: 1992
  ident: br0170
  publication-title: Theor. Math. Phys.
– volume: 2013
  start-page: 1
  year: 2013
  ident: br0330
  publication-title: J. High Energy Phys.
– volume: 2020
  year: 2020
  ident: br0380
  publication-title: PTEP
– volume: 250
  start-page: 465
  year: 1985
  ident: 10.1016/j.nuclphysb.2023.116389_br0070
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(85)90492-4
– volume: 1999
  year: 1999
  ident: 10.1016/j.nuclphysb.2023.116389_br0080
  publication-title: J. High Energy Phys.
– volume: 472
  start-page: 143
  year: 2000
  ident: 10.1016/j.nuclphysb.2023.116389_br0280
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(99)01414-8
– volume: 82
  start-page: 664
  year: 1951
  ident: 10.1016/j.nuclphysb.2023.116389_br0120
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.82.664
– volume: 86
  year: 2012
  ident: 10.1016/j.nuclphysb.2023.116389_br0240
  publication-title: Phys. Rev. D
– volume: 75
  start-page: 488
  year: 2012
  ident: 10.1016/j.nuclphysb.2023.116389_br0220
  publication-title: Phys. At. Nucl.
  doi: 10.1134/S1063778812030052
– volume: 158
  start-page: 142
  year: 1984
  ident: 10.1016/j.nuclphysb.2023.116389_br0060
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(84)90242-2
– volume: 818
  year: 2021
  ident: 10.1016/j.nuclphysb.2023.116389_br0310
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136384
– volume: 54
  start-page: 323
  year: 1992
  ident: 10.1016/j.nuclphysb.2023.116389_br0150
  publication-title: Z. Phys. C, Part. Fields
  doi: 10.1007/BF01566663
– volume: 462
  start-page: 249
  year: 1996
  ident: 10.1016/j.nuclphysb.2023.116389_br0190
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(96)00021-1
– volume: 96
  start-page: 327
  year: 1979
  ident: 10.1016/j.nuclphysb.2023.116389_br0050
  publication-title: Physica A
  doi: 10.1016/0378-4371(79)90223-1
– volume: 682
  start-page: 484
  year: 2010
  ident: 10.1016/j.nuclphysb.2023.116389_br0200
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.11.017
– volume: 57
  start-page: 189
  year: 2021
  ident: 10.1016/j.nuclphysb.2023.116389_br0040
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/s10050-021-00491-y
– volume: 39
  start-page: 3478
  year: 1989
  ident: 10.1016/j.nuclphysb.2023.116389_br0130
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.39.3478
– volume: 2020
  year: 2020
  ident: 10.1016/j.nuclphysb.2023.116389_br0380
  publication-title: PTEP
– volume: 826
  start-page: 313
  year: 2010
  ident: 10.1016/j.nuclphysb.2023.116389_br0210
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2009.10.008
– volume: 208
  start-page: 470
  year: 1991
  ident: 10.1016/j.nuclphysb.2023.116389_br0140
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(91)90304-Q
– ident: 10.1016/j.nuclphysb.2023.116389_br0350
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.nuclphysb.2023.116389_br0330
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2013)023
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.nuclphysb.2023.116389_br0340
  publication-title: J. High Energy Phys.
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.nuclphysb.2023.116389_br0270
  publication-title: J. High Energy Phys.
– volume: 102
  year: 2020
  ident: 10.1016/j.nuclphysb.2023.116389_br0250
  publication-title: Phys. Rev. D
– year: 2013
  ident: 10.1016/j.nuclphysb.2023.116389_br0010
– volume: 66
  year: 2002
  ident: 10.1016/j.nuclphysb.2023.116389_br0300
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.66.014004
– volume: 83
  year: 2011
  ident: 10.1016/j.nuclphysb.2023.116389_br0230
  publication-title: Phys. Rev. D
– volume: 89
  start-page: 211
  year: 1991
  ident: 10.1016/j.nuclphysb.2023.116389_br0160
  publication-title: Teor. Mat. Fiz.
– volume: 64
  start-page: 149
  year: 2014
  ident: 10.1016/j.nuclphysb.2023.116389_br0390
  publication-title: Annu. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev-nucl-102313-025528
– volume: 77
  year: 2008
  ident: 10.1016/j.nuclphysb.2023.116389_br0290
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.77.065202
– year: 2014
  ident: 10.1016/j.nuclphysb.2023.116389_br0370
– volume: 80
  year: 2009
  ident: 10.1016/j.nuclphysb.2023.116389_br0320
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.015203
– volume: 88
  year: 2016
  ident: 10.1016/j.nuclphysb.2023.116389_br0020
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.025001
– volume: 402
  start-page: 351
  year: 1997
  ident: 10.1016/j.nuclphysb.2023.116389_br0100
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(97)00441-3
– volume: 280
  start-page: 100
  year: 2000
  ident: 10.1016/j.nuclphysb.2023.116389_br0090
  publication-title: Ann. Phys.
  doi: 10.1006/aphy.1999.5982
– volume: 814
  start-page: 74
  year: 2008
  ident: 10.1016/j.nuclphysb.2023.116389_br0360
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2008.10.010
– volume: 76
  year: 2007
  ident: 10.1016/j.nuclphysb.2023.116389_br0110
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.76.055201
– volume: 55
  start-page: 273
  year: 2008
  ident: 10.1016/j.nuclphysb.2023.116389_br0400
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-008-0584-8
– volume: 230
  start-page: 719
  year: 2021
  ident: 10.1016/j.nuclphysb.2023.116389_br0030
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-021-00023-1
– volume: 90
  start-page: 1
  year: 1992
  ident: 10.1016/j.nuclphysb.2023.116389_br0170
  publication-title: Theor. Math. Phys.
  doi: 10.1007/BF01018812
– volume: 73
  start-page: 3499
  year: 1994
  ident: 10.1016/j.nuclphysb.2023.116389_br0180
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.3499
– volume: 86
  year: 2012
  ident: 10.1016/j.nuclphysb.2023.116389_br0260
  publication-title: Phys. Rev. D
– volume: 107
  year: 2023
  ident: 10.1016/j.nuclphysb.2023.116389_br0410
  publication-title: Phys. Rev. D
SSID ssj0000638
Score 2.437171
Snippet We study three-flavor QCD in a uniform magnetic field using chiral perturbation theory (χPT). We construct the vacuum free energy density, quark condensate...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 116389
Title Vacuum free energy, quark condensate shifts and magnetization in three-flavor chiral perturbation theory to O(p6) in a uniform magnetic field
URI https://dx.doi.org/10.1016/j.nuclphysb.2023.116389
https://doaj.org/article/9b876f760f04471499ee8064bfb64c92
Volume 997
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-1562
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000638
  issn: 0550-3213
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1562
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000638
  issn: 0550-3213
  databaseCode: AIEXJ
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1873-1562
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000638
  issn: 0550-3213
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFLUqKBIbRAuIAYq86AIkApk4GSfsaMWoraqhizKaXeTHNQSYzJAHEh_Rf-61k4xmVmzYRo5j-VzfcxzdByFfUfFHccDAExotOIxD40lmjNcPAmMp29cu5H_8m49G8WSS_Flq9WVjwprywM3GXSQSz6vhA9_4ITpSFOgAMfKoNHIQqsR5X1Q93WVq4YNdD2sf9bfHgj5biezKa_Vk_xvIc9s7HJ2GZe0VXnLl-5foaYlyhttkq9WK9KpZ4yfyAfLPZMPFbKpyh_wbC1XXU2oKAAouh--MPiPkjxQvuehPStSRtLzPTFVSkWs6FXc5VG3iJc1yWiGQ4Jkn8TIrqLrPCvzaHApkIdmMcWmOr7Sa0ZuT-eDUviNondtsrmk3naIuCm6X3A6v_37_4bXdFTyFtFx5jAFSszA65MYEyko7zlkgtO07LRMtlS-CPkIFMV4ZQ6VlpESfcaNFNIBIsT2yls9y2Cc0iQxjTOHhF_Z-A4kt-SN4wgPJdQJxj_jd3qbzpohG2kWXPaQLOFILR9rA0SPfLAaL4bYKtnuAtpG2tpG-ZRs9ctkhmLaCohEKOFX21goO3mMFh2TTTtnEvxyRtaqo4Qv5qF6qrCyOyfrVz-vJr2Nnu_8BNBXyAQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vacuum+free+energy%2C+quark+condensate+shifts+and+magnetization+in+three-flavor+chiral+perturbation+theory+to+O%28p6%29+in+a+uniform+magnetic+field&rft.jtitle=Nuclear+physics.+B&rft.au=Prabal+Adhikari&rft.au=Inga+Str%C3%BCmke&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=0550-3213&rft.volume=997&rft.spage=116389&rft_id=info:doi/10.1016%2Fj.nuclphysb.2023.116389&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9b876f760f04471499ee8064bfb64c92
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0550-3213&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0550-3213&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0550-3213&client=summon