Dynamic feature capturing in a fluid flow reduced-order model using attention-augmented autoencoders
This study looks into how adding adaptive attention to convolutional autoencoders can help reconstruct flow fields in fluid dynamics applications. The study compares the effectiveness of the proposed adaptive attention mechanism with the convolutional block attention module approach using two differ...
Gespeichert in:
| Veröffentlicht in: | Engineering applications of artificial intelligence Jg. 149; S. 110463 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.06.2025
|
| Schlagworte: | |
| ISSN: | 0952-1976 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study looks into how adding adaptive attention to convolutional autoencoders can help reconstruct flow fields in fluid dynamics applications. The study compares the effectiveness of the proposed adaptive attention mechanism with the convolutional block attention module approach using two different sets of datasets. The analysis encompasses the evaluation of reconstruction loss, latent space characteristics, and the application of attention mechanisms to time series forecasting. Combining adaptive attention with involution layers enhances its ability to identify and highlight significant features, surpassing the capabilities of the convolutional block attention module. This result demonstrates an increase of over 20% in the accuracy of reconstruction. Latent space analysis shows the adaptive attention mechanism’s complex and flexible encoding, which makes it easier for the model to represent different types of data. The study also looks at how attention works and how it affects time series forecasting. It shows that a new method that combines multi-head attention and bidirectional long-short-term memory works well for forecasting over 5 s of futures of flow fields. This research provides valuable insights into the role of attention mechanisms in improving model accuracy, generalization, and forecasting capabilities in the field of fluid dynamics.
[Display omitted]
•Adaptive attention boosts flow field reconstruction.•Involution layers enhance latent space adaptability.•Multi-head attention improves time-series forecasting.•Attention mechanisms refine latent space representation.•Dataset-specific impact on clustering with attention. |
|---|---|
| AbstractList | This study looks into how adding adaptive attention to convolutional autoencoders can help reconstruct flow fields in fluid dynamics applications. The study compares the effectiveness of the proposed adaptive attention mechanism with the convolutional block attention module approach using two different sets of datasets. The analysis encompasses the evaluation of reconstruction loss, latent space characteristics, and the application of attention mechanisms to time series forecasting. Combining adaptive attention with involution layers enhances its ability to identify and highlight significant features, surpassing the capabilities of the convolutional block attention module. This result demonstrates an increase of over 20% in the accuracy of reconstruction. Latent space analysis shows the adaptive attention mechanism’s complex and flexible encoding, which makes it easier for the model to represent different types of data. The study also looks at how attention works and how it affects time series forecasting. It shows that a new method that combines multi-head attention and bidirectional long-short-term memory works well for forecasting over 5 s of futures of flow fields. This research provides valuable insights into the role of attention mechanisms in improving model accuracy, generalization, and forecasting capabilities in the field of fluid dynamics.
[Display omitted]
•Adaptive attention boosts flow field reconstruction.•Involution layers enhance latent space adaptability.•Multi-head attention improves time-series forecasting.•Attention mechanisms refine latent space representation.•Dataset-specific impact on clustering with attention. |
| ArticleNumber | 110463 |
| Author | Beiki, Alireza Kamali, Reza |
| Author_xml | – sequence: 1 givenname: Alireza surname: Beiki fullname: Beiki, Alireza email: alireza.beiki@shirazu.ac.ir – sequence: 2 givenname: Reza orcidid: 0000-0002-8160-9277 surname: Kamali fullname: Kamali, Reza email: rkamali@shirazu.ac.ir |
| BookMark | eNqFkM1OwzAQhH0oEm3hFZBfIMFxHDuROIDKr1SJC5wtx15XrhI7chxQ355UhQuXXnb2MN9IMyu08MEDQjcFyQtS8Nt9Dn6nhkG5nBJa5UVBGC8XaEmaimZFI_glWo3jnhBS1owvkXk8eNU7jS2oNEXAWg2zOr_DzmOFbTc5M9_wjSOYSYPJQjQQcR8MdHgaj06VEvjkgs_UtOvnFwxWUwrg9eyK4xW6sKob4fpX1-jz-elj85pt31_eNg_bTFNGU0ZbS0hVC8t4ITRrKLF1W4mmZYY1qiaM8lYbahurrNaiMk0tSl5ZQYSwDTflGvFTro5hHCNYOUTXq3iQBZHHfeRe_u0jj_vI0z4zePcP1C6pY6MUlevO4_cnHOZyXw6iHLWby4NxEXSSJrhzET-31Iwr |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2025_151405 crossref_primary_10_1088_1361_6501_adfe08 |
| Cites_doi | 10.1146/annurev-fluid-010518-040547 10.1016/j.ijheatfluidflow.2023.109254 10.1017/jfm.2019.822 10.1063/5.0006492 10.1038/s41467-024-45323-x 10.1017/jfm.2020.948 10.1016/j.oceaneng.2023.113935 10.1016/j.cma.2020.113379 10.1007/s00162-020-00528-w 10.1063/5.0039986 10.1002/ima.22814 10.1017/S0022112010001217 10.1016/j.paerosci.2003.12.001 10.1063/5.0051155 10.2514/1.J056060 10.1063/5.0020721 10.1088/1873-7005/abb91d 10.1007/978-3-030-01234-2_1 10.1007/s41095-022-0271-y 10.1017/jfm.2019.62 10.1063/5.0177577 10.1038/s41467-024-45578-4 10.1063/5.0153186 10.1146/annurev-fluid-010719-060214 10.1109/CVPR46437.2021.01214 10.1017/jfm.2019.238 10.1016/j.jcp.2019.109056 10.1063/1.5127247 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.110463 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_110463 S0952197625004634 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- 29G 9DU AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c242t-2bf00587f4617c4920f8b579b4d49a80426bcd2f9fafcc75d987365f7077f96d3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446309000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:33:45 EST 2025 Sat Nov 29 07:43:54 EST 2025 Sat Aug 23 17:11:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Convolutional autoencoders Reduced-order modeling Flow field reconstruction Time series forecasting in fluid dynamics Adaptive attention mechanisms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c242t-2bf00587f4617c4920f8b579b4d49a80426bcd2f9fafcc75d987365f7077f96d3 |
| ORCID | 0000-0002-8160-9277 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_110463 crossref_citationtrail_10_1016_j_engappai_2025_110463 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110463 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 2025-06-00 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Guo, Xu, Liu, Liu, Jiang, Mu, Zhang, Martin, Cheng, Hu (b7) 2022; 8 Wang, Xie, Zhang, Xu (b29) 2023; 35 Li, D., Hu, J., Wang, C., Li, X., She, Q., Zhu, L., Zhang, T., Chen, Q., 2021. Involution: Inverting the inherence of convolution for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12321–12330. Brunton, Noack, Koumoutsakos (b1) 2020; 52 Lumley (b13) 1967 Raj, Tafti, Muralidhar (b20) 2023; 35 Tang, Rabault, Kuhnle, Wang, Wang (b26) 2020; 32 Wang, Solera-Rico, Vila, Vinuesa (b28) 2024; 105 Maulik, Lusch, Balaprakash (b14) 2021; 33 Wu, Gong, Pan, Qiu, Feng, Pain (b31) 2021; 33 Fukami, Fukagata, Taira (b4) 2021; 909 Schmid (b22) 2010; 656 Sushama, Menon (b24) 2023; 33 Murata, Fukami, Fukagata (b17) 2020; 882 Minping, Chen, Eyink, Meneveau, Johnson, Perlman, Burns, Li, Szalay, Hamilton (b15) 2012 Regazzoni, Pagani, Salvador, Dede, Quarteroni (b21) 2024; 15 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b27) 2017; 30 Fukami, Fukagata, Taira (b3) 2019; 870 Fukami, Nakamura, Fukagata (b5) 2020; 32 Moni, Yao, Malekmohamadi (b16) 2024; 36 Rabault, Kuchta, Jensen, Réglade, Cerardi (b19) 2019; 865 Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 3–19. Qu, Zhao, Cai (b18) 2023; 35 Taira, Brunton, Dawson, Rowley, Colonius, McKeon, Schmidt, Gordeyev, Theofilis, Ukeiley (b25) 2017; 55 Xu, Sha, Wang, Cao, Wei (b33) 2023; 272 Lucia, Beran, Silva (b12) 2004; 40 Duraisamy, Iaccarino, Xiao (b2) 2019; 51 Hasegawa, Fukami, Murata, Fukagata (b10) 2020; 34 Xu, Duraisamy (b32) 2020; 372 Solera-Rico, Sanmiguel Vila, Gómez-López, Wang, Almashjary, Dawson, Vinuesa (b23) 2024; 15 Hasegawa, Fukami, Murata, Fukagata (b9) 2020; 52 Geneva, Zabaras (b6) 2020; 403 Han, Wang, Zhang, Chen (b8) 2019; 31 Murata (10.1016/j.engappai.2025.110463_b17) 2020; 882 Vaswani (10.1016/j.engappai.2025.110463_b27) 2017; 30 Guo (10.1016/j.engappai.2025.110463_b7) 2022; 8 Hasegawa (10.1016/j.engappai.2025.110463_b10) 2020; 34 Fukami (10.1016/j.engappai.2025.110463_b5) 2020; 32 Xu (10.1016/j.engappai.2025.110463_b32) 2020; 372 Minping (10.1016/j.engappai.2025.110463_b15) 2012 Rabault (10.1016/j.engappai.2025.110463_b19) 2019; 865 Qu (10.1016/j.engappai.2025.110463_b18) 2023; 35 Wang (10.1016/j.engappai.2025.110463_b28) 2024; 105 Taira (10.1016/j.engappai.2025.110463_b25) 2017; 55 Sushama (10.1016/j.engappai.2025.110463_b24) 2023; 33 Tang (10.1016/j.engappai.2025.110463_b26) 2020; 32 Wu (10.1016/j.engappai.2025.110463_b31) 2021; 33 Moni (10.1016/j.engappai.2025.110463_b16) 2024; 36 Brunton (10.1016/j.engappai.2025.110463_b1) 2020; 52 Duraisamy (10.1016/j.engappai.2025.110463_b2) 2019; 51 Fukami (10.1016/j.engappai.2025.110463_b3) 2019; 870 10.1016/j.engappai.2025.110463_b11 Xu (10.1016/j.engappai.2025.110463_b33) 2023; 272 Lumley (10.1016/j.engappai.2025.110463_b13) 1967 10.1016/j.engappai.2025.110463_b30 Schmid (10.1016/j.engappai.2025.110463_b22) 2010; 656 Wang (10.1016/j.engappai.2025.110463_b29) 2023; 35 Hasegawa (10.1016/j.engappai.2025.110463_b9) 2020; 52 Solera-Rico (10.1016/j.engappai.2025.110463_b23) 2024; 15 Fukami (10.1016/j.engappai.2025.110463_b4) 2021; 909 Maulik (10.1016/j.engappai.2025.110463_b14) 2021; 33 Raj (10.1016/j.engappai.2025.110463_b20) 2023; 35 Regazzoni (10.1016/j.engappai.2025.110463_b21) 2024; 15 Geneva (10.1016/j.engappai.2025.110463_b6) 2020; 403 Lucia (10.1016/j.engappai.2025.110463_b12) 2004; 40 Han (10.1016/j.engappai.2025.110463_b8) 2019; 31 |
| References_xml | – volume: 52 start-page: 477 year: 2020 end-page: 508 ident: b1 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 909 start-page: A9 year: 2021 ident: b4 article-title: Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows publication-title: J. Fluid Mech. – volume: 35 year: 2023 ident: b20 article-title: Comparison of reduced order models based on dynamic mode decomposition and deep learning for predicting chaotic flow in a random arrangement of cylinders publication-title: Phys. Fluids – volume: 870 start-page: 106 year: 2019 end-page: 120 ident: b3 article-title: Super-resolution reconstruction of turbulent flows with machine learning publication-title: J. Fluid Mech. – volume: 51 start-page: 357 year: 2019 end-page: 377 ident: b2 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. – volume: 40 start-page: 51 year: 2004 end-page: 117 ident: b12 article-title: Reduced-order modeling: new approaches for computational physics publication-title: Prog. Aerosp. Sci. – volume: 15 start-page: 1361 year: 2024 ident: b23 article-title: -Variational autoencoders and transformers for reduced-order modelling of fluid flows publication-title: Nat. Commun. – volume: 105 year: 2024 ident: b28 article-title: Towards optimal publication-title: Int. J. Heat Fluid Flow – volume: 34 start-page: 367 year: 2020 end-page: 383 ident: b10 article-title: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes publication-title: Theor. Comput. Fluid Dyn. – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: b22 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. – reference: Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 3–19. – volume: 865 start-page: 281 year: 2019 end-page: 302 ident: b19 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control publication-title: J. Fluid Mech. – volume: 30 year: 2017 ident: b27 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 year: 2021 ident: b14 article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders publication-title: Phys. Fluids – volume: 33 year: 2021 ident: b31 article-title: Reduced order model using convolutional auto-encoder with self-attention publication-title: Phys. Fluids – volume: 372 year: 2020 ident: b32 article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 403 year: 2020 ident: b6 article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks publication-title: J. Comput. Phys. – volume: 33 start-page: 701 year: 2023 end-page: 713 ident: b24 article-title: Attention augmented residual autoencoder for efficient polyp segmentation publication-title: Int. J. Imaging Syst. Technol. – volume: 32 year: 2020 ident: b26 article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning publication-title: Phys. Fluids – volume: 272 year: 2023 ident: b33 article-title: Comparative studies of predictive models for unsteady flow fields based on deep learning and proper orthogonal decomposition publication-title: Ocean Eng. – start-page: 166 year: 1967 end-page: 178 ident: b13 article-title: The structure of inhomogeneous turbulent flows publication-title: Atmospheric Turbulence and Radio Wave Propagation – volume: 15 start-page: 1834 year: 2024 ident: b21 article-title: Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks publication-title: Nat. Commun. – volume: 31 year: 2019 ident: b8 article-title: A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network publication-title: Phys. Fluids – year: 2012 ident: b15 article-title: Forced Isotropic Turbulence Data Set (Extended) – volume: 52 year: 2020 ident: b9 article-title: CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers publication-title: Fluid Dyn. Res. – volume: 882 start-page: A13 year: 2020 ident: b17 article-title: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics publication-title: J. Fluid Mech. – volume: 35 year: 2023 ident: b18 article-title: Nonlinear dynamic mode decomposition from time-resolving snapshots based on deep convolutional autoencoder publication-title: Phys. Fluids – volume: 8 start-page: 331 year: 2022 end-page: 368 ident: b7 article-title: Attention mechanisms in computer vision: A survey publication-title: Comput. Vis. Media – reference: Li, D., Hu, J., Wang, C., Li, X., She, Q., Zhu, L., Zhang, T., Chen, Q., 2021. Involution: Inverting the inherence of convolution for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12321–12330. – volume: 36 year: 2024 ident: b16 article-title: Data-driven reduced-order modeling for nonlinear aerodynamics using an autoencoder neural network publication-title: Phys. Fluids – volume: 32 year: 2020 ident: b5 article-title: Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data publication-title: Phys. Fluids – volume: 55 start-page: 4013 year: 2017 end-page: 4041 ident: b25 article-title: Modal analysis of fluid flows: An overview publication-title: Aiaa J. – volume: 35 year: 2023 ident: b29 article-title: Physics-assisted reduced-order modeling for identifying dominant features of transonic buffet publication-title: Phys. Fluids – volume: 51 start-page: 357 year: 2019 ident: 10.1016/j.engappai.2025.110463_b2 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010518-040547 – volume: 105 year: 2024 ident: 10.1016/j.engappai.2025.110463_b28 article-title: Towards optimal β-variational autoencoders combined with transformers for reduced-order modelling of turbulent flows publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2023.109254 – volume: 882 start-page: A13 year: 2020 ident: 10.1016/j.engappai.2025.110463_b17 article-title: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.822 – volume: 32 issue: 5 year: 2020 ident: 10.1016/j.engappai.2025.110463_b26 article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning publication-title: Phys. Fluids doi: 10.1063/5.0006492 – volume: 15 start-page: 1834 issue: 1 year: 2024 ident: 10.1016/j.engappai.2025.110463_b21 article-title: Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks publication-title: Nat. Commun. doi: 10.1038/s41467-024-45323-x – volume: 909 start-page: A9 year: 2021 ident: 10.1016/j.engappai.2025.110463_b4 article-title: Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.948 – volume: 272 year: 2023 ident: 10.1016/j.engappai.2025.110463_b33 article-title: Comparative studies of predictive models for unsteady flow fields based on deep learning and proper orthogonal decomposition publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113935 – volume: 372 year: 2020 ident: 10.1016/j.engappai.2025.110463_b32 article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113379 – volume: 34 start-page: 367 year: 2020 ident: 10.1016/j.engappai.2025.110463_b10 article-title: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-020-00528-w – start-page: 166 year: 1967 ident: 10.1016/j.engappai.2025.110463_b13 article-title: The structure of inhomogeneous turbulent flows – volume: 33 issue: 3 year: 2021 ident: 10.1016/j.engappai.2025.110463_b14 article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders publication-title: Phys. Fluids doi: 10.1063/5.0039986 – volume: 30 year: 2017 ident: 10.1016/j.engappai.2025.110463_b27 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 issue: 6 year: 2023 ident: 10.1016/j.engappai.2025.110463_b18 article-title: Nonlinear dynamic mode decomposition from time-resolving snapshots based on deep convolutional autoencoder publication-title: Phys. Fluids – volume: 33 start-page: 701 issue: 2 year: 2023 ident: 10.1016/j.engappai.2025.110463_b24 article-title: Attention augmented residual autoencoder for efficient polyp segmentation publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22814 – volume: 656 start-page: 5 year: 2010 ident: 10.1016/j.engappai.2025.110463_b22 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001217 – volume: 40 start-page: 51 issue: 1–2 year: 2004 ident: 10.1016/j.engappai.2025.110463_b12 article-title: Reduced-order modeling: new approaches for computational physics publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2003.12.001 – volume: 33 issue: 7 year: 2021 ident: 10.1016/j.engappai.2025.110463_b31 article-title: Reduced order model using convolutional auto-encoder with self-attention publication-title: Phys. Fluids doi: 10.1063/5.0051155 – volume: 55 start-page: 4013 issue: 12 year: 2017 ident: 10.1016/j.engappai.2025.110463_b25 article-title: Modal analysis of fluid flows: An overview publication-title: Aiaa J. doi: 10.2514/1.J056060 – volume: 32 issue: 9 year: 2020 ident: 10.1016/j.engappai.2025.110463_b5 article-title: Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data publication-title: Phys. Fluids doi: 10.1063/5.0020721 – volume: 52 issue: 6 year: 2020 ident: 10.1016/j.engappai.2025.110463_b9 article-title: CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers publication-title: Fluid Dyn. Res. doi: 10.1088/1873-7005/abb91d – ident: 10.1016/j.engappai.2025.110463_b30 doi: 10.1007/978-3-030-01234-2_1 – volume: 8 start-page: 331 issue: 3 year: 2022 ident: 10.1016/j.engappai.2025.110463_b7 article-title: Attention mechanisms in computer vision: A survey publication-title: Comput. Vis. Media doi: 10.1007/s41095-022-0271-y – volume: 865 start-page: 281 year: 2019 ident: 10.1016/j.engappai.2025.110463_b19 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.62 – volume: 35 issue: 6 year: 2023 ident: 10.1016/j.engappai.2025.110463_b29 article-title: Physics-assisted reduced-order modeling for identifying dominant features of transonic buffet publication-title: Phys. Fluids – volume: 36 issue: 1 year: 2024 ident: 10.1016/j.engappai.2025.110463_b16 article-title: Data-driven reduced-order modeling for nonlinear aerodynamics using an autoencoder neural network publication-title: Phys. Fluids doi: 10.1063/5.0177577 – volume: 15 start-page: 1361 issue: 1 year: 2024 ident: 10.1016/j.engappai.2025.110463_b23 article-title: β-Variational autoencoders and transformers for reduced-order modelling of fluid flows publication-title: Nat. Commun. doi: 10.1038/s41467-024-45578-4 – volume: 35 issue: 7 year: 2023 ident: 10.1016/j.engappai.2025.110463_b20 article-title: Comparison of reduced order models based on dynamic mode decomposition and deep learning for predicting chaotic flow in a random arrangement of cylinders publication-title: Phys. Fluids doi: 10.1063/5.0153186 – volume: 52 start-page: 477 year: 2020 ident: 10.1016/j.engappai.2025.110463_b1 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – ident: 10.1016/j.engappai.2025.110463_b11 doi: 10.1109/CVPR46437.2021.01214 – volume: 870 start-page: 106 year: 2019 ident: 10.1016/j.engappai.2025.110463_b3 article-title: Super-resolution reconstruction of turbulent flows with machine learning publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.238 – year: 2012 ident: 10.1016/j.engappai.2025.110463_b15 – volume: 403 year: 2020 ident: 10.1016/j.engappai.2025.110463_b6 article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109056 – volume: 31 issue: 12 year: 2019 ident: 10.1016/j.engappai.2025.110463_b8 article-title: A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network publication-title: Phys. Fluids doi: 10.1063/1.5127247 |
| SSID | ssj0003846 |
| Score | 2.445332 |
| Snippet | This study looks into how adding adaptive attention to convolutional autoencoders can help reconstruct flow fields in fluid dynamics applications. The study... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110463 |
| SubjectTerms | Adaptive attention mechanisms Convolutional autoencoders Flow field reconstruction Reduced-order modeling Time series forecasting in fluid dynamics |
| Title | Dynamic feature capturing in a fluid flow reduced-order model using attention-augmented autoencoders |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.110463 |
| Volume | 149 |
| WOSCitedRecordID | wos001446309000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7cpIdemj5pkrbsoTchV5YsrfZo2pQ-IJSSgm9itY-g4MjGkZKQX5_Zp5VimubQy2Iv7Er2fJqdGc18g9CHXCS69Ql4qpKAgzKlDPSgSGIyoarQAKkzZppNkOPjcj6nP0ej3tfCXC5I25bX13T1X0UNcyBsXTr7AHGHTWECPoPQYQSxw_hPgv9se8xHShrOzoizVWdrEZs2YpFa9I2AcXkVrTVtqxSxod-0PXGi3sQONOmmSYOMWX9qaDtFxPpuqVkvhcuZD_H8DaNhNHwdbjIM1iYVyTQGGXB_hhiAbGzX7NkCNO9NOCF-sHNmy7Z_-VkXmEjzTQJViDCm8YTa9i5B2VqCUqcuJ_oNc7ZVk9ugwtlYtqdw76wZ60uMNwvuUmf_caSFREOfw3ZW-X0qvU9l93mEdlOSU1CGu7NvR_Pv4QjPSlvh5X_BoLR8-x1tt2oGlsrJM_TUuRh4ZqHxHI1k-wLtOXcDO2V-AVO-o4efe4mEAw924MEBPLhpMcMGPFiDB98BDzbgwQY8eAt48BA8r9DvL0cnn77Grg9HzMGA6-K0Vrr7JFFTMHf5lKaJKuuc0Hoq4NkutRdec5EqqpjinOSCliQrckUSQhQtRPYa7bTLVr5BWMqiULwQVKUMTOGszOA7WPhMKEJYneyj3P-PFXck9bpXyqL6uyT30cewbmVpWu5dQb2YKmdsWiOyAgTes_bgwVc7RE82j8hbtNOte_kOPeaXXXOxfu_gdwv5zahJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+feature+capturing+in+a+fluid+flow+reduced-order+model+using+attention-augmented+autoencoders&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Beiki%2C+Alireza&rft.au=Kamali%2C+Reza&rft.date=2025-06-01&rft.issn=0952-1976&rft.volume=149&rft.spage=110463&rft_id=info:doi/10.1016%2Fj.engappai.2025.110463&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_110463 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |