Context-aware ranking refinement with attentive semi-supervised autoencoders
Learning to rank methods aim to learn a refined ranking model from labeled data for desired ranking performance. However, the learned model may not improve the performance on each individual query because the distributions of relevant documents among queries are diversified in document feature space...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 26; H. 24; S. 13941 - 13952 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
|
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Learning to rank methods aim to learn a refined ranking model from labeled data for desired ranking performance. However, the learned model may not improve the performance on each individual query because the distributions of relevant documents among queries are diversified in document feature space. The performance of learned ranking models may be largely affected by the usefulness of document features. To generate high-quality document ranking features, we capture the local context information of individual queries from the top-ranked documents of an initial retrieval using pseudo-relevance feedback. Based on the top-ranked feedback documents, we propose an attentive semi-supervised autoencoder to refine the ranked results using an optimized ranking-oriented reconstruction loss. Furthermore, we devise the hybrid listwise query constraints to capture the characteristics of relevant documents for different queries. We evaluate the proposed ranking model on LETOR collections including OHSUMED, MQ2007 and MQ2008. Our model produces better experimental results and consistent improvements of ranking performance over baseline methods. |
|---|---|
| AbstractList | Learning to rank methods aim to learn a refined ranking model from labeled data for desired ranking performance. However, the learned model may not improve the performance on each individual query because the distributions of relevant documents among queries are diversified in document feature space. The performance of learned ranking models may be largely affected by the usefulness of document features. To generate high-quality document ranking features, we capture the local context information of individual queries from the top-ranked documents of an initial retrieval using pseudo-relevance feedback. Based on the top-ranked feedback documents, we propose an attentive semi-supervised autoencoder to refine the ranked results using an optimized ranking-oriented reconstruction loss. Furthermore, we devise the hybrid listwise query constraints to capture the characteristics of relevant documents for different queries. We evaluate the proposed ranking model on LETOR collections including OHSUMED, MQ2007 and MQ2008. Our model produces better experimental results and consistent improvements of ranking performance over baseline methods. |
| Author | Xu, Kan Xu, Bo Lin, Yuan Lin, Hongfei |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0001-5453-978X surname: Xu fullname: Xu, Bo email: xubo@dlut.edu.cn organization: School of Computer Science and Technology, Dalian University of Technology – sequence: 2 givenname: Hongfei surname: Lin fullname: Lin, Hongfei organization: School of Computer Science and Technology, Dalian University of Technology – sequence: 3 givenname: Yuan surname: Lin fullname: Lin, Yuan organization: WISE Lab, Faculty of Humanities and Social Sciences, Dalian University of Technology – sequence: 4 givenname: Kan surname: Xu fullname: Xu, Kan organization: School of Computer Science and Technology, Dalian University of Technology |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7DKDxjGdhInS1TxqBSJDaytaTIpLtSpbLeBv8dtWbOau5hzdXVmbOIGR4zdCrgTAPo-ABQAHKTkoHOl-HjBpuIYdK7rySlLrstcXbFZCBsAKXShpqxZDC7Sd-Q4oqfMo_u0bp156q2jLbmYjTZ-ZBhjyvZAWaCt5WG_I3-wgboM93Eg1w4d-XDNLnv8CnTzd-fs_enxbfHCm9fn5eKh4a3MZeSiqxFl15dVIYterypsVUkFtlStIK0C7EvMS5J9XUKla0KqaiDIK1RStKDmTJ57Wz-EkLaanbdb9D9GgDn6MGcfJvkwJx9mTJA6QyE9uzV5sxn23qWd_1G_EwFngQ |
| Cites_doi | 10.1145/3130348.3130376 10.1145/3404835.3462886 10.1145/3404835.3462901 10.1145/3308560.3316736 10.1145/3459637.3482243 10.1145/2600428.2609542 10.1145/2939672.2939677 10.1145/2766462.2767753 10.1145/3331184.3331246 10.1145/3209978.3209981 10.1145/2835776.2835804 10.1145/3459637.3482179 10.1609/aaai.v29i1.9548 10.1145/3038912.3052579 10.1145/2740908.2742726 10.1145/3459637.3481899 10.1145/3209978.3210045 10.1016/j.neucom.2019.03.068 10.1145/3018661.3018699 10.1145/3209978.3209979 10.1214/aos/1013203451 10.3115/v1/P15-1107 10.1145/1102351.1102363 10.1145/3209978.3209985 10.1145/3404835.3463076 10.1561/1500000016 10.1145/3209978.3210048 10.1109/ACCESS.2022.3154767 10.1145/3209978.3209993 10.1145/1273496.1273513 10.1145/3459637.3482020 10.1007/s10791-009-9123-y 10.1016/j.ipm.2015.07.002 10.1145/3132847.3133049 10.1145/3331184.3331189 10.1145/2505515.2505665 10.1145/3404835.3463098 10.1609/aaai.v30i1.10159 10.1145/3209978.3209980 10.1145/3018661.3018720 10.1145/3459637.3482093 10.1145/3404835.3463088 10.18653/v1/N18-1142 10.1145/984321.984322 10.1145/3331184.3331316 10.1145/3459637.3482101 10.1561/2200000006 10.1145/3077136.3080786 10.1145/2983323.2983769 10.1109/ACCESS.2021.3124931 10.1145/3331184.3331296 10.1002/asi.4630270302 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00500-022-07433-w |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 13952 |
| ExternalDocumentID | 10_1007_s00500_022_07433_w |
| GrantInformation_xml | – fundername: Natural Science Foundation of China grantid: 62006034 – fundername: the Fundamental Research Funds for the Central Universities grantid: DUT21RC(3)015 – fundername: Natural Science Foundation of Liaoning Province grantid: 2021-BS-067 funderid: http://dx.doi.org/10.13039/501100005047 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c242t-1d9aa2df68525f7b8ac36e5ace8b07530af6a46e2f960879eae890e048a321c03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844464300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Sat Nov 29 03:36:20 EST 2025 Fri Feb 21 02:46:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | Pseudo-relevance feedback Information retrieval Learning to rank Ranking refinement Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c242t-1d9aa2df68525f7b8ac36e5ace8b07530af6a46e2f960879eae890e048a321c03 |
| ORCID | 0000-0001-5453-978X |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1007_s00500_022_07433_w springer_journals_10_1007_s00500_022_07433_w |
| PublicationCentury | 2000 |
| PublicationDate | 20221200 2022-12-00 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | BanerjeeAMeruguSDhillonISGhoshJClustering with Bregman divergencesJ Mach Learn Res2004641705174922498701190.62117 Wang H, Langley R, Kim S, McCord-Snook E, Wang H (2018) Efficient exploration of gradient space for online learning to rank. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 145–154 Goeric H (2016) Learning to rank with deep neural networks. Master’s thesis, University of Leuven Robertson StephenESparck JonesKRelevance weighting of search termsJ Am Soc Inf Sci197627312914610.1002/asi.4630270302 Feng Y, Xu J, Lan Y, Guo J, Zeng W, Cheng X (2018) From greedy selection to exploratory decision-making: diverse ranking with policy-value networks. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 125–134 Lee Y, Kim KE (2021) Dual correction strategy for ranking distillation in top-n recommender system. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 3186–3190 Schuth A, Oosterhuis H, Whiteson S, de Rijke M (2016) Multileave gradient descent for fast online learning to rank. In: Proceedings of the 9th ACM international conference on Web Search and Data Mining (WSDM). ACM, pp 457–466 Freund Y, Iyer R, Schapire RE, Singer Y (1998) An efficient boosting algorithm for combining preferences. In: International conference on machine learning (ICML), pp 170–178 Sedhain S, Menon AK, Sanner S, Xie L (2015) Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th international conference on World Wide Web (WWW). ACM, pp 111–112 LiuT-YLearning to rank for information retrievalFound Trends Inf Retr20093322533110.1561/1500000016 Zhu Y, Nie JY, Dou Z, Ma Z, Zhang X, Du P, Zuo X, Jiang H (2015) Representation learning via semi-supervised autoencoder for multi-task learning. In: IEEE international conference on data mining (ICDM). IEEE, pp 1141–1146 Wang B, Klabjan D (2017) An attention-based deep net for learning to rank. arXiv preprint arXiv:1702.06106 Xu B, Lin H, Lin Y, Xu K (2017) Learning to rank with query-level semi-supervised autoencoders. In: Proceedings of the 26th ACM on conference on information and knowledge management (CIKM). ACM, pp 2395–2398 Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Statist 29(5): 1189–1232 Niu S, Lan Y, Guo J, Cheng X, Geng X (2014) What makes data robust: a data analysis in learning to rank. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1191–1194 Hansen C, Hansen C, Alstrup S, Grue Simonsen J, Lioma C (2019) Neural check-worthiness ranking with weak supervision: finding sentences for fact-checking. CoRR arXiv:1903.08404 Li J, Luong T, Jurafsky D (2015) A hierarchical neural autoencoder for paragraphs and documents. In: International joint conference on natural language processing, vol 1, pp 1106–1115 SaltonGBuckleyCImproving retrieval performance by relevance feedbackJ Am Soc Inf Sci1997414355364 Al-AsadiMATasdemirSPredict the value of football players using FIFA video game data and machine learning techniquesIEEE Access202210226312264510.1109/ACCESS.2022.3154767 Tran A, Yang T, Ai Q (2021) ULTRA: an unbiased learning to rank algorithm toolbox. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 4613–4622 Wang H, Shi X, Yeung DY (2015) Relational stacked denoising autoencoder for tag recommendation. In: The association for the advancement of artificial intelligence (AAAI), pp 3052–3058 Lavrenko V, Croft WB (2001) Relevance-based language models. In: International ACM SIGIR conference on research and development in information retrieval, vol 51, no 2, pp 120–127 Xu B, Lin H, Lin Y, Xu K (2019) Incorporating query constraints for autoencoder enhanced ranking. Neurocomputing 356:142–150 Tax N, Bockting S, Hiemstra D (2015) A cross-benchmark comparison of 87 learning to rank methods. Inf Process Manage 51(6):757–772 Yin D, Hu Y, Tang J, Daly T, Zhou M, Ouyang H, Chen J, Kang C, Deng H, Nobata C, Langlois JM (2016) Ranking relevance in yahoo search. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 323–332 Zhu Y, Nie JY, Dou Z, Ma Z, Zhang X, Du P, Zuo X, Jiang H (2021) Contrastive learning of user behavior sequence for context-aware document ranking. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 2780–2791 QinTLiuT-YJunXLiHLETOR: a benchmark collection for research on learning to rank for information retrievalInf Retr J201013434637410.1007/s10791-009-9123-y Zhai S, Zhang ZM (2016) Semisupervised autoencoder for sentiment analysis. In: The association for the advancement of artificial intelligence (AAAI), pp 1394–1400 Chen L, Wu L, Zhang K, Hong R, Wang M (2021) Set2setrank: collaborative set to set ranking for implicit feedback based recommendation. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 585–594 Ahmad WU, Chang KW, Wang H (2019) Context Attentive Document Ranking and Query Suggestion. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp 385–394. https://doi.org/10.1145/3331184.3331246 Cao Z, Qin T, Liu TY, Tsai MF, Li H (2007) Learning to rank: from pairwise approach to listwise approach. In: International conference on machine learning (ICML), pp 129–136 Lucchese C, Nardini FM, Perego R, Orlando S, Trani S (2018) Selective gradient boosting for effective learning to rank. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 155–164 Wang J, Yu L, Zhang W, Gong Y, Xu Y, Wang B, Zhang P, Zhang D (2017) IRGAN: a minimax game for unifying generative and discriminative information retrieval models. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 515–524 BurgesCJCFrom RankNet to LambdaRank to LambdaMART: an overviewLearning20101123–58181 BengioYLearning deep architectures for AIFound Trends Mach Learn2009211127248072310.1561/22000000061192.68503 Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank using gradient descent. In: International conference on machine learning (ICML), pp 89–96 Busolin F, Lucchese C, Nardini FM, Orlando S, Perego R, Trani S (2021) Learning early exit strategies for additive ranking ensembles. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2217–2221 Wu L, Hu D, Hong L, Liu H (2018) Turning clicks into purchases: revenue optimization for product search in E-commerce. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 365–374 Burges Christopher J, Ragno Robert, Le Quoc V (2007) Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems (NIPS), pp 193–200 Qin T, Liu TY (2013) Introducing LETOR 4.0 datasets. Computer Science Al-AsadiMATasdemirSEmpirical comparisons for combining balancing and feature selection strategies for characterizing football players using FIFA video game systemIEEE Access2021914926614928610.1109/ACCESS.2021.3124931 Formal T, Piwowarski B, Clinchant S (2021) SPLADE: sparse lexical and expansion model for first stage ranking. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2288–2292 Zhai C, Lafferty JD (2004) A study of smoothing methods for language models applied to information retrieval. ACM Trans Inf Syst 22(2):179–214 Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM international on conference on information and knowledge management (CIKM). ACM, pp 2333–2338 Shao J, Ji S, Yang T (2019) Privacy-aware document ranking with neural signals. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp 305–314. https://doi.org/10.1145/3331184.3331189 Mitra B, Diaz F, Craswell N (2017) Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th international conference on World Wide Web (WWW), pp 1291–1299 Joachims T, Swaminathan A, Schnabel T (2017) Unbiased learning-to-rank with biased feedback. In: Proceedings of the 10th ACM international conference on web search and data mining (WSDM). ACM, pp 781–789 Ai Q, Bi K, Guo J, Croft WB (2018) Learning a deep listwise context model for ranking refinement. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval. ACM, pp 135–144 Yoon S, Shin J, Jung K (2018) Learning to rank question-answer pairs using hierarchical recurrent encoder with latent topic clustering. In: Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: human language technologies (NAACL-HLT), pp 1575–158 7433_CR43 7433_CR44 7433_CR45 7433_CR46 7433_CR47 7433_CR48 7433_CR49 G Salton (7433_CR41) 1997; 41 E Robertson Stephen (7433_CR39) 1976; 27 MA Al-Asadi (7433_CR4) 2022; 10 7433_CR40 7433_CR42 7433_CR32 7433_CR33 7433_CR34 7433_CR35 7433_CR36 7433_CR38 7433_CR30 7433_CR7 7433_CR21 7433_CR22 7433_CR23 7433_CR24 7433_CR25 7433_CR26 T Qin (7433_CR37) 2010; 13 7433_CR1 7433_CR27 7433_CR2 7433_CR28 A Banerjee (7433_CR5) 2004; 6 7433_CR29 7433_CR9 T-Y Liu (7433_CR31) 2009; 3 7433_CR60 7433_CR61 7433_CR20 7433_CR10 7433_CR54 7433_CR11 7433_CR55 7433_CR12 7433_CR56 7433_CR13 7433_CR57 7433_CR14 7433_CR58 7433_CR15 7433_CR59 7433_CR16 7433_CR17 7433_CR18 7433_CR19 CJC Burges (7433_CR8) 2010; 11 Y Bengio (7433_CR6) 2009; 2 7433_CR50 MA Al-Asadi (7433_CR3) 2021; 9 7433_CR51 7433_CR52 7433_CR53 |
| References_xml | – reference: Qin T, Liu TY (2013) Introducing LETOR 4.0 datasets. Computer Science – reference: BurgesCJCFrom RankNet to LambdaRank to LambdaMART: an overviewLearning20101123–58181 – reference: Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank using gradient descent. In: International conference on machine learning (ICML), pp 89–96 – reference: QinTLiuT-YJunXLiHLETOR: a benchmark collection for research on learning to rank for information retrievalInf Retr J201013434637410.1007/s10791-009-9123-y – reference: Joachims T, Swaminathan A, Schnabel T (2017) Unbiased learning-to-rank with biased feedback. In: Proceedings of the 10th ACM international conference on web search and data mining (WSDM). ACM, pp 781–789 – reference: Wang B, Klabjan D (2017) An attention-based deep net for learning to rank. arXiv preprint arXiv:1702.06106 – reference: Zhu Y, Nie JY, Dou Z, Ma Z, Zhang X, Du P, Zuo X, Jiang H (2015) Representation learning via semi-supervised autoencoder for multi-task learning. In: IEEE international conference on data mining (ICDM). IEEE, pp 1141–1146 – reference: Lee Y, Kim KE (2021) Dual correction strategy for ranking distillation in top-n recommender system. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 3186–3190 – reference: LiuT-YLearning to rank for information retrievalFound Trends Inf Retr20093322533110.1561/1500000016 – reference: Fan Y, Guo J, Lan Y, Xu J, Zhai C, Cheng X (2018) Modeling diverse relevance patterns in ad-hoc retrieval. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 375–384 – reference: Formal T, Piwowarski B, Clinchant S (2021) SPLADE: sparse lexical and expansion model for first stage ranking. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2288–2292 – reference: Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Statist 29(5): 1189–1232 – reference: Yoon S, Shin J, Jung K (2018) Learning to rank question-answer pairs using hierarchical recurrent encoder with latent topic clustering. In: Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: human language technologies (NAACL-HLT), pp 1575–1584 – reference: Yin D, Hu Y, Tang J, Daly T, Zhou M, Ouyang H, Chen J, Kang C, Deng H, Nobata C, Langlois JM (2016) Ranking relevance in yahoo search. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 323–332 – reference: Yang Z, Yan S, Lad A, Liu X, Guo W (2021) Cascaded deep neural ranking models in linkedin people search. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 4312–4320 – reference: Schuth A, Oosterhuis H, Whiteson S, de Rijke M (2016) Multileave gradient descent for fast online learning to rank. In: Proceedings of the 9th ACM international conference on Web Search and Data Mining (WSDM). ACM, pp 457–466 – reference: Tax N, Bockting S, Hiemstra D (2015) A cross-benchmark comparison of 87 learning to rank methods. Inf Process Manage 51(6):757–772 – reference: BengioYLearning deep architectures for AIFound Trends Mach Learn2009211127248072310.1561/22000000061192.68503 – reference: Guo J, Fan Y, Ai Q, Croft WB(2016) A deep relevance matching model for ad-hoc retrieval. In: Proceedings of the 25th ACM international on conference on information and knowledge management (CIKM). ACM, pp 55–64 – reference: Wang J, Yu L, Zhang W, Gong Y, Xu Y, Wang B, Zhang P, Zhang D (2017) IRGAN: a minimax game for unifying generative and discriminative information retrieval models. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 515–524 – reference: Chen M, Liu C, Sun J, Hoi SC (2021) Adapting interactional observation embedding for counterfactual learning to rank. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 285–294 – reference: Zhu Y, Nie JY, Dou Z, Ma Z, Zhang X, Du P, Zuo X, Jiang H (2021) Contrastive learning of user behavior sequence for context-aware document ranking. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 2780–2791 – reference: Chen L, Wu L, Zhang K, Hong R, Wang M (2021) Set2setrank: collaborative set to set ranking for implicit feedback based recommendation. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 585–594 – reference: MacAvaney S, Yates A, Hui K, Frieder O (2019) Content-based weak supervision for ad-hoc re-ranking. arXiv Information retrieval – reference: Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM international on conference on information and knowledge management (CIKM). ACM, pp 2333–2338 – reference: Kim Y, Rahimi R, Bonab H, Allan J (2021) Query-driven segment selection for ranking long documents. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 3147–3151 – reference: Feng Y, Xu J, Lan Y, Guo J, Zeng W, Cheng X (2018) From greedy selection to exploratory decision-making: diverse ranking with policy-value networks. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 125–134 – reference: BanerjeeAMeruguSDhillonISGhoshJClustering with Bregman divergencesJ Mach Learn Res2004641705174922498701190.62117 – reference: Ai Q, Bi K, Guo J, Croft WB (2018) Learning a deep listwise context model for ranking refinement. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval. ACM, pp 135–144 – reference: Wu L, Hu D, Hong L, Liu H (2018) Turning clicks into purchases: revenue optimization for product search in E-commerce. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 365–374 – reference: Lucchese C, Nardini FM, Perego R, Orlando S, Trani S (2018) Selective gradient boosting for effective learning to rank. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 155–164 – reference: Zhai C, Lafferty JD (2004) A study of smoothing methods for language models applied to information retrieval. ACM Trans Inf Syst 22(2):179–214 – reference: Burges Christopher J, Ragno Robert, Le Quoc V (2007) Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems (NIPS), pp 193–200 – reference: Robertson StephenESparck JonesKRelevance weighting of search termsJ Am Soc Inf Sci197627312914610.1002/asi.4630270302 – reference: Ahmad WU, Chang KW, Wang H (2019) Context Attentive Document Ranking and Query Suggestion. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp 385–394. https://doi.org/10.1145/3331184.3331246 – reference: Al-AsadiMATasdemirSPredict the value of football players using FIFA video game data and machine learning techniquesIEEE Access202210226312264510.1109/ACCESS.2022.3154767 – reference: Cao Z, Qin T, Liu TY, Tsai MF, Li H (2007) Learning to rank: from pairwise approach to listwise approach. In: International conference on machine learning (ICML), pp 129–136 – reference: Xu B, Lin H, Lin Y, Xu K (2017) Learning to rank with query-level semi-supervised autoencoders. In: Proceedings of the 26th ACM on conference on information and knowledge management (CIKM). ACM, pp 2395–2398 – reference: Rosset C, Mitra B, Xiong C, Craswell N, Song X, Tiwary S (2019) An axiomatic approach to regularizing neural ranking models. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 981–984. https://doi.org/10.1145/3331184.3331296 – reference: Goeric H (2016) Learning to rank with deep neural networks. Master’s thesis, University of Leuven – reference: Mehrotra R, Yilmaz E (2015) Representative and informative query selection for learning to rank using submodular functions. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 545–554 – reference: Wang H, Langley R, Kim S, McCord-Snook E, Wang H (2018) Efficient exploration of gradient space for online learning to rank. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 145–154 – reference: Sedhain S, Menon AK, Sanner S, Xie L (2015) Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th international conference on World Wide Web (WWW). ACM, pp 111–112 – reference: Mitra B, Diaz F, Craswell N (2017) Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th international conference on World Wide Web (WWW), pp 1291–1299 – reference: Lavrenko V, Croft WB (2001) Relevance-based language models. In: International ACM SIGIR conference on research and development in information retrieval, vol 51, no 2, pp 120–127 – reference: SaltonGBuckleyCImproving retrieval performance by relevance feedbackJ Am Soc Inf Sci1997414355364 – reference: Shao J, Ji S, Yang T (2019) Privacy-aware document ranking with neural signals. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp 305–314. https://doi.org/10.1145/3331184.3331189 – reference: Tran A, Yang T, Ai Q (2021) ULTRA: an unbiased learning to rank algorithm toolbox. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 4613–4622 – reference: Kim M, Ko Y (2021) Self-supervised fine-tuning for efficient passage re-ranking. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 3142–3146 – reference: Zhai S, Zhang ZM (2016) Semisupervised autoencoder for sentiment analysis. In: The association for the advancement of artificial intelligence (AAAI), pp 1394–1400 – reference: Zhuang F, Luo D, Yuan NJ, Xie X, He Q (2017) Representation learning with pair-wise constraints for collaborative ranking. In: Proceedings of the 10th ACM international conference on web search and data mining (WSDM). ACM, pp 567–575 – reference: Li J, Luong T, Jurafsky D (2015) A hierarchical neural autoencoder for paragraphs and documents. In: International joint conference on natural language processing, vol 1, pp 1106–1115 – reference: He X, He Z, Du X, Chua TS (2018) Adversarial personalized ranking for recommendation. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 355–364 – reference: Xu B, Lin H, Lin Y, Xu K (2019) Incorporating query constraints for autoencoder enhanced ranking. Neurocomputing 356:142–150 – reference: Choi J, Jung E, Suh J, Rhee W (2021) Improving bi-encoder document ranking models with two rankers and multi-teacher distillation. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2192–2196 – reference: Freund Y, Iyer R, Schapire RE, Singer Y (1998) An efficient boosting algorithm for combining preferences. In: International conference on machine learning (ICML), pp 170–178 – reference: Niu S, Lan Y, Guo J, Cheng X, Geng X (2014) What makes data robust: a data analysis in learning to rank. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1191–1194 – reference: Wang H, Shi X, Yeung DY (2015) Relational stacked denoising autoencoder for tag recommendation. In: The association for the advancement of artificial intelligence (AAAI), pp 3052–3058 – reference: Busolin F, Lucchese C, Nardini FM, Orlando S, Perego R, Trani S (2021) Learning early exit strategies for additive ranking ensembles. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2217–2221 – reference: Hansen C, Hansen C, Alstrup S, Grue Simonsen J, Lioma C (2019) Neural check-worthiness ranking with weak supervision: finding sentences for fact-checking. CoRR arXiv:1903.08404 – reference: Al-AsadiMATasdemirSEmpirical comparisons for combining balancing and feature selection strategies for characterizing football players using FIFA video game systemIEEE Access2021914926614928610.1109/ACCESS.2021.3124931 – ident: 7433_CR28 doi: 10.1145/3130348.3130376 – ident: 7433_CR13 doi: 10.1145/3404835.3462886 – ident: 7433_CR12 doi: 10.1145/3404835.3462901 – ident: 7433_CR22 doi: 10.1145/3308560.3316736 – ident: 7433_CR61 doi: 10.1145/3459637.3482243 – ident: 7433_CR36 doi: 10.1145/2600428.2609542 – ident: 7433_CR55 doi: 10.1145/2939672.2939677 – ident: 7433_CR34 doi: 10.1145/2766462.2767753 – ident: 7433_CR1 doi: 10.1145/3331184.3331246 – ident: 7433_CR23 doi: 10.1145/3209978.3209981 – ident: 7433_CR38 – ident: 7433_CR42 doi: 10.1145/2835776.2835804 – ident: 7433_CR26 doi: 10.1145/3459637.3482179 – ident: 7433_CR49 doi: 10.1609/aaai.v29i1.9548 – volume: 41 start-page: 355 issue: 4 year: 1997 ident: 7433_CR41 publication-title: J Am Soc Inf Sci – ident: 7433_CR60 – ident: 7433_CR35 doi: 10.1145/3038912.3052579 – ident: 7433_CR43 doi: 10.1145/2740908.2742726 – ident: 7433_CR54 doi: 10.1145/3459637.3481899 – volume: 11 start-page: 81 issue: 23–581 year: 2010 ident: 7433_CR8 publication-title: Learning – ident: 7433_CR48 doi: 10.1145/3209978.3210045 – ident: 7433_CR53 doi: 10.1016/j.neucom.2019.03.068 – ident: 7433_CR25 doi: 10.1145/3018661.3018699 – ident: 7433_CR16 doi: 10.1145/3209978.3209979 – ident: 7433_CR19 doi: 10.1214/aos/1013203451 – ident: 7433_CR30 doi: 10.3115/v1/P15-1107 – ident: 7433_CR7 – ident: 7433_CR9 doi: 10.1145/1102351.1102363 – ident: 7433_CR2 doi: 10.1145/3209978.3209985 – ident: 7433_CR14 doi: 10.1145/3404835.3463076 – volume: 3 start-page: 225 issue: 3 year: 2009 ident: 7433_CR31 publication-title: Found Trends Inf Retr doi: 10.1561/1500000016 – ident: 7433_CR32 doi: 10.1145/3209978.3210048 – volume: 10 start-page: 22631 year: 2022 ident: 7433_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3154767 – ident: 7433_CR51 doi: 10.1145/3209978.3209993 – ident: 7433_CR11 doi: 10.1145/1273496.1273513 – ident: 7433_CR46 doi: 10.1145/3459637.3482020 – volume: 13 start-page: 346 issue: 4 year: 2010 ident: 7433_CR37 publication-title: Inf Retr J doi: 10.1007/s10791-009-9123-y – ident: 7433_CR45 doi: 10.1016/j.ipm.2015.07.002 – ident: 7433_CR52 doi: 10.1145/3132847.3133049 – ident: 7433_CR44 doi: 10.1145/3331184.3331189 – ident: 7433_CR24 doi: 10.1145/2505515.2505665 – ident: 7433_CR17 doi: 10.1145/3404835.3463098 – ident: 7433_CR58 doi: 10.1609/aaai.v30i1.10159 – ident: 7433_CR15 doi: 10.1145/3209978.3209980 – ident: 7433_CR20 – ident: 7433_CR59 doi: 10.1145/3018661.3018720 – volume: 6 start-page: 1705 issue: 4 year: 2004 ident: 7433_CR5 publication-title: J Mach Learn Res – ident: 7433_CR29 doi: 10.1145/3459637.3482093 – ident: 7433_CR47 – ident: 7433_CR10 doi: 10.1145/3404835.3463088 – ident: 7433_CR56 doi: 10.18653/v1/N18-1142 – ident: 7433_CR57 doi: 10.1145/984321.984322 – ident: 7433_CR33 doi: 10.1145/3331184.3331316 – ident: 7433_CR27 doi: 10.1145/3459637.3482101 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 7433_CR6 publication-title: Found Trends Mach Learn doi: 10.1561/2200000006 – ident: 7433_CR50 doi: 10.1145/3077136.3080786 – ident: 7433_CR21 doi: 10.1145/2983323.2983769 – ident: 7433_CR18 – volume: 9 start-page: 149266 year: 2021 ident: 7433_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3124931 – ident: 7433_CR40 doi: 10.1145/3331184.3331296 – volume: 27 start-page: 129 issue: 3 year: 1976 ident: 7433_CR39 publication-title: J Am Soc Inf Sci doi: 10.1002/asi.4630270302 |
| SSID | ssj0021753 |
| Score | 2.3156874 |
| Snippet | Learning to rank methods aim to learn a refined ranking model from labeled data for desired ranking performance. However, the learned model may not improve the... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 13941 |
| SubjectTerms | Application of Soft Computing Artificial Intelligence Computational Intelligence Control Engineering Mathematical Logic and Foundations Mechatronics Robotics |
| Title | Context-aware ranking refinement with attentive semi-supervised autoencoders |
| URI | https://link.springer.com/article/10.1007/s00500-022-07433-w |
| Volume | 26 |
| WOSCitedRecordID | wos000844464300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-7479 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg4wAHHgPEeEw5cINIbfpYegS0icM0TeOh3ao0daUd6Ka1Y38fJ2snJiEkuFZWFTmxPzuxPwPcCkUOLzI39xgF3PcSh5PPQ8panSSggCLLMkuZP-gOh3IyiUZVU1hRV7vXT5LWU2-a3QxVicNN9bmBPY-vdqFJcCfNwIbxy_smzaq4JykQoNiRALdqlfn5H9twtP0WaiGmf_S_xR3DYRVSsof1GTiBHcxbcFSPa2CV9bbg4Bv34CkMLC8Vpb1qpRbIzOx2-s5ohSRjrgyZuaJlhn4zNy6RFfgx5cVybpxLgSlTy3JmWDBNJfQZvPV7r0_PvBqtwDVhcsndNFJKpFkoAxFk3UQq7YUYKI0yoSDCc1QWKj9EkVGGI7sRKqQdRTJ35QlXO945NPJZjhfAMPJcV4tE-S76WkYqlKlUQrlJmgmtRRvuag3H8zWDRrzhSrZqi0ltsVVbvGrDfa3guLKm4hfxy7-JX8G-MHtky1GuoVEulngDe_qznBaLDjQfe8PRuGOP0xfMQMVR |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_Pgmwba9GPpo4hjYh2iU_ZW0jSBPdiNtXP_vpesHQ5E0NdylHDJ3e8uufsdwBUT6PAic3OvooD6XupQ9HkKs1YnDTCg0Fpbyvy40-_z4TB6rprCirravX6StJ562exmqEocaqrPDex5dL4OGz4ilmHMf3l9X6ZZFfckBgIYOyLgVq0yP_9jFY5W30ItxHSb_1vcHuxWISW5XZyBfVhTeQua9bgGUllvC3a-cQ8eQGx5qTDtFXMxVcTMbsfvBFeIMubKkJgrWmLoN3PjEkmhPka0mE2McylURsSsHBsWTFMJfQhv3fvBXY9WoxWoREwuqZtFQrBMhzxgge6kXEgvVIGQiqcYRHiO0KHwQ8U0Zji8EymhcEcVmrvwmCsd7wga-ThXx0BU5LmuZKnwXeVLHomQZ1ww4aaZZlKyNlzXGk4mCwaNZMmVbNWWoNoSq7Zk3oabWsFJZU3FL-InfxO_hK3e4ClO4of-4ylsM7NftjTlDBrldKbOYVN-lqNiemGP1BffmMab |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWszz1408Vk8-jmKGpRLKXgg97CZLMLPZiWJrV_39k0LS2IIF7DEJbZ3W8eO_MNwJVAArzIZu51FHDfSxxOmKcpanWSgBwKY0xJmd9pdbuy3496S138ZbX7_Ely1tNgWZqy4naUmttF45ulLXG4rUS3JtDj03XY8G0hvY3XXz8WIVfFQ0lOAfmRZHyrtpmf_7FqmlbfRUtz067_f6F7sFu5muxudjb2YU1nDajPxziw6lY3YGeJk_AAOiVfFYXDOMWxZnamO31ntFqSsalEZlO3zNJyZhYqWa4_BzyfjCzo5DplOCmGlh3TVkgfwnv78e3-iVcjF7giW11wN40QRWpCGYjAtBKJygt1gErLhJwLz0EToh9qYSjyka1Io6ad1gQD6AlXOd4R1LJhpo-B6chzXSUS9F3tKxlhKFOJAt0kNUIp0YTrubbj0YxZI15wKJdqi0ltcam2eNqEm7my4-qW5b-In_xN_BK2eg_tuPPcfTmFbWG3q6xYOYNaMZ7oc9hUX8UgH1-Up-sbVQnPfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-aware+ranking+refinement+with+attentive+semi-supervised+autoencoders&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Xu%2C+Bo&rft.au=Lin%2C+Hongfei&rft.au=Lin%2C+Yuan&rft.au=Xu%2C+Kan&rft.date=2022-12-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=24&rft.spage=13941&rft.epage=13952&rft_id=info:doi/10.1007%2Fs00500-022-07433-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_022_07433_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |