Context-aware ranking refinement with attentive semi-supervised autoencoders

Learning to rank methods aim to learn a refined ranking model from labeled data for desired ranking performance. However, the learned model may not improve the performance on each individual query because the distributions of relevant documents among queries are diversified in document feature space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 26; H. 24; S. 13941 - 13952
Hauptverfasser: Xu, Bo, Lin, Hongfei, Lin, Yuan, Xu, Kan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Learning to rank methods aim to learn a refined ranking model from labeled data for desired ranking performance. However, the learned model may not improve the performance on each individual query because the distributions of relevant documents among queries are diversified in document feature space. The performance of learned ranking models may be largely affected by the usefulness of document features. To generate high-quality document ranking features, we capture the local context information of individual queries from the top-ranked documents of an initial retrieval using pseudo-relevance feedback. Based on the top-ranked feedback documents, we propose an attentive semi-supervised autoencoder to refine the ranked results using an optimized ranking-oriented reconstruction loss. Furthermore, we devise the hybrid listwise query constraints to capture the characteristics of relevant documents for different queries. We evaluate the proposed ranking model on LETOR collections including OHSUMED, MQ2007 and MQ2008. Our model produces better experimental results and consistent improvements of ranking performance over baseline methods.
AbstractList Learning to rank methods aim to learn a refined ranking model from labeled data for desired ranking performance. However, the learned model may not improve the performance on each individual query because the distributions of relevant documents among queries are diversified in document feature space. The performance of learned ranking models may be largely affected by the usefulness of document features. To generate high-quality document ranking features, we capture the local context information of individual queries from the top-ranked documents of an initial retrieval using pseudo-relevance feedback. Based on the top-ranked feedback documents, we propose an attentive semi-supervised autoencoder to refine the ranked results using an optimized ranking-oriented reconstruction loss. Furthermore, we devise the hybrid listwise query constraints to capture the characteristics of relevant documents for different queries. We evaluate the proposed ranking model on LETOR collections including OHSUMED, MQ2007 and MQ2008. Our model produces better experimental results and consistent improvements of ranking performance over baseline methods.
Author Xu, Kan
Xu, Bo
Lin, Yuan
Lin, Hongfei
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0001-5453-978X
  surname: Xu
  fullname: Xu, Bo
  email: xubo@dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology
– sequence: 2
  givenname: Hongfei
  surname: Lin
  fullname: Lin, Hongfei
  organization: School of Computer Science and Technology, Dalian University of Technology
– sequence: 3
  givenname: Yuan
  surname: Lin
  fullname: Lin, Yuan
  organization: WISE Lab, Faculty of Humanities and Social Sciences, Dalian University of Technology
– sequence: 4
  givenname: Kan
  surname: Xu
  fullname: Xu, Kan
  organization: School of Computer Science and Technology, Dalian University of Technology
BookMark eNp9kMtOwzAQRS1UJNrCD7DKDxjGdhInS1TxqBSJDaytaTIpLtSpbLeBv8dtWbOau5hzdXVmbOIGR4zdCrgTAPo-ABQAHKTkoHOl-HjBpuIYdK7rySlLrstcXbFZCBsAKXShpqxZDC7Sd-Q4oqfMo_u0bp156q2jLbmYjTZ-ZBhjyvZAWaCt5WG_I3-wgboM93Eg1w4d-XDNLnv8CnTzd-fs_enxbfHCm9fn5eKh4a3MZeSiqxFl15dVIYterypsVUkFtlStIK0C7EvMS5J9XUKla0KqaiDIK1RStKDmTJ57Wz-EkLaanbdb9D9GgDn6MGcfJvkwJx9mTJA6QyE9uzV5sxn23qWd_1G_EwFngQ
Cites_doi 10.1145/3130348.3130376
10.1145/3404835.3462886
10.1145/3404835.3462901
10.1145/3308560.3316736
10.1145/3459637.3482243
10.1145/2600428.2609542
10.1145/2939672.2939677
10.1145/2766462.2767753
10.1145/3331184.3331246
10.1145/3209978.3209981
10.1145/2835776.2835804
10.1145/3459637.3482179
10.1609/aaai.v29i1.9548
10.1145/3038912.3052579
10.1145/2740908.2742726
10.1145/3459637.3481899
10.1145/3209978.3210045
10.1016/j.neucom.2019.03.068
10.1145/3018661.3018699
10.1145/3209978.3209979
10.1214/aos/1013203451
10.3115/v1/P15-1107
10.1145/1102351.1102363
10.1145/3209978.3209985
10.1145/3404835.3463076
10.1561/1500000016
10.1145/3209978.3210048
10.1109/ACCESS.2022.3154767
10.1145/3209978.3209993
10.1145/1273496.1273513
10.1145/3459637.3482020
10.1007/s10791-009-9123-y
10.1016/j.ipm.2015.07.002
10.1145/3132847.3133049
10.1145/3331184.3331189
10.1145/2505515.2505665
10.1145/3404835.3463098
10.1609/aaai.v30i1.10159
10.1145/3209978.3209980
10.1145/3018661.3018720
10.1145/3459637.3482093
10.1145/3404835.3463088
10.18653/v1/N18-1142
10.1145/984321.984322
10.1145/3331184.3331316
10.1145/3459637.3482101
10.1561/2200000006
10.1145/3077136.3080786
10.1145/2983323.2983769
10.1109/ACCESS.2021.3124931
10.1145/3331184.3331296
10.1002/asi.4630270302
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00500-022-07433-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 13952
ExternalDocumentID 10_1007_s00500_022_07433_w
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 62006034
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: DUT21RC(3)015
– fundername: Natural Science Foundation of Liaoning Province
  grantid: 2021-BS-067
  funderid: http://dx.doi.org/10.13039/501100005047
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c242t-1d9aa2df68525f7b8ac36e5ace8b07530af6a46e2f960879eae890e048a321c03
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844464300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Sat Nov 29 03:36:20 EST 2025
Fri Feb 21 02:46:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Pseudo-relevance feedback
Information retrieval
Learning to rank
Ranking refinement
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-1d9aa2df68525f7b8ac36e5ace8b07530af6a46e2f960879eae890e048a321c03
ORCID 0000-0001-5453-978X
PageCount 12
ParticipantIDs crossref_primary_10_1007_s00500_022_07433_w
springer_journals_10_1007_s00500_022_07433_w
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References BanerjeeAMeruguSDhillonISGhoshJClustering with Bregman divergencesJ Mach Learn Res2004641705174922498701190.62117
Wang H, Langley R, Kim S, McCord-Snook E, Wang H (2018) Efficient exploration of gradient space for online learning to rank. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 145–154
Goeric H (2016) Learning to rank with deep neural networks. Master’s thesis, University of Leuven
Robertson StephenESparck JonesKRelevance weighting of search termsJ Am Soc Inf Sci197627312914610.1002/asi.4630270302
Feng Y, Xu J, Lan Y, Guo J, Zeng W, Cheng X (2018) From greedy selection to exploratory decision-making: diverse ranking with policy-value networks. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 125–134
Lee Y, Kim KE (2021) Dual correction strategy for ranking distillation in top-n recommender system. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 3186–3190
Schuth A, Oosterhuis H, Whiteson S, de Rijke M (2016) Multileave gradient descent for fast online learning to rank. In: Proceedings of the 9th ACM international conference on Web Search and Data Mining (WSDM). ACM, pp 457–466
Freund Y, Iyer R, Schapire RE, Singer Y (1998) An efficient boosting algorithm for combining preferences. In: International conference on machine learning (ICML), pp 170–178
Sedhain S, Menon AK, Sanner S, Xie L (2015) Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th international conference on World Wide Web (WWW). ACM, pp 111–112
LiuT-YLearning to rank for information retrievalFound Trends Inf Retr20093322533110.1561/1500000016
Zhu Y, Nie JY, Dou Z, Ma Z, Zhang X, Du P, Zuo X, Jiang H (2015) Representation learning via semi-supervised autoencoder for multi-task learning. In: IEEE international conference on data mining (ICDM). IEEE, pp 1141–1146
Wang B, Klabjan D (2017) An attention-based deep net for learning to rank. arXiv preprint arXiv:1702.06106
Xu B, Lin H, Lin Y, Xu K (2017) Learning to rank with query-level semi-supervised autoencoders. In: Proceedings of the 26th ACM on conference on information and knowledge management (CIKM). ACM, pp 2395–2398
Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Statist 29(5): 1189–1232
Niu S, Lan Y, Guo J, Cheng X, Geng X (2014) What makes data robust: a data analysis in learning to rank. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1191–1194
Hansen C, Hansen C, Alstrup S, Grue Simonsen J, Lioma C (2019) Neural check-worthiness ranking with weak supervision: finding sentences for fact-checking. CoRR arXiv:1903.08404
Li J, Luong T, Jurafsky D (2015) A hierarchical neural autoencoder for paragraphs and documents. In: International joint conference on natural language processing, vol 1, pp 1106–1115
SaltonGBuckleyCImproving retrieval performance by relevance feedbackJ Am Soc Inf Sci1997414355364
Al-AsadiMATasdemirSPredict the value of football players using FIFA video game data and machine learning techniquesIEEE Access202210226312264510.1109/ACCESS.2022.3154767
Tran A, Yang T, Ai Q (2021) ULTRA: an unbiased learning to rank algorithm toolbox. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 4613–4622
Wang H, Shi X, Yeung DY (2015) Relational stacked denoising autoencoder for tag recommendation. In: The association for the advancement of artificial intelligence (AAAI), pp 3052–3058
Lavrenko V, Croft WB (2001) Relevance-based language models. In: International ACM SIGIR conference on research and development in information retrieval, vol 51, no 2, pp 120–127
Xu B, Lin H, Lin Y, Xu K (2019) Incorporating query constraints for autoencoder enhanced ranking. Neurocomputing 356:142–150
Tax N, Bockting S, Hiemstra D (2015) A cross-benchmark comparison of 87 learning to rank methods. Inf Process Manage 51(6):757–772
Yin D, Hu Y, Tang J, Daly T, Zhou M, Ouyang H, Chen J, Kang C, Deng H, Nobata C, Langlois JM (2016) Ranking relevance in yahoo search. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 323–332
Zhu Y, Nie JY, Dou Z, Ma Z, Zhang X, Du P, Zuo X, Jiang H (2021) Contrastive learning of user behavior sequence for context-aware document ranking. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 2780–2791
QinTLiuT-YJunXLiHLETOR: a benchmark collection for research on learning to rank for information retrievalInf Retr J201013434637410.1007/s10791-009-9123-y
Zhai S, Zhang ZM (2016) Semisupervised autoencoder for sentiment analysis. In: The association for the advancement of artificial intelligence (AAAI), pp 1394–1400
Chen L, Wu L, Zhang K, Hong R, Wang M (2021) Set2setrank: collaborative set to set ranking for implicit feedback based recommendation. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 585–594
Ahmad WU, Chang KW, Wang H (2019) Context Attentive Document Ranking and Query Suggestion. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp 385–394. https://doi.org/10.1145/3331184.3331246
Cao Z, Qin T, Liu TY, Tsai MF, Li H (2007) Learning to rank: from pairwise approach to listwise approach. In: International conference on machine learning (ICML), pp 129–136
Lucchese C, Nardini FM, Perego R, Orlando S, Trani S (2018) Selective gradient boosting for effective learning to rank. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 155–164
Wang J, Yu L, Zhang W, Gong Y, Xu Y, Wang B, Zhang P, Zhang D (2017) IRGAN: a minimax game for unifying generative and discriminative information retrieval models. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 515–524
BurgesCJCFrom RankNet to LambdaRank to LambdaMART: an overviewLearning20101123–58181
BengioYLearning deep architectures for AIFound Trends Mach Learn2009211127248072310.1561/22000000061192.68503
Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank using gradient descent. In: International conference on machine learning (ICML), pp 89–96
Busolin F, Lucchese C, Nardini FM, Orlando S, Perego R, Trani S (2021) Learning early exit strategies for additive ranking ensembles. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2217–2221
Wu L, Hu D, Hong L, Liu H (2018) Turning clicks into purchases: revenue optimization for product search in E-commerce. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 365–374
Burges Christopher J, Ragno Robert, Le Quoc V (2007) Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems (NIPS), pp 193–200
Qin T, Liu TY (2013) Introducing LETOR 4.0 datasets. Computer Science
Al-AsadiMATasdemirSEmpirical comparisons for combining balancing and feature selection strategies for characterizing football players using FIFA video game systemIEEE Access2021914926614928610.1109/ACCESS.2021.3124931
Formal T, Piwowarski B, Clinchant S (2021) SPLADE: sparse lexical and expansion model for first stage ranking. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2288–2292
Zhai C, Lafferty JD (2004) A study of smoothing methods for language models applied to information retrieval. ACM Trans Inf Syst 22(2):179–214
Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM international on conference on information and knowledge management (CIKM). ACM, pp 2333–2338
Shao J, Ji S, Yang T (2019) Privacy-aware document ranking with neural signals. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp 305–314. https://doi.org/10.1145/3331184.3331189
Mitra B, Diaz F, Craswell N (2017) Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th international conference on World Wide Web (WWW), pp 1291–1299
Joachims T, Swaminathan A, Schnabel T (2017) Unbiased learning-to-rank with biased feedback. In: Proceedings of the 10th ACM international conference on web search and data mining (WSDM). ACM, pp 781–789
Ai Q, Bi K, Guo J, Croft WB (2018) Learning a deep listwise context model for ranking refinement. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval. ACM, pp 135–144
Yoon S, Shin J, Jung K (2018) Learning to rank question-answer pairs using hierarchical recurrent encoder with latent topic clustering. In: Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: human language technologies (NAACL-HLT), pp 1575–158
7433_CR43
7433_CR44
7433_CR45
7433_CR46
7433_CR47
7433_CR48
7433_CR49
G Salton (7433_CR41) 1997; 41
E Robertson Stephen (7433_CR39) 1976; 27
MA Al-Asadi (7433_CR4) 2022; 10
7433_CR40
7433_CR42
7433_CR32
7433_CR33
7433_CR34
7433_CR35
7433_CR36
7433_CR38
7433_CR30
7433_CR7
7433_CR21
7433_CR22
7433_CR23
7433_CR24
7433_CR25
7433_CR26
T Qin (7433_CR37) 2010; 13
7433_CR1
7433_CR27
7433_CR2
7433_CR28
A Banerjee (7433_CR5) 2004; 6
7433_CR29
7433_CR9
T-Y Liu (7433_CR31) 2009; 3
7433_CR60
7433_CR61
7433_CR20
7433_CR10
7433_CR54
7433_CR11
7433_CR55
7433_CR12
7433_CR56
7433_CR13
7433_CR57
7433_CR14
7433_CR58
7433_CR15
7433_CR59
7433_CR16
7433_CR17
7433_CR18
7433_CR19
CJC Burges (7433_CR8) 2010; 11
Y Bengio (7433_CR6) 2009; 2
7433_CR50
MA Al-Asadi (7433_CR3) 2021; 9
7433_CR51
7433_CR52
7433_CR53
References_xml – reference: Qin T, Liu TY (2013) Introducing LETOR 4.0 datasets. Computer Science
– reference: BurgesCJCFrom RankNet to LambdaRank to LambdaMART: an overviewLearning20101123–58181
– reference: Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank using gradient descent. In: International conference on machine learning (ICML), pp 89–96
– reference: QinTLiuT-YJunXLiHLETOR: a benchmark collection for research on learning to rank for information retrievalInf Retr J201013434637410.1007/s10791-009-9123-y
– reference: Joachims T, Swaminathan A, Schnabel T (2017) Unbiased learning-to-rank with biased feedback. In: Proceedings of the 10th ACM international conference on web search and data mining (WSDM). ACM, pp 781–789
– reference: Wang B, Klabjan D (2017) An attention-based deep net for learning to rank. arXiv preprint arXiv:1702.06106
– reference: Zhu Y, Nie JY, Dou Z, Ma Z, Zhang X, Du P, Zuo X, Jiang H (2015) Representation learning via semi-supervised autoencoder for multi-task learning. In: IEEE international conference on data mining (ICDM). IEEE, pp 1141–1146
– reference: Lee Y, Kim KE (2021) Dual correction strategy for ranking distillation in top-n recommender system. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 3186–3190
– reference: LiuT-YLearning to rank for information retrievalFound Trends Inf Retr20093322533110.1561/1500000016
– reference: Fan Y, Guo J, Lan Y, Xu J, Zhai C, Cheng X (2018) Modeling diverse relevance patterns in ad-hoc retrieval. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 375–384
– reference: Formal T, Piwowarski B, Clinchant S (2021) SPLADE: sparse lexical and expansion model for first stage ranking. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2288–2292
– reference: Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Statist 29(5): 1189–1232
– reference: Yoon S, Shin J, Jung K (2018) Learning to rank question-answer pairs using hierarchical recurrent encoder with latent topic clustering. In: Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: human language technologies (NAACL-HLT), pp 1575–1584
– reference: Yin D, Hu Y, Tang J, Daly T, Zhou M, Ouyang H, Chen J, Kang C, Deng H, Nobata C, Langlois JM (2016) Ranking relevance in yahoo search. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 323–332
– reference: Yang Z, Yan S, Lad A, Liu X, Guo W (2021) Cascaded deep neural ranking models in linkedin people search. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 4312–4320
– reference: Schuth A, Oosterhuis H, Whiteson S, de Rijke M (2016) Multileave gradient descent for fast online learning to rank. In: Proceedings of the 9th ACM international conference on Web Search and Data Mining (WSDM). ACM, pp 457–466
– reference: Tax N, Bockting S, Hiemstra D (2015) A cross-benchmark comparison of 87 learning to rank methods. Inf Process Manage 51(6):757–772
– reference: BengioYLearning deep architectures for AIFound Trends Mach Learn2009211127248072310.1561/22000000061192.68503
– reference: Guo J, Fan Y, Ai Q, Croft WB(2016) A deep relevance matching model for ad-hoc retrieval. In: Proceedings of the 25th ACM international on conference on information and knowledge management (CIKM). ACM, pp 55–64
– reference: Wang J, Yu L, Zhang W, Gong Y, Xu Y, Wang B, Zhang P, Zhang D (2017) IRGAN: a minimax game for unifying generative and discriminative information retrieval models. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 515–524
– reference: Chen M, Liu C, Sun J, Hoi SC (2021) Adapting interactional observation embedding for counterfactual learning to rank. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 285–294
– reference: Zhu Y, Nie JY, Dou Z, Ma Z, Zhang X, Du P, Zuo X, Jiang H (2021) Contrastive learning of user behavior sequence for context-aware document ranking. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 2780–2791
– reference: Chen L, Wu L, Zhang K, Hong R, Wang M (2021) Set2setrank: collaborative set to set ranking for implicit feedback based recommendation. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 585–594
– reference: MacAvaney S, Yates A, Hui K, Frieder O (2019) Content-based weak supervision for ad-hoc re-ranking. arXiv Information retrieval
– reference: Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM international on conference on information and knowledge management (CIKM). ACM, pp 2333–2338
– reference: Kim Y, Rahimi R, Bonab H, Allan J (2021) Query-driven segment selection for ranking long documents. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 3147–3151
– reference: Feng Y, Xu J, Lan Y, Guo J, Zeng W, Cheng X (2018) From greedy selection to exploratory decision-making: diverse ranking with policy-value networks. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 125–134
– reference: BanerjeeAMeruguSDhillonISGhoshJClustering with Bregman divergencesJ Mach Learn Res2004641705174922498701190.62117
– reference: Ai Q, Bi K, Guo J, Croft WB (2018) Learning a deep listwise context model for ranking refinement. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval. ACM, pp 135–144
– reference: Wu L, Hu D, Hong L, Liu H (2018) Turning clicks into purchases: revenue optimization for product search in E-commerce. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 365–374
– reference: Lucchese C, Nardini FM, Perego R, Orlando S, Trani S (2018) Selective gradient boosting for effective learning to rank. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 155–164
– reference: Zhai C, Lafferty JD (2004) A study of smoothing methods for language models applied to information retrieval. ACM Trans Inf Syst 22(2):179–214
– reference: Burges Christopher J, Ragno Robert, Le Quoc V (2007) Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems (NIPS), pp 193–200
– reference: Robertson StephenESparck JonesKRelevance weighting of search termsJ Am Soc Inf Sci197627312914610.1002/asi.4630270302
– reference: Ahmad WU, Chang KW, Wang H (2019) Context Attentive Document Ranking and Query Suggestion. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp 385–394. https://doi.org/10.1145/3331184.3331246
– reference: Al-AsadiMATasdemirSPredict the value of football players using FIFA video game data and machine learning techniquesIEEE Access202210226312264510.1109/ACCESS.2022.3154767
– reference: Cao Z, Qin T, Liu TY, Tsai MF, Li H (2007) Learning to rank: from pairwise approach to listwise approach. In: International conference on machine learning (ICML), pp 129–136
– reference: Xu B, Lin H, Lin Y, Xu K (2017) Learning to rank with query-level semi-supervised autoencoders. In: Proceedings of the 26th ACM on conference on information and knowledge management (CIKM). ACM, pp 2395–2398
– reference: Rosset C, Mitra B, Xiong C, Craswell N, Song X, Tiwary S (2019) An axiomatic approach to regularizing neural ranking models. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 981–984. https://doi.org/10.1145/3331184.3331296
– reference: Goeric H (2016) Learning to rank with deep neural networks. Master’s thesis, University of Leuven
– reference: Mehrotra R, Yilmaz E (2015) Representative and informative query selection for learning to rank using submodular functions. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 545–554
– reference: Wang H, Langley R, Kim S, McCord-Snook E, Wang H (2018) Efficient exploration of gradient space for online learning to rank. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 145–154
– reference: Sedhain S, Menon AK, Sanner S, Xie L (2015) Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th international conference on World Wide Web (WWW). ACM, pp 111–112
– reference: Mitra B, Diaz F, Craswell N (2017) Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th international conference on World Wide Web (WWW), pp 1291–1299
– reference: Lavrenko V, Croft WB (2001) Relevance-based language models. In: International ACM SIGIR conference on research and development in information retrieval, vol 51, no 2, pp 120–127
– reference: SaltonGBuckleyCImproving retrieval performance by relevance feedbackJ Am Soc Inf Sci1997414355364
– reference: Shao J, Ji S, Yang T (2019) Privacy-aware document ranking with neural signals. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp 305–314. https://doi.org/10.1145/3331184.3331189
– reference: Tran A, Yang T, Ai Q (2021) ULTRA: an unbiased learning to rank algorithm toolbox. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 4613–4622
– reference: Kim M, Ko Y (2021) Self-supervised fine-tuning for efficient passage re-ranking. In: Demartini G, Zuccon G, Shane Culpepper J, Huang Z, Tong H (eds) CIKM ’21: the 30th ACM international conference on information and knowledge management, virtual event, Queensland, Australia, November 1–5, 2021. ACM, pp 3142–3146
– reference: Zhai S, Zhang ZM (2016) Semisupervised autoencoder for sentiment analysis. In: The association for the advancement of artificial intelligence (AAAI), pp 1394–1400
– reference: Zhuang F, Luo D, Yuan NJ, Xie X, He Q (2017) Representation learning with pair-wise constraints for collaborative ranking. In: Proceedings of the 10th ACM international conference on web search and data mining (WSDM). ACM, pp 567–575
– reference: Li J, Luong T, Jurafsky D (2015) A hierarchical neural autoencoder for paragraphs and documents. In: International joint conference on natural language processing, vol 1, pp 1106–1115
– reference: He X, He Z, Du X, Chua TS (2018) Adversarial personalized ranking for recommendation. In: Proceedings of the 41st international ACM SIGIR conference on research and development in information retrieval, pp 355–364
– reference: Xu B, Lin H, Lin Y, Xu K (2019) Incorporating query constraints for autoencoder enhanced ranking. Neurocomputing 356:142–150
– reference: Choi J, Jung E, Suh J, Rhee W (2021) Improving bi-encoder document ranking models with two rankers and multi-teacher distillation. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2192–2196
– reference: Freund Y, Iyer R, Schapire RE, Singer Y (1998) An efficient boosting algorithm for combining preferences. In: International conference on machine learning (ICML), pp 170–178
– reference: Niu S, Lan Y, Guo J, Cheng X, Geng X (2014) What makes data robust: a data analysis in learning to rank. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1191–1194
– reference: Wang H, Shi X, Yeung DY (2015) Relational stacked denoising autoencoder for tag recommendation. In: The association for the advancement of artificial intelligence (AAAI), pp 3052–3058
– reference: Busolin F, Lucchese C, Nardini FM, Orlando S, Perego R, Trani S (2021) Learning early exit strategies for additive ranking ensembles. In: Diaz F, Shah C, Suel T, Castells P, Jones R, Sakai T (eds) SIGIR ’21: the 44th international ACM SIGIR conference on research and development in information retrieval, Virtual Event, Canada, July 11–15, 2021. ACM, pp 2217–2221
– reference: Hansen C, Hansen C, Alstrup S, Grue Simonsen J, Lioma C (2019) Neural check-worthiness ranking with weak supervision: finding sentences for fact-checking. CoRR arXiv:1903.08404
– reference: Al-AsadiMATasdemirSEmpirical comparisons for combining balancing and feature selection strategies for characterizing football players using FIFA video game systemIEEE Access2021914926614928610.1109/ACCESS.2021.3124931
– ident: 7433_CR28
  doi: 10.1145/3130348.3130376
– ident: 7433_CR13
  doi: 10.1145/3404835.3462886
– ident: 7433_CR12
  doi: 10.1145/3404835.3462901
– ident: 7433_CR22
  doi: 10.1145/3308560.3316736
– ident: 7433_CR61
  doi: 10.1145/3459637.3482243
– ident: 7433_CR36
  doi: 10.1145/2600428.2609542
– ident: 7433_CR55
  doi: 10.1145/2939672.2939677
– ident: 7433_CR34
  doi: 10.1145/2766462.2767753
– ident: 7433_CR1
  doi: 10.1145/3331184.3331246
– ident: 7433_CR23
  doi: 10.1145/3209978.3209981
– ident: 7433_CR38
– ident: 7433_CR42
  doi: 10.1145/2835776.2835804
– ident: 7433_CR26
  doi: 10.1145/3459637.3482179
– ident: 7433_CR49
  doi: 10.1609/aaai.v29i1.9548
– volume: 41
  start-page: 355
  issue: 4
  year: 1997
  ident: 7433_CR41
  publication-title: J Am Soc Inf Sci
– ident: 7433_CR60
– ident: 7433_CR35
  doi: 10.1145/3038912.3052579
– ident: 7433_CR43
  doi: 10.1145/2740908.2742726
– ident: 7433_CR54
  doi: 10.1145/3459637.3481899
– volume: 11
  start-page: 81
  issue: 23–581
  year: 2010
  ident: 7433_CR8
  publication-title: Learning
– ident: 7433_CR48
  doi: 10.1145/3209978.3210045
– ident: 7433_CR53
  doi: 10.1016/j.neucom.2019.03.068
– ident: 7433_CR25
  doi: 10.1145/3018661.3018699
– ident: 7433_CR16
  doi: 10.1145/3209978.3209979
– ident: 7433_CR19
  doi: 10.1214/aos/1013203451
– ident: 7433_CR30
  doi: 10.3115/v1/P15-1107
– ident: 7433_CR7
– ident: 7433_CR9
  doi: 10.1145/1102351.1102363
– ident: 7433_CR2
  doi: 10.1145/3209978.3209985
– ident: 7433_CR14
  doi: 10.1145/3404835.3463076
– volume: 3
  start-page: 225
  issue: 3
  year: 2009
  ident: 7433_CR31
  publication-title: Found Trends Inf Retr
  doi: 10.1561/1500000016
– ident: 7433_CR32
  doi: 10.1145/3209978.3210048
– volume: 10
  start-page: 22631
  year: 2022
  ident: 7433_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3154767
– ident: 7433_CR51
  doi: 10.1145/3209978.3209993
– ident: 7433_CR11
  doi: 10.1145/1273496.1273513
– ident: 7433_CR46
  doi: 10.1145/3459637.3482020
– volume: 13
  start-page: 346
  issue: 4
  year: 2010
  ident: 7433_CR37
  publication-title: Inf Retr J
  doi: 10.1007/s10791-009-9123-y
– ident: 7433_CR45
  doi: 10.1016/j.ipm.2015.07.002
– ident: 7433_CR52
  doi: 10.1145/3132847.3133049
– ident: 7433_CR44
  doi: 10.1145/3331184.3331189
– ident: 7433_CR24
  doi: 10.1145/2505515.2505665
– ident: 7433_CR17
  doi: 10.1145/3404835.3463098
– ident: 7433_CR58
  doi: 10.1609/aaai.v30i1.10159
– ident: 7433_CR15
  doi: 10.1145/3209978.3209980
– ident: 7433_CR20
– ident: 7433_CR59
  doi: 10.1145/3018661.3018720
– volume: 6
  start-page: 1705
  issue: 4
  year: 2004
  ident: 7433_CR5
  publication-title: J Mach Learn Res
– ident: 7433_CR29
  doi: 10.1145/3459637.3482093
– ident: 7433_CR47
– ident: 7433_CR10
  doi: 10.1145/3404835.3463088
– ident: 7433_CR56
  doi: 10.18653/v1/N18-1142
– ident: 7433_CR57
  doi: 10.1145/984321.984322
– ident: 7433_CR33
  doi: 10.1145/3331184.3331316
– ident: 7433_CR27
  doi: 10.1145/3459637.3482101
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 7433_CR6
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– ident: 7433_CR50
  doi: 10.1145/3077136.3080786
– ident: 7433_CR21
  doi: 10.1145/2983323.2983769
– ident: 7433_CR18
– volume: 9
  start-page: 149266
  year: 2021
  ident: 7433_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3124931
– ident: 7433_CR40
  doi: 10.1145/3331184.3331296
– volume: 27
  start-page: 129
  issue: 3
  year: 1976
  ident: 7433_CR39
  publication-title: J Am Soc Inf Sci
  doi: 10.1002/asi.4630270302
SSID ssj0021753
Score 2.3156874
Snippet Learning to rank methods aim to learn a refined ranking model from labeled data for desired ranking performance. However, the learned model may not improve the...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 13941
SubjectTerms Application of Soft Computing
Artificial Intelligence
Computational Intelligence
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Robotics
Title Context-aware ranking refinement with attentive semi-supervised autoencoders
URI https://link.springer.com/article/10.1007/s00500-022-07433-w
Volume 26
WOSCitedRecordID wos000844464300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg4wAHHgPEeEw5cINIbfpYegS0icM0TeOh3ao0daUd6Ka1Y38fJ2snJiEkuFZWFTmxPzuxPwPcCkUOLzI39xgF3PcSh5PPQ8panSSggCLLMkuZP-gOh3IyiUZVU1hRV7vXT5LWU2-a3QxVicNN9bmBPY-vdqFJcCfNwIbxy_smzaq4JykQoNiRALdqlfn5H9twtP0WaiGmf_S_xR3DYRVSsof1GTiBHcxbcFSPa2CV9bbg4Bv34CkMLC8Vpb1qpRbIzOx2-s5ohSRjrgyZuaJlhn4zNy6RFfgx5cVybpxLgSlTy3JmWDBNJfQZvPV7r0_PvBqtwDVhcsndNFJKpFkoAxFk3UQq7YUYKI0yoSDCc1QWKj9EkVGGI7sRKqQdRTJ35QlXO945NPJZjhfAMPJcV4tE-S76WkYqlKlUQrlJmgmtRRvuag3H8zWDRrzhSrZqi0ltsVVbvGrDfa3guLKm4hfxy7-JX8G-MHtky1GuoVEulngDe_qznBaLDjQfe8PRuGOP0xfMQMVR
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_Pgmwba9GPpo4hjYh2iU_ZW0jSBPdiNtXP_vpesHQ5E0NdylHDJ3e8uufsdwBUT6PAic3OvooD6XupQ9HkKs1YnDTCg0Fpbyvy40-_z4TB6rprCirravX6StJ562exmqEocaqrPDex5dL4OGz4ilmHMf3l9X6ZZFfckBgIYOyLgVq0yP_9jFY5W30ItxHSb_1vcHuxWISW5XZyBfVhTeQua9bgGUllvC3a-cQ8eQGx5qTDtFXMxVcTMbsfvBFeIMubKkJgrWmLoN3PjEkmhPka0mE2McylURsSsHBsWTFMJfQhv3fvBXY9WoxWoREwuqZtFQrBMhzxgge6kXEgvVIGQiqcYRHiO0KHwQ8U0Zji8EymhcEcVmrvwmCsd7wga-ThXx0BU5LmuZKnwXeVLHomQZ1ww4aaZZlKyNlzXGk4mCwaNZMmVbNWWoNoSq7Zk3oabWsFJZU3FL-InfxO_hK3e4ClO4of-4ylsM7NftjTlDBrldKbOYVN-lqNiemGP1BffmMab
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWszz1408Vk8-jmKGpRLKXgg97CZLMLPZiWJrV_39k0LS2IIF7DEJbZ3W8eO_MNwJVAArzIZu51FHDfSxxOmKcpanWSgBwKY0xJmd9pdbuy3496S138ZbX7_Ely1tNgWZqy4naUmttF45ulLXG4rUS3JtDj03XY8G0hvY3XXz8WIVfFQ0lOAfmRZHyrtpmf_7FqmlbfRUtz067_f6F7sFu5muxudjb2YU1nDajPxziw6lY3YGeJk_AAOiVfFYXDOMWxZnamO31ntFqSsalEZlO3zNJyZhYqWa4_BzyfjCzo5DplOCmGlh3TVkgfwnv78e3-iVcjF7giW11wN40QRWpCGYjAtBKJygt1gErLhJwLz0EToh9qYSjyka1Io6ad1gQD6AlXOd4R1LJhpo-B6chzXSUS9F3tKxlhKFOJAt0kNUIp0YTrubbj0YxZI15wKJdqi0ltcam2eNqEm7my4-qW5b-In_xN_BK2eg_tuPPcfTmFbWG3q6xYOYNaMZ7oc9hUX8UgH1-Up-sbVQnPfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-aware+ranking+refinement+with+attentive+semi-supervised+autoencoders&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Xu%2C+Bo&rft.au=Lin%2C+Hongfei&rft.au=Lin%2C+Yuan&rft.au=Xu%2C+Kan&rft.date=2022-12-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=24&rft.spage=13941&rft.epage=13952&rft_id=info:doi/10.1007%2Fs00500-022-07433-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_022_07433_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon