Arithmetic statistics for Galois deformation rings

Given an elliptic curve E defined over the rational numbers and a prime p at which E has good reduction, we consider the Galois deformation ring parametrizing lifts of the residual representation on the p -torsion group E [ p ]. The deformations considered are subject to the flat condition at p . Fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Ramanujan journal Ročník 64; číslo 3; s. 685 - 708
Hlavní autoři: Ray, Anwesh, Weston, Tom
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2024
Témata:
ISSN:1382-4090, 1572-9303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given an elliptic curve E defined over the rational numbers and a prime p at which E has good reduction, we consider the Galois deformation ring parametrizing lifts of the residual representation on the p -torsion group E [ p ]. The deformations considered are subject to the flat condition at p . For a fixed elliptic curve without complex multiplication, it is shown that these deformation rings are unobstructed for all but finitely many primes. For a fixed prime p and varying elliptic curve E , we relate the problem to the question of how often p does not divide the modular degree. Heuristics due to M.Watkins based on those of Cohen and Lenstra indicate that this proportion should be ∏ i ≥ 1 1 - 1 p i ≈ 1 - 1 p - 1 p 2 . This heuristic is supported by computations which indicate that most elliptic curves (satisfying further conditions) have smooth deformation rings at a given prime p ≥ 5 , and this proportion comes close to 100 % as p gets larger.
AbstractList Given an elliptic curve E defined over the rational numbers and a prime p at which E has good reduction, we consider the Galois deformation ring parametrizing lifts of the residual representation on the p -torsion group E [ p ]. The deformations considered are subject to the flat condition at p . For a fixed elliptic curve without complex multiplication, it is shown that these deformation rings are unobstructed for all but finitely many primes. For a fixed prime p and varying elliptic curve E , we relate the problem to the question of how often p does not divide the modular degree. Heuristics due to M.Watkins based on those of Cohen and Lenstra indicate that this proportion should be ∏ i ≥ 1 1 - 1 p i ≈ 1 - 1 p - 1 p 2 . This heuristic is supported by computations which indicate that most elliptic curves (satisfying further conditions) have smooth deformation rings at a given prime p ≥ 5 , and this proportion comes close to 100 % as p gets larger.
Author Weston, Tom
Ray, Anwesh
Author_xml – sequence: 1
  givenname: Anwesh
  surname: Ray
  fullname: Ray, Anwesh
  email: anwesh@cmi.ac.in
  organization: Chennai Mathematical Institute, H1, SIPCOT IT Park
– sequence: 2
  givenname: Tom
  surname: Weston
  fullname: Weston, Tom
  organization: Department of Mathematics, University of Massachusetts
BookMark eNp9j8tOwzAQRS1UJNrCD7DKDxjGD2J7WVVQkCqxgbVl_ABXTVJ5woK_xyGsu5o7Gp3RPSuy6Ic-EnLL4I4BqHtkjAlDgUsKoKd0QZbsQXFqBIhFzUJzKsHAFVkhHgBAglBLwjclj19dHLNvcHRjxpqwSUNpdu44ZGxCrEtXL0PflNx_4jW5TO6I8eZ_rsn70-Pb9pnuX3cv282eei75SFloWwFMRyeCielDGgdSK6Yhae40l8Ep6bUXgcu2ldEor7hIwgRwDCq1Jnz-68uAWGKyp5I7V34sAztZ29naVmv7Z22hQmKG8DSVjcUehu_S157nqF-1xFu5
Cites_doi 10.24033/asens.1437
10.5802/jtnb.936
10.1080/10586458.2002.10504701
10.1090/S0894-0347-09-00628-6
10.1016/j.jnt.2004.01.010
10.1090/S0273-0979-1990-15937-3
10.1007/BF01239511
10.1007/s11856-009-0017-x
10.2307/2118560
10.1007/978-1-4613-9649-9_7
10.2307/3597186
10.1016/j.ansens.2004.09.001
10.4007/annals.2014.179.2.3
10.1007/978-1-4614-1260-1_2
10.1353/ajm.2004.0052
10.1007/s10240-008-0015-2
10.1017/S1474748002000038
10.1007/BF01405086
10.1142/S1793042116500160
10.2307/2118559
10.1007/s10240-008-0016-1
10.2140/ant.2020.14.1331
10.1007/978-1-4612-3460-9_3
10.2977/prims/31
10.1090/S0894-0347-01-00370-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11139-024-00839-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 708
ExternalDocumentID 10_1007_s11139_024_00839_0
GrantInformation_xml – fundername: Simons Foundation
  funderid: http://dx.doi.org/10.13039/100000893
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c242t-1d663018ea3d9efb49a0487180f82a824da74c8c3d24664e97c723f39d0a10ea3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001226922200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-4090
IngestDate Sat Nov 29 03:21:00 EST 2025
Fri Feb 21 02:41:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Galois deformation rings
11G05
Distribution questions
11F80
11R45
Galois deformations
Unobstructedness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-1d663018ea3d9efb49a0487180f82a824da74c8c3d24664e97c723f39d0a10ea3
PageCount 24
ParticipantIDs crossref_primary_10_1007_s11139_024_00839_0
springer_journals_10_1007_s11139_024_00839_0
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References DiamondFFlachMGuoLThe Tamagawa number conjecture of adjoint motives of modular formsAnn. Sci. l’Ecole Normale Supérieure2004375663727210347110.1016/j.ansens.2004.09.001
TaylorRichardAutomorphy for some l-adic lifts of automorphic mod l Galois representations. IIPubl. Math.20081081183239247068810.1007/s10240-008-0015-2
DukeWilliamElliptic curves with no exceptional primesC. R. Acad. Sci. Série 1 Math.1997325.88138181485897
RamakrishnaRaviOn a variation of Mazur’s deformation functorCompos. Math.19938732692861227448
WilesAndrewModular elliptic curves and Fermat’s last theoremAnn. Math.19951413443551133303510.2307/2118559
NeukirchJSchmidtAWingbergKCohomology of Number Fields2013New YorkSpringer
WestonTomUnobstructed modular deformation problemsAm. J. Math.2004126612371252210239410.1353/ajm.2004.0052
Cremona, J. E., Sadek, M.: Local and global densities for Weierstrass models of elliptic curves. arXiv preprint arXiv:2003.08454 (2020)
RamakrishnaRDeforming Galois representations and the conjectures of Serre and Fontaine-MazurAnn. Math.2002156115154193584310.2307/3597186
Boston, N., Mazur, B.: Explicit universal deformations of Galois representations. Mathematical Society of Japan, Algebraic Number Theory-in honor of K. Iwasawa (1989)
SerreJean-PierreGalois Properties of Finite Order Points of Elliptic CurvesInvent. Math.19721525933138728310.1007/BF01405086
TaylorRichardWilesARing-theoretic properties of certain Hecke algebrasAnn. Math.1995141553572133303610.2307/2118560
GuiraudDavid-AlexandreUnobstructedness of Galois deformation rings associated to regular algebraic conjugate self-dual cuspidal automorphic representationsAlgebra Number Theory202014613311380414905410.2140/ant.2020.14.1331
Barnet-LambTGeraghtyDHarrisMTaylorRA family of Calabi-Yau varieties and potential automorphy IIPubl. Res. Inst. Math. Sci.20114712998282772310.2977/prims/31
HatleyJeffreyObstruction criteria for modular deformation problemsInt. J. Number Theory20161201273285345527910.1142/S1793042116500160
KisinMarkThe Fontaine-Mazur conjecture for GL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{GL}}_2$$\end{document}J. Am. Math. Soc.200922364169010.1090/S0894-0347-09-00628-6
Boston, N.: Deformations of Galois Representations Associated to the Cusp Form Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}. Séminaire de Théorie des Nombres, Paris 1987-88, pp. 51-62. Birkhäuser, Boston, MA (1990)
Mazur, B.: Deforming galois representations. Galois Groups over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}, PP 385–437. Springer, New York (1989)
BreuilCOn the modularity of elliptic curves over Q: wild 3-adic exercisesJ. Am. Math. Soc.2001144843939183991810.1090/S0894-0347-01-00370-8
ClozelLaurentHarrisMichaelTaylorRichardAutomorphy for some l-adic lifts of automorphic mod l Galois representationsPubl. Math. l’IHÉS20081081181247068710.1007/s10240-008-0016-1
TaylorRichardRemarks on a conjecture of Fontaine and MazurJ. Inst. Math. Jussieu200211125143195494110.1017/S1474748002000038
MazurBarryAn Introduction to the Deformation Theory of Galois Representations1997New YorkSpringer243311
CalegariFrankEmertonMatthewElliptic curves of odd modular degreeIsrael J. Math.20091691417444246091210.1007/s11856-009-0017-x
GamzonAdamUnobstructed Hilbert modular deformation problemsJ. Théorie Nombres Bordeaux2016281221236346461910.5802/jtnb.936
BrumerAMcGuinnessOThe behavior of the Mordell-Weil group of elliptic curvesBull. Am. Math. Soc.1990232375382104417010.1090/S0273-0979-1990-15937-3
WestonTomExplicit unobstructed primes for modular deformation problems of squarefree levelJ. Number Theory20051101199218211468110.1016/j.jnt.2004.01.010
Agashe, A., Ribet, K.A., Stein, W.A.: The modular degree, congruence primes, and multiplicity one. In: Number Theory, Analysis and Geometry, pp 19-49. Springer, Boston (2012)
Ridgdill, P.: On the Frequency of Finitely Anomalous Elliptic Curves (unpublished dissertation). University of Massachusetts, Amherst (2010)
WatkinsMarkComputing the modular degree of an elliptic curveExp. Math.2002114487502196964110.1080/10586458.2002.10504701
FontaineJean-MarcLaffailleGConstruction de représentations p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p $$\end{document}-adiquesAnn. Sci. l’École Normale Supérieure198215454760870732810.24033/asens.1437
MazurBarryAn infinite fern in the universal deformation space of Galois representationsCollectanea Math.19974821551931464022
Barnet-LambTGeeTGeraghtyDTaylorRPotential automorphy and change of weightAnn. Math.2014179501609315294110.4007/annals.2014.179.2.3
BöckleGPresentations of universal deformation ringsLond. Math. Soc. Notes Ser.2005567572
BostonNigelExplicit deformation of Galois representationsInvent. Math.19911031181196107984210.1007/BF01239511
Brinon, O., Conrad, B.: CMI summer school notes on p-adic Hodge theory (2009)
Richard Taylor (839_CR29) 1995; 141
Tom Weston (839_CR34) 2004; 126
Ravi Ramakrishna (839_CR25) 1993; 87
Richard Taylor (839_CR32) 2002; 1
Frank Calegari (839_CR11) 2009; 169
839_CR27
Adam Gamzon (839_CR16) 2016; 28
Jeffrey Hatley (839_CR19) 2016; 12
Nigel Boston (839_CR7) 1991; 103
839_CR21
F Diamond (839_CR14) 2004; 37
Andrew Wiles (839_CR33) 1995; 141
T Barnet-Lamb (839_CR3) 2014; 179
Richard Taylor (839_CR30) 2008; 108
William Duke (839_CR15) 1997; 325.8
J Neukirch (839_CR24) 2013
G Böckle (839_CR5) 2005; 567
A Brumer (839_CR10) 1990; 23
839_CR13
David-Alexandre Guiraud (839_CR17) 2020; 14
R Ramakrishna (839_CR26) 2002; 156
T Barnet-Lamb (839_CR2) 2011; 47
Barry Mazur (839_CR23) 1997; 48
839_CR1
Mark Kisin (839_CR20) 2009; 22
Mark Watkins (839_CR31) 2002; 11
Tom Weston (839_CR35) 2005; 110
839_CR6
Jean-Marc Fontaine (839_CR18) 1982; 15
Laurent Clozel (839_CR12) 2008; 108
839_CR9
839_CR8
Barry Mazur (839_CR22) 1997
Jean-Pierre Serre (839_CR28) 1972; 15
C Breuil (839_CR4) 2001; 14
References_xml – reference: Cremona, J. E., Sadek, M.: Local and global densities for Weierstrass models of elliptic curves. arXiv preprint arXiv:2003.08454 (2020)
– reference: Boston, N.: Deformations of Galois Representations Associated to the Cusp Form Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}. Séminaire de Théorie des Nombres, Paris 1987-88, pp. 51-62. Birkhäuser, Boston, MA (1990)
– reference: RamakrishnaRaviOn a variation of Mazur’s deformation functorCompos. Math.19938732692861227448
– reference: BreuilCOn the modularity of elliptic curves over Q: wild 3-adic exercisesJ. Am. Math. Soc.2001144843939183991810.1090/S0894-0347-01-00370-8
– reference: MazurBarryAn infinite fern in the universal deformation space of Galois representationsCollectanea Math.19974821551931464022
– reference: WatkinsMarkComputing the modular degree of an elliptic curveExp. Math.2002114487502196964110.1080/10586458.2002.10504701
– reference: Agashe, A., Ribet, K.A., Stein, W.A.: The modular degree, congruence primes, and multiplicity one. In: Number Theory, Analysis and Geometry, pp 19-49. Springer, Boston (2012)
– reference: Barnet-LambTGeraghtyDHarrisMTaylorRA family of Calabi-Yau varieties and potential automorphy IIPubl. Res. Inst. Math. Sci.20114712998282772310.2977/prims/31
– reference: WestonTomExplicit unobstructed primes for modular deformation problems of squarefree levelJ. Number Theory20051101199218211468110.1016/j.jnt.2004.01.010
– reference: BostonNigelExplicit deformation of Galois representationsInvent. Math.19911031181196107984210.1007/BF01239511
– reference: DiamondFFlachMGuoLThe Tamagawa number conjecture of adjoint motives of modular formsAnn. Sci. l’Ecole Normale Supérieure2004375663727210347110.1016/j.ansens.2004.09.001
– reference: FontaineJean-MarcLaffailleGConstruction de représentations p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p $$\end{document}-adiquesAnn. Sci. l’École Normale Supérieure198215454760870732810.24033/asens.1437
– reference: TaylorRichardRemarks on a conjecture of Fontaine and MazurJ. Inst. Math. Jussieu200211125143195494110.1017/S1474748002000038
– reference: MazurBarryAn Introduction to the Deformation Theory of Galois Representations1997New YorkSpringer243311
– reference: RamakrishnaRDeforming Galois representations and the conjectures of Serre and Fontaine-MazurAnn. Math.2002156115154193584310.2307/3597186
– reference: SerreJean-PierreGalois Properties of Finite Order Points of Elliptic CurvesInvent. Math.19721525933138728310.1007/BF01405086
– reference: WilesAndrewModular elliptic curves and Fermat’s last theoremAnn. Math.19951413443551133303510.2307/2118559
– reference: CalegariFrankEmertonMatthewElliptic curves of odd modular degreeIsrael J. Math.20091691417444246091210.1007/s11856-009-0017-x
– reference: KisinMarkThe Fontaine-Mazur conjecture for GL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{GL}}_2$$\end{document}J. Am. Math. Soc.200922364169010.1090/S0894-0347-09-00628-6
– reference: TaylorRichardWilesARing-theoretic properties of certain Hecke algebrasAnn. Math.1995141553572133303610.2307/2118560
– reference: DukeWilliamElliptic curves with no exceptional primesC. R. Acad. Sci. Série 1 Math.1997325.88138181485897
– reference: BrumerAMcGuinnessOThe behavior of the Mordell-Weil group of elliptic curvesBull. Am. Math. Soc.1990232375382104417010.1090/S0273-0979-1990-15937-3
– reference: BöckleGPresentations of universal deformation ringsLond. Math. Soc. Notes Ser.2005567572
– reference: Mazur, B.: Deforming galois representations. Galois Groups over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}, PP 385–437. Springer, New York (1989)
– reference: HatleyJeffreyObstruction criteria for modular deformation problemsInt. J. Number Theory20161201273285345527910.1142/S1793042116500160
– reference: TaylorRichardAutomorphy for some l-adic lifts of automorphic mod l Galois representations. IIPubl. Math.20081081183239247068810.1007/s10240-008-0015-2
– reference: WestonTomUnobstructed modular deformation problemsAm. J. Math.2004126612371252210239410.1353/ajm.2004.0052
– reference: NeukirchJSchmidtAWingbergKCohomology of Number Fields2013New YorkSpringer
– reference: Ridgdill, P.: On the Frequency of Finitely Anomalous Elliptic Curves (unpublished dissertation). University of Massachusetts, Amherst (2010)
– reference: Brinon, O., Conrad, B.: CMI summer school notes on p-adic Hodge theory (2009)
– reference: Boston, N., Mazur, B.: Explicit universal deformations of Galois representations. Mathematical Society of Japan, Algebraic Number Theory-in honor of K. Iwasawa (1989)
– reference: GuiraudDavid-AlexandreUnobstructedness of Galois deformation rings associated to regular algebraic conjugate self-dual cuspidal automorphic representationsAlgebra Number Theory202014613311380414905410.2140/ant.2020.14.1331
– reference: Barnet-LambTGeeTGeraghtyDTaylorRPotential automorphy and change of weightAnn. Math.2014179501609315294110.4007/annals.2014.179.2.3
– reference: ClozelLaurentHarrisMichaelTaylorRichardAutomorphy for some l-adic lifts of automorphic mod l Galois representationsPubl. Math. l’IHÉS20081081181247068710.1007/s10240-008-0016-1
– reference: GamzonAdamUnobstructed Hilbert modular deformation problemsJ. Théorie Nombres Bordeaux2016281221236346461910.5802/jtnb.936
– volume: 15
  start-page: 547
  issue: 4
  year: 1982
  ident: 839_CR18
  publication-title: Ann. Sci. l’École Normale Supérieure
  doi: 10.24033/asens.1437
– volume: 48
  start-page: 155
  issue: 2
  year: 1997
  ident: 839_CR23
  publication-title: Collectanea Math.
– volume: 28
  start-page: 221
  issue: 1
  year: 2016
  ident: 839_CR16
  publication-title: J. Théorie Nombres Bordeaux
  doi: 10.5802/jtnb.936
– volume: 11
  start-page: 487
  issue: 4
  year: 2002
  ident: 839_CR31
  publication-title: Exp. Math.
  doi: 10.1080/10586458.2002.10504701
– volume: 22
  start-page: 641
  issue: 3
  year: 2009
  ident: 839_CR20
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-09-00628-6
– ident: 839_CR27
– ident: 839_CR9
– start-page: 243
  volume-title: An Introduction to the Deformation Theory of Galois Representations
  year: 1997
  ident: 839_CR22
– volume: 110
  start-page: 199
  issue: 1
  year: 2005
  ident: 839_CR35
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2004.01.010
– volume: 23
  start-page: 375
  issue: 2
  year: 1990
  ident: 839_CR10
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-1990-15937-3
– volume: 103
  start-page: 181
  issue: 1
  year: 1991
  ident: 839_CR7
  publication-title: Invent. Math.
  doi: 10.1007/BF01239511
– volume: 169
  start-page: 417
  issue: 1
  year: 2009
  ident: 839_CR11
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-009-0017-x
– volume: 141
  start-page: 553
  year: 1995
  ident: 839_CR29
  publication-title: Ann. Math.
  doi: 10.2307/2118560
– ident: 839_CR21
  doi: 10.1007/978-1-4613-9649-9_7
– volume: 156
  start-page: 115
  year: 2002
  ident: 839_CR26
  publication-title: Ann. Math.
  doi: 10.2307/3597186
– volume: 567
  start-page: 572
  year: 2005
  ident: 839_CR5
  publication-title: Lond. Math. Soc. Notes Ser.
– volume: 37
  start-page: 663
  issue: 5
  year: 2004
  ident: 839_CR14
  publication-title: Ann. Sci. l’Ecole Normale Supérieure
  doi: 10.1016/j.ansens.2004.09.001
– volume: 179
  start-page: 501
  year: 2014
  ident: 839_CR3
  publication-title: Ann. Math.
  doi: 10.4007/annals.2014.179.2.3
– ident: 839_CR1
  doi: 10.1007/978-1-4614-1260-1_2
– volume: 325.8
  start-page: 813
  year: 1997
  ident: 839_CR15
  publication-title: C. R. Acad. Sci. Série 1 Math.
– volume: 126
  start-page: 1237
  issue: 6
  year: 2004
  ident: 839_CR34
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2004.0052
– ident: 839_CR13
– volume: 108
  start-page: 183
  issue: 1
  year: 2008
  ident: 839_CR30
  publication-title: Publ. Math.
  doi: 10.1007/s10240-008-0015-2
– volume: 1
  start-page: 125
  issue: 1
  year: 2002
  ident: 839_CR32
  publication-title: J. Inst. Math. Jussieu
  doi: 10.1017/S1474748002000038
– ident: 839_CR8
– volume-title: Cohomology of Number Fields
  year: 2013
  ident: 839_CR24
– volume: 15
  start-page: 259
  year: 1972
  ident: 839_CR28
  publication-title: Invent. Math.
  doi: 10.1007/BF01405086
– volume: 12
  start-page: 273
  issue: 01
  year: 2016
  ident: 839_CR19
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042116500160
– volume: 141
  start-page: 443
  issue: 3
  year: 1995
  ident: 839_CR33
  publication-title: Ann. Math.
  doi: 10.2307/2118559
– volume: 108
  start-page: 1
  year: 2008
  ident: 839_CR12
  publication-title: Publ. Math. l’IHÉS
  doi: 10.1007/s10240-008-0016-1
– volume: 14
  start-page: 1331
  issue: 6
  year: 2020
  ident: 839_CR17
  publication-title: Algebra Number Theory
  doi: 10.2140/ant.2020.14.1331
– ident: 839_CR6
  doi: 10.1007/978-1-4612-3460-9_3
– volume: 87
  start-page: 269
  issue: 3
  year: 1993
  ident: 839_CR25
  publication-title: Compos. Math.
– volume: 47
  start-page: 29
  issue: 1
  year: 2011
  ident: 839_CR2
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/31
– volume: 14
  start-page: 843
  issue: 4
  year: 2001
  ident: 839_CR4
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-01-00370-8
SSID ssj0004037
Score 2.3193855
Snippet Given an elliptic curve E defined over the rational numbers and a prime p at which E has good reduction, we consider the Galois deformation ring parametrizing...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 685
SubjectTerms Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Title Arithmetic statistics for Galois deformation rings
URI https://link.springer.com/article/10.1007/s11139-024-00839-0
Volume 64
WOSCitedRecordID wos001226922200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004037
  issn: 1382-4090
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGP3Q6UEP_hbnL3LwpoE06WxyHOL0oEP8xW4lbb7iYG6yTv9-v2TtxkAEvfWQJuGRr--F5L0CnLksjwUqxxNrCx5bJbgRynLv2aTdWEuhDSGud0m3q3s981CZwsr6tnt9JBm-1HOzW0RqhROncK8b6GkZVojutC_Hx6fXuRtShKRMH65HuyMjKqvMz30s0tHiWWigmM7m_ya3BRuVpGTt6RrYhiUc7sD6_SyPtdwF2R73J2_v3rDIvIVoms7MSLCyGzsY9UvmcGZjZH7kcg9eOtfPV7e8-lsCz4lmJzxyJB5EpNEqZ7DIYmOpOol6RKGl1TJ2NolznSsnfaQ8miRPpCqUccJGgt7ah8ZwNMQDYEmGWW40RoUUMXWbkUxC4y4RWxhb0WrCeQ1a-jENxUjn8cceiZSQSAMSqWjCRY1ZWhVI-Uvzw781P4I1GWD3N2iPoTEZf-IJrOZfBOX4NKyMb33FsZ0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oFNQHv8X52QffNJA2mW0ehzgnbkN0yt5C2tyygW6yTn-_N127MRBB3_qQpuUk6Tkh95wCXNg4kRyFZaExKZNGcKa4MMx5Nmk3VhNo8hDXVtjpRL2eeixMYVlZ7V4eSeZf6rnZzSe1wohTmNMNdLUMK5IYyxXyPT2_zt2QPE_KdOF6tDtSvLDK_NzHIh0tnoXmFNPY-t_LbcNmISm9-nQO7MASDndhoz3LY832IKiPB5P-uzMses5CNE1n9kiwenfmbTTIPIszG6Pnnpztw0vjtnvTZMXfElhCNDthviXxwP0IjbAK01gqQ6uTqIenUWCiQFoTyiRKhA1cpDyqMAkDkQplufE53XUAleFoiIfghTHGiYrQTwMuqduYZBIqe41YQ2l4rQqXJWj6YxqKoefxxw4JTUjoHAnNq3BVYqaLBZL90vzob83PYa3Zbbd0677zcAzrQT4Erpr2BCqT8SeewmryRbCOz_JZ8g3csrSB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFNEHv8X52QffNJg2mW0ehzoV5xj4wd5K2tziQLuxVn-_N223ORBBfOtDGsJJwjmX5JwAnJgolhyFYb7WCZNacKa40Mx6NqkaawjURYhr2-90gl5Pdb-5-Ivb7uMjydLTYFOa0vx8aJLzqfHNJeXCiF-Y1RD0NQ8L0j4aZOv1x5epM5IXqZk2aI8qJcUr28zPfcxS0-y5aEE3rbX_D3QdViup6TTLtbEBc5huwsrDJKc12wKvOernr-_WyOhYa1GZ2uyQkHVu9NugnzkGJ_ZGx44i24bn1vXT5S2rXlFgMdFvzlxDooK7AWphFCaRVJp2LVESTwJPB5402pdxEAvj2ah5VH7seyIRynDtcvprB2rpIMVdcPwIo1gF6CYel9RtRPIJlblAbKDUvFGH0zGA4bAMywinscgWiZCQCAskQl6HszF-YbVxsl-a7_2t-TEsda9aYfuuc78Py14xA_aS7QHU8tEHHsJi_Emojo6KBfMFzjW9ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arithmetic+statistics+for+Galois+deformation+rings&rft.jtitle=The+Ramanujan+journal&rft.au=Ray%2C+Anwesh&rft.au=Weston%2C+Tom&rft.date=2024-07-01&rft.pub=Springer+US&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=64&rft.issue=3&rft.spage=685&rft.epage=708&rft_id=info:doi/10.1007%2Fs11139-024-00839-0&rft.externalDocID=10_1007_s11139_024_00839_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon