Distributed deep reinforcement learning-based gas supply system coordination management method for solid oxide fuel cell
In order to sustain solid oxide fuel cell (SOFC) net output power and prevent violation of oxygen excess ratio (OER) constraint and fuel utilization (FU) constraint, a data-driven gas supply system coordination management method is proposed. Accordingly, a population evolution-based multi-agent doub...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 120; s. 105818 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2023
|
| Témata: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In order to sustain solid oxide fuel cell (SOFC) net output power and prevent violation of oxygen excess ratio (OER) constraint and fuel utilization (FU) constraint, a data-driven gas supply system coordination management method is proposed. Accordingly, a population evolution-based multi-agent double delay deep deterministic policy gradient (PE-MA4DPG) algorithm is introduced. The artificial intelligence design of the algorithm is guided by the concepts of imitation learning and curriculum learning, whereby different agents of different combinations are trained in different environments, thus improving the robustness of the coordination strategy. In this algorithm, the hydrogen controller and the air controller are treated as two agents. The centralized training enables agents with different objectives to coordinate with each other. The effectiveness of the proposed algorithm is demonstrated in three experiments, wherein the proposed algorithm is compared with a group of existing algorithms.
•A 5kW SOFC gas supply system model considering various operating parameters is proposed.•A data-driven gas supply system coordination management method is proposed.•A novel large-scale deep reinforcement learning algorithm is proposed for this method.•The PE-MA4DPG algorithm proposed is characterized by superior robustness.•The proposed algorithm can guarantee better SOFC stability, performance, and efficiency, whilst satisfying the SOFC constraints. |
|---|---|
| AbstractList | In order to sustain solid oxide fuel cell (SOFC) net output power and prevent violation of oxygen excess ratio (OER) constraint and fuel utilization (FU) constraint, a data-driven gas supply system coordination management method is proposed. Accordingly, a population evolution-based multi-agent double delay deep deterministic policy gradient (PE-MA4DPG) algorithm is introduced. The artificial intelligence design of the algorithm is guided by the concepts of imitation learning and curriculum learning, whereby different agents of different combinations are trained in different environments, thus improving the robustness of the coordination strategy. In this algorithm, the hydrogen controller and the air controller are treated as two agents. The centralized training enables agents with different objectives to coordinate with each other. The effectiveness of the proposed algorithm is demonstrated in three experiments, wherein the proposed algorithm is compared with a group of existing algorithms.
•A 5kW SOFC gas supply system model considering various operating parameters is proposed.•A data-driven gas supply system coordination management method is proposed.•A novel large-scale deep reinforcement learning algorithm is proposed for this method.•The PE-MA4DPG algorithm proposed is characterized by superior robustness.•The proposed algorithm can guarantee better SOFC stability, performance, and efficiency, whilst satisfying the SOFC constraints. |
| ArticleNumber | 105818 |
| Author | Li, Jiawen Jiang, Wei Cui, Haoyang |
| Author_xml | – sequence: 1 givenname: Jiawen orcidid: 0000-0003-4097-9922 surname: Li fullname: Li, Jiawen organization: School of electronic and information engineering, Shanghai University of Electric Power, Shanghai, 201306, China – sequence: 2 givenname: Haoyang surname: Cui fullname: Cui, Haoyang email: cuihy@shiep.edu.cn organization: School of electronic and information engineering, Shanghai University of Electric Power, Shanghai, 201306, China – sequence: 3 givenname: Wei surname: Jiang fullname: Jiang, Wei organization: School of electronic and information engineering, Shanghai University of Electric Power, Shanghai, 201306, China |
| BookMark | eNqFkE1LxDAQhoMouH78Bckf6JqkbboFD8r6CYIXPYdpMlmztElJsuL-e7uuXrx4GhjmeZn3OSGHPngk5IKzOWdcXq7n6FcwjuDmgolyWtYLvjggM75oykI2sj0kM9bWouBtI4_JSUprxli5qOSMfN66lKPrNhkNNYgjjei8DVHjgD7THiF651dFB2m6WEGiaTOO_Zambco4UB1CNM5DdsHTATys9uCA-T0YOiXRFHpnaPh0BqndYE819v0ZObLQJzz_mafk7f7udflYPL88PC1vngstKpEL3nXastq00LW8sxUYyaxtZNkwWTOjQbTS8KmYhdqUxtaAKAQXHdgKq4aXp-Rqn6tjSCmiVdrl729zBNcrztTOolqrX4tqZ1HtLU64_IOP0Q0Qt_-D13sQp3IfDqNK2qHXaFxEnZUJ7r-IL0bslxM |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3325482 crossref_primary_10_1109_TTE_2023_3253060 crossref_primary_10_1016_j_ijhydene_2024_02_284 crossref_primary_10_1016_j_renene_2025_124438 crossref_primary_10_1016_j_rser_2023_113581 crossref_primary_10_1016_j_rser_2025_116000 crossref_primary_10_1016_j_rser_2025_116121 crossref_primary_10_1016_j_apenergy_2023_121181 crossref_primary_10_1016_j_est_2025_115802 crossref_primary_10_1109_TASE_2023_3263005 crossref_primary_10_3389_fenrg_2023_1333827 crossref_primary_10_1109_JIOT_2023_3253693 crossref_primary_10_1016_j_engappai_2023_106694 crossref_primary_10_1016_j_etran_2023_100282 crossref_primary_10_3389_fenrg_2024_1361869 crossref_primary_10_1002_fuce_202400146 crossref_primary_10_1109_JESTIE_2023_3263372 |
| Cites_doi | 10.1016/j.ijhydene.2012.05.119 10.1016/j.ijhydene.2012.01.130 10.1016/j.apenergy.2020.116386 10.1109/CCDC.2016.7531681 10.1016/j.jpowsour.2008.06.064 10.1016/j.apenergy.2021.117541 10.1016/j.conengprac.2016.08.008 10.1016/j.jclepro.2021.128929 10.3390/en8031896 10.1016/j.jpowsour.2017.10.070 10.1016/j.jprocont.2012.01.015 10.1109/TEC.2015.2510030 10.1016/j.jpowsour.2012.09.048 10.1016/j.apenergy.2018.12.061 10.1016/j.jpowsour.2007.12.036 10.1109/CAC.2015.7382725 10.5220/0005043604990507 10.1109/TNNLS.2020.3006080 10.1016/j.rser.2013.06.040 10.1016/j.jpowsour.2010.07.053 10.1109/ECMSM.2015.7208702 10.1109/ACC.2013.6580674 10.1109/ACC.2013.6580409 10.1016/j.applthermaleng.2012.05.020 10.1049/iet-cta:20070435 10.1016/j.jpowsour.2009.04.022 10.1109/ICISCE.2016.207 10.1016/j.apenergy.2018.03.072 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2023.105818 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2023_105818 S0952197623000027 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c242t-1bbcf05d9ab91bf4ad60ff76370650dca296d1197fa5d3df5aee2212baf4e4713 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000924899000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:29:00 EST 2025 Sat Nov 29 07:10:29 EST 2025 Fri Feb 23 02:37:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Population evolution multi-agent double delay deep deterministic policy gradient algorithm Gas supply system coordination management method Distributed deep reinforcement learning Solid oxide fuel cell |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c242t-1bbcf05d9ab91bf4ad60ff76370650dca296d1197fa5d3df5aee2212baf4e4713 |
| ORCID | 0000-0003-4097-9922 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2023_105818 crossref_primary_10_1016_j_engappai_2023_105818 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105818 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wen, Ordonez, Vargas (b25) 2013; 50 Huo, Zhu, Hu, Tu, Li, Yang (b7) 2008; 185 Xi, Wu, Xu, Sun (b28) 2021; 32 Lu, Hong (b17) 2019; 236 Wu, Zhu, Cao, Tu (b27) 2008; 179 Ghorbani, Mehrpooya, Sadeqi (b4) 2021; 47 Madani, Das (b19) 2016; 56 Li, Yu, Zhang, Li, Lin, Zhu (b16) 2021; 285 Nayeripour, Hoseintabar (b21) 2013; 27 Yang, J., Songyi, D., Pu, M., 2015. Study on SMDO-based sliding mode control for solid oxide fuel cells. In: Proceedings of the 2015 Chinese Automation Congress. CAC, Wuhan, China, pp. 1437–1442. Tarbouriech, Turner (b24) 2009; 3 Komatsu, Kimijima, Szmyd (b10) 2013; 223 Li, Yu (b13) 2021; 321 Pan, L., Cao, C.Y., Shen, J., 2014. L1 adaptive output feedback controller with operating constraints for solid oxide fuel cells. In: Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics. ICINCO, Vienna, Austria, pp. 499–507. Jiang, Li, Deng, Yang, Zhang, Li (b9) 2012; 37 Li, Cui, Jiang, Yu (b11) 2023 Spivey, Edgar (b23) 2012; 22 Li, Yu, Zhang (b15) 2022 Bavarian, M., Soroush, M., 2013. Control of a heat-integrated co-ionic-conducting solid oxide fuel cell system. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA, pp. 5356–5361. Han, M.M., Zhou, B.Z., 2016. Dual-mode predictive control of solid oxide fuel cell. In: Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering. ICISCE, Beijing, China, pp. 953–957. Li, Wu, Zhu (b12) 2015; 8 Wu, Gao (b26) 2018; 374 Cao, Li (b2) 2016; 31 . Marzooghi, Raoofat (b20) 2012; 37 Horalek, R., Hlava, J., 2015. Multilinear model predictive control of solid oxide fuel cell output voltage. In: Proceedings of the 2015 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics. ECMSM, Liberec, Czech Republic, pp. 1–6. Li, Yu, Yang (b14) 2021; 304 Jacobsen, L.T., Spivey, B.J., Hedengren, J.D., 2013. Model predictive control with a rigorous model of a solid oxide fuel cell. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA, pp. 3741–3746. Yang, Li, Mou, Jian (b30) 2009; 193 Lu, Hong, Zhang (b18) 2018; 220 Deng, Cao, Li, Jiang, Yang, Qin (b3) 2010; 195 Xu, D.Z., Yan, W.X., Ji, N., 2016. RBF neural network based adaptive constrained PID control of a solid oxide fuel cell. In: Proceedings of the 2016 Chinese Control and Decision Conference. CCDC, Yinchuan, China, pp. 3986–3991. Zhan, Y.D., Zhu, J.G., Guo, Y.G., Wang, H., 2008. Performance analysis and improvement of a proton exchange membrane fuel cell using comprehensive intelligent control. In: Proceedings of the 2008 International Conference on Electrical Machines and Systems. Wuhan, China, pp. 2378–2383. Spivey (10.1016/j.engappai.2023.105818_b23) 2012; 22 Li (10.1016/j.engappai.2023.105818_b13) 2021; 321 Lu (10.1016/j.engappai.2023.105818_b17) 2019; 236 Wen (10.1016/j.engappai.2023.105818_b25) 2013; 50 Wu (10.1016/j.engappai.2023.105818_b26) 2018; 374 10.1016/j.engappai.2023.105818_b8 Ghorbani (10.1016/j.engappai.2023.105818_b4) 2021; 47 Madani (10.1016/j.engappai.2023.105818_b19) 2016; 56 10.1016/j.engappai.2023.105818_b32 Li (10.1016/j.engappai.2023.105818_b15) 2022 10.1016/j.engappai.2023.105818_b31 Huo (10.1016/j.engappai.2023.105818_b7) 2008; 185 Jiang (10.1016/j.engappai.2023.105818_b9) 2012; 37 Li (10.1016/j.engappai.2023.105818_b16) 2021; 285 Nayeripour (10.1016/j.engappai.2023.105818_b21) 2013; 27 Marzooghi (10.1016/j.engappai.2023.105818_b20) 2012; 37 Tarbouriech (10.1016/j.engappai.2023.105818_b24) 2009; 3 Lu (10.1016/j.engappai.2023.105818_b18) 2018; 220 Cao (10.1016/j.engappai.2023.105818_b2) 2016; 31 10.1016/j.engappai.2023.105818_b5 Yang (10.1016/j.engappai.2023.105818_b30) 2009; 193 10.1016/j.engappai.2023.105818_b6 Komatsu (10.1016/j.engappai.2023.105818_b10) 2013; 223 10.1016/j.engappai.2023.105818_b1 Li (10.1016/j.engappai.2023.105818_b14) 2021; 304 Li (10.1016/j.engappai.2023.105818_b11) 2023 Li (10.1016/j.engappai.2023.105818_b12) 2015; 8 10.1016/j.engappai.2023.105818_b22 Wu (10.1016/j.engappai.2023.105818_b27) 2008; 179 Xi (10.1016/j.engappai.2023.105818_b28) 2021; 32 10.1016/j.engappai.2023.105818_b29 Deng (10.1016/j.engappai.2023.105818_b3) 2010; 195 |
| References_xml | – volume: 185 start-page: 338 year: 2008 end-page: 344 ident: b7 article-title: Nonlinear model predictive control of SOFC based on a Hammerstein model publication-title: J. Power Sources – volume: 220 start-page: 220 year: 2018 end-page: 230 ident: b18 article-title: A dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach publication-title: Appl. Energy – volume: 3 start-page: 1 year: 2009 end-page: 19 ident: b24 article-title: Anti-windup design: An overview of some recent advances and open problems publication-title: IET Control Theory A – volume: 236 start-page: 937 year: 2019 end-page: 949 ident: b17 article-title: Incentive-based demand response for smart grid with reinforcement learning and deep neural network publication-title: Appl. Energy – reference: Han, M.M., Zhou, B.Z., 2016. Dual-mode predictive control of solid oxide fuel cell. In: Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering. ICISCE, Beijing, China, pp. 953–957. – volume: 321 year: 2021 ident: b13 article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning publication-title: J. Clean. Prod. – volume: 22 start-page: 1502 year: 2012 end-page: 1520 ident: b23 article-title: Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell publication-title: J. Process Control – volume: 37 start-page: 12317 year: 2012 end-page: 12331 ident: b9 article-title: Thermal management of an independent steam reformer for a solid oxide fuel cell with constrained generalized predictive control publication-title: Int. J. Hydrog. Energy – volume: 223 start-page: 232 year: 2013 end-page: 245 ident: b10 article-title: Numerical analysis on dynamic behavior of solid oxide fuel cell with power output control scheme publication-title: J. Power Sources – reference: Zhan, Y.D., Zhu, J.G., Guo, Y.G., Wang, H., 2008. Performance analysis and improvement of a proton exchange membrane fuel cell using comprehensive intelligent control. In: Proceedings of the 2008 International Conference on Electrical Machines and Systems. Wuhan, China, pp. 2378–2383. – reference: Yang, J., Songyi, D., Pu, M., 2015. Study on SMDO-based sliding mode control for solid oxide fuel cells. In: Proceedings of the 2015 Chinese Automation Congress. CAC, Wuhan, China, pp. 1437–1442. – volume: 32 start-page: 2483 year: 2021 end-page: 2493 ident: b28 article-title: Automatic generation control based on multiple neural networks with actor-critic strategy publication-title: IEEE Trans. Neural Netw. Learn. – year: 2022 ident: b15 article-title: Coordinated Load Frequency Control of Multi-Area Integrated Energy System Using Multi-Agent Deep Reinforcement Learning – volume: 374 start-page: 225 year: 2018 end-page: 236 ident: b26 article-title: Optimal robust control strategy of a solid oxide fuel cell system publication-title: J. Power Sources – volume: 56 start-page: 86 year: 2016 end-page: 91 ident: b19 article-title: Feedforward based transient control in solid oxide fuel cells publication-title: Control Eng. Pract. – volume: 304 year: 2021 ident: b14 article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning publication-title: Appl. Energy – volume: 47 year: 2021 ident: b4 article-title: Thermodynamic and exergy evaluation of a novel integrated hydrogen liquefaction structure using liquid air cold energy recovery, solid oxide fuel cell and photovoltaic panels publication-title: Sustain. Energy Technol. – volume: 8 start-page: 1896 year: 2015 end-page: 1916 ident: b12 article-title: Hierarchical load tracking control of a grid-connected solid oxide fuel cell for maximum electrical efficiency operation publication-title: Energies – volume: 50 start-page: 12 year: 2013 end-page: 25 ident: b25 article-title: Optimization of single SOFC structural design for maximum power publication-title: Appl. Therm. Eng. – year: 2023 ident: b11 article-title: Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning publication-title: Int. J. Hydrogen Energy – reference: Jacobsen, L.T., Spivey, B.J., Hedengren, J.D., 2013. Model predictive control with a rigorous model of a solid oxide fuel cell. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA, pp. 3741–3746. – volume: 285 year: 2021 ident: b16 article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system publication-title: Appl. Energy – reference: Pan, L., Cao, C.Y., Shen, J., 2014. L1 adaptive output feedback controller with operating constraints for solid oxide fuel cells. In: Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics. ICINCO, Vienna, Austria, pp. 499–507. – volume: 195 start-page: 8097 year: 2010 end-page: 8103 ident: b3 article-title: Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power publication-title: J. Power Sources – volume: 193 start-page: 699 year: 2009 end-page: 705 ident: b30 article-title: Predictive control of solid oxide fuel cell based on an improved Takagi–Sugeno fuzzy model publication-title: J. Power Sources – volume: 27 start-page: 505 year: 2013 end-page: 514 ident: b21 article-title: A new control strategy of solid oxide fuel cell based on coordination between hydrogen fuel flow rate and utilization factor publication-title: Renew. Sustain. Energy Rev. – reference: Bavarian, M., Soroush, M., 2013. Control of a heat-integrated co-ionic-conducting solid oxide fuel cell system. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA, pp. 5356–5361. – reference: . – reference: Horalek, R., Hlava, J., 2015. Multilinear model predictive control of solid oxide fuel cell output voltage. In: Proceedings of the 2015 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics. ECMSM, Liberec, Czech Republic, pp. 1–6. – volume: 179 start-page: 232 year: 2008 end-page: 239 ident: b27 article-title: Predictive control of SOFC based on a GA-RBF neural network model publication-title: J. Power Sources – volume: 31 start-page: 596 year: 2016 end-page: 605 ident: b2 article-title: Thermal management-oriented multivariable robust control of a kW-scale solid oxide fuel cell stand-alone system publication-title: IEEE Trans. Energy Convers. – reference: Xu, D.Z., Yan, W.X., Ji, N., 2016. RBF neural network based adaptive constrained PID control of a solid oxide fuel cell. In: Proceedings of the 2016 Chinese Control and Decision Conference. CCDC, Yinchuan, China, pp. 3986–3991. – volume: 37 start-page: 7796 year: 2012 end-page: 7806 ident: b20 article-title: Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller publication-title: Int. J. Hydrog. Energy – volume: 37 start-page: 12317 issue: 17 year: 2012 ident: 10.1016/j.engappai.2023.105818_b9 article-title: Thermal management of an independent steam reformer for a solid oxide fuel cell with constrained generalized predictive control publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.05.119 – year: 2022 ident: 10.1016/j.engappai.2023.105818_b15 – volume: 37 start-page: 7796 issue: 9 year: 2012 ident: 10.1016/j.engappai.2023.105818_b20 article-title: Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.01.130 – volume: 285 year: 2021 ident: 10.1016/j.engappai.2023.105818_b16 article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116386 – ident: 10.1016/j.engappai.2023.105818_b29 doi: 10.1109/CCDC.2016.7531681 – volume: 185 start-page: 338 issue: 1 year: 2008 ident: 10.1016/j.engappai.2023.105818_b7 article-title: Nonlinear model predictive control of SOFC based on a Hammerstein model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.06.064 – volume: 304 year: 2021 ident: 10.1016/j.engappai.2023.105818_b14 article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117541 – volume: 56 start-page: 86 year: 2016 ident: 10.1016/j.engappai.2023.105818_b19 article-title: Feedforward based transient control in solid oxide fuel cells publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2016.08.008 – volume: 321 year: 2021 ident: 10.1016/j.engappai.2023.105818_b13 article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128929 – volume: 8 start-page: 1896 issue: 3 year: 2015 ident: 10.1016/j.engappai.2023.105818_b12 article-title: Hierarchical load tracking control of a grid-connected solid oxide fuel cell for maximum electrical efficiency operation publication-title: Energies doi: 10.3390/en8031896 – volume: 374 start-page: 225 year: 2018 ident: 10.1016/j.engappai.2023.105818_b26 article-title: Optimal robust control strategy of a solid oxide fuel cell system publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.10.070 – volume: 22 start-page: 1502 issue: 8 year: 2012 ident: 10.1016/j.engappai.2023.105818_b23 article-title: Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell publication-title: J. Process Control doi: 10.1016/j.jprocont.2012.01.015 – volume: 31 start-page: 596 issue: 2 year: 2016 ident: 10.1016/j.engappai.2023.105818_b2 article-title: Thermal management-oriented multivariable robust control of a kW-scale solid oxide fuel cell stand-alone system publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2015.2510030 – volume: 223 start-page: 232 year: 2013 ident: 10.1016/j.engappai.2023.105818_b10 article-title: Numerical analysis on dynamic behavior of solid oxide fuel cell with power output control scheme publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.09.048 – volume: 236 start-page: 937 year: 2019 ident: 10.1016/j.engappai.2023.105818_b17 article-title: Incentive-based demand response for smart grid with reinforcement learning and deep neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.061 – volume: 179 start-page: 232 issue: 1 year: 2008 ident: 10.1016/j.engappai.2023.105818_b27 article-title: Predictive control of SOFC based on a GA-RBF neural network model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.12.036 – ident: 10.1016/j.engappai.2023.105818_b31 doi: 10.1109/CAC.2015.7382725 – ident: 10.1016/j.engappai.2023.105818_b22 doi: 10.5220/0005043604990507 – volume: 32 start-page: 2483 issue: 6 year: 2021 ident: 10.1016/j.engappai.2023.105818_b28 article-title: Automatic generation control based on multiple neural networks with actor-critic strategy publication-title: IEEE Trans. Neural Netw. Learn. doi: 10.1109/TNNLS.2020.3006080 – volume: 27 start-page: 505 year: 2013 ident: 10.1016/j.engappai.2023.105818_b21 article-title: A new control strategy of solid oxide fuel cell based on coordination between hydrogen fuel flow rate and utilization factor publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.06.040 – volume: 47 year: 2021 ident: 10.1016/j.engappai.2023.105818_b4 article-title: Thermodynamic and exergy evaluation of a novel integrated hydrogen liquefaction structure using liquid air cold energy recovery, solid oxide fuel cell and photovoltaic panels publication-title: Sustain. Energy Technol. – volume: 195 start-page: 8097 issue: 24 year: 2010 ident: 10.1016/j.engappai.2023.105818_b3 article-title: Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.07.053 – ident: 10.1016/j.engappai.2023.105818_b32 – ident: 10.1016/j.engappai.2023.105818_b6 doi: 10.1109/ECMSM.2015.7208702 – ident: 10.1016/j.engappai.2023.105818_b1 doi: 10.1109/ACC.2013.6580674 – ident: 10.1016/j.engappai.2023.105818_b8 doi: 10.1109/ACC.2013.6580409 – volume: 50 start-page: 12 issue: 1 year: 2013 ident: 10.1016/j.engappai.2023.105818_b25 article-title: Optimization of single SOFC structural design for maximum power publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.05.020 – year: 2023 ident: 10.1016/j.engappai.2023.105818_b11 article-title: Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.engappai.2023.105818_b24 article-title: Anti-windup design: An overview of some recent advances and open problems publication-title: IET Control Theory A doi: 10.1049/iet-cta:20070435 – volume: 193 start-page: 699 issue: 2 year: 2009 ident: 10.1016/j.engappai.2023.105818_b30 article-title: Predictive control of solid oxide fuel cell based on an improved Takagi–Sugeno fuzzy model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.04.022 – ident: 10.1016/j.engappai.2023.105818_b5 doi: 10.1109/ICISCE.2016.207 – volume: 220 start-page: 220 year: 2018 ident: 10.1016/j.engappai.2023.105818_b18 article-title: A dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.072 |
| SSID | ssj0003846 |
| Score | 2.449244 |
| Snippet | In order to sustain solid oxide fuel cell (SOFC) net output power and prevent violation of oxygen excess ratio (OER) constraint and fuel utilization (FU)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105818 |
| SubjectTerms | Distributed deep reinforcement learning Gas supply system coordination management method Population evolution multi-agent double delay deep deterministic policy gradient algorithm Solid oxide fuel cell |
| Title | Distributed deep reinforcement learning-based gas supply system coordination management method for solid oxide fuel cell |
| URI | https://dx.doi.org/10.1016/j.engappai.2023.105818 |
| Volume | 120 |
| WOSCitedRecordID | wos000924899000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMXyiraApoDN8vB8WRiz7EqRVChikOB3KzxLJGryImytOlP6b_tm812oKL0wMWKRppxJu_L2-ab9xD6kI2oKRkiYkkIBCgyY3FuyDSDRA1LmqtcWVblz2_Z2Vk-HrPvvd5NuAtzOc3qOt9s2Py_ihrGQNjm6uwDxN0sCgPwGYQOTxA7PP9J8J9MKVzTxQpcSanUPFooWx1V2ERgaBMxiY39ktGEL6Ol6ex57Ys6R2IG8WjlkoSe3Gonul7TlpYIG6hkNNtUUkV6raaRSf9v5fjbKodR94jcsg4Wlp5km4V06oE2zCBLLzit-FV7Se147Xpr89k195bWkH4qn-v-papu8iIlHc5LyEKm8YC5FjCNQk6TjkoFBzB3KvoPbe8SDxd9VU9gL7zqm1f02wnb5bV_M3sNGTHw3C6KsE5h1incOo_QbppRBgpz9-jryfi0MfMkd7fAwg4618_v_kZ3ez4db-b8GXrqwxB85ODzHPVU_QLt-ZAEe4W_hKHQ9SOMvUSbDsCwARjeAhjeBhgGgGEHMOwAhrsAwy3AsAMYhpWwBRi2AMMGYNgA7BX68fnk_PhL7Pt3xAIcv1U8KEuhEyoZL9mg1EMuR4nWYNDM0XoiBU_ZSJpjbM2pJFJTrlQKrlTJ9VCB00Reo516Vqs3CBNJU5GVqYbwGDyovAS7oRKicpoxnWiyj2j4bQvhi9ubHivT4u_S3Ucfm3lzV97l3hksiK7wTqpzPgtA5T1zDx78tkP0pP3bvEU7q8VavUOPxeWqWi7ee0jeAufavbQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+deep+reinforcement+learning-based+gas+supply+system+coordination+management+method+for+solid+oxide+fuel+cell&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Li%2C+Jiawen&rft.au=Cui%2C+Haoyang&rft.au=Jiang%2C+Wei&rft.date=2023-04-01&rft.issn=0952-1976&rft.volume=120&rft.spage=105818&rft_id=info:doi/10.1016%2Fj.engappai.2023.105818&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_105818 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |