Distributed deep reinforcement learning-based gas supply system coordination management method for solid oxide fuel cell

In order to sustain solid oxide fuel cell (SOFC) net output power and prevent violation of oxygen excess ratio (OER) constraint and fuel utilization (FU) constraint, a data-driven gas supply system coordination management method is proposed. Accordingly, a population evolution-based multi-agent doub...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 120; s. 105818
Hlavní autoři: Li, Jiawen, Cui, Haoyang, Jiang, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2023
Témata:
ISSN:0952-1976, 1873-6769
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to sustain solid oxide fuel cell (SOFC) net output power and prevent violation of oxygen excess ratio (OER) constraint and fuel utilization (FU) constraint, a data-driven gas supply system coordination management method is proposed. Accordingly, a population evolution-based multi-agent double delay deep deterministic policy gradient (PE-MA4DPG) algorithm is introduced. The artificial intelligence design of the algorithm is guided by the concepts of imitation learning and curriculum learning, whereby different agents of different combinations are trained in different environments, thus improving the robustness of the coordination strategy. In this algorithm, the hydrogen controller and the air controller are treated as two agents. The centralized training enables agents with different objectives to coordinate with each other. The effectiveness of the proposed algorithm is demonstrated in three experiments, wherein the proposed algorithm is compared with a group of existing algorithms. •A 5kW SOFC gas supply system model considering various operating parameters is proposed.•A data-driven gas supply system coordination management method is proposed.•A novel large-scale deep reinforcement learning algorithm is proposed for this method.•The PE-MA4DPG algorithm proposed is characterized by superior robustness.•The proposed algorithm can guarantee better SOFC stability, performance, and efficiency, whilst satisfying the SOFC constraints.
AbstractList In order to sustain solid oxide fuel cell (SOFC) net output power and prevent violation of oxygen excess ratio (OER) constraint and fuel utilization (FU) constraint, a data-driven gas supply system coordination management method is proposed. Accordingly, a population evolution-based multi-agent double delay deep deterministic policy gradient (PE-MA4DPG) algorithm is introduced. The artificial intelligence design of the algorithm is guided by the concepts of imitation learning and curriculum learning, whereby different agents of different combinations are trained in different environments, thus improving the robustness of the coordination strategy. In this algorithm, the hydrogen controller and the air controller are treated as two agents. The centralized training enables agents with different objectives to coordinate with each other. The effectiveness of the proposed algorithm is demonstrated in three experiments, wherein the proposed algorithm is compared with a group of existing algorithms. •A 5kW SOFC gas supply system model considering various operating parameters is proposed.•A data-driven gas supply system coordination management method is proposed.•A novel large-scale deep reinforcement learning algorithm is proposed for this method.•The PE-MA4DPG algorithm proposed is characterized by superior robustness.•The proposed algorithm can guarantee better SOFC stability, performance, and efficiency, whilst satisfying the SOFC constraints.
ArticleNumber 105818
Author Li, Jiawen
Jiang, Wei
Cui, Haoyang
Author_xml – sequence: 1
  givenname: Jiawen
  orcidid: 0000-0003-4097-9922
  surname: Li
  fullname: Li, Jiawen
  organization: School of electronic and information engineering, Shanghai University of Electric Power, Shanghai, 201306, China
– sequence: 2
  givenname: Haoyang
  surname: Cui
  fullname: Cui, Haoyang
  email: cuihy@shiep.edu.cn
  organization: School of electronic and information engineering, Shanghai University of Electric Power, Shanghai, 201306, China
– sequence: 3
  givenname: Wei
  surname: Jiang
  fullname: Jiang, Wei
  organization: School of electronic and information engineering, Shanghai University of Electric Power, Shanghai, 201306, China
BookMark eNqFkE1LxDAQhoMouH78Bckf6JqkbboFD8r6CYIXPYdpMlmztElJsuL-e7uuXrx4GhjmeZn3OSGHPngk5IKzOWdcXq7n6FcwjuDmgolyWtYLvjggM75oykI2sj0kM9bWouBtI4_JSUprxli5qOSMfN66lKPrNhkNNYgjjei8DVHjgD7THiF651dFB2m6WEGiaTOO_Zambco4UB1CNM5DdsHTATys9uCA-T0YOiXRFHpnaPh0BqndYE819v0ZObLQJzz_mafk7f7udflYPL88PC1vngstKpEL3nXastq00LW8sxUYyaxtZNkwWTOjQbTS8KmYhdqUxtaAKAQXHdgKq4aXp-Rqn6tjSCmiVdrl729zBNcrztTOolqrX4tqZ1HtLU64_IOP0Q0Qt_-D13sQp3IfDqNK2qHXaFxEnZUJ7r-IL0bslxM
CitedBy_id crossref_primary_10_1109_JIOT_2023_3325482
crossref_primary_10_1109_TTE_2023_3253060
crossref_primary_10_1016_j_ijhydene_2024_02_284
crossref_primary_10_1016_j_renene_2025_124438
crossref_primary_10_1016_j_rser_2023_113581
crossref_primary_10_1016_j_rser_2025_116000
crossref_primary_10_1016_j_rser_2025_116121
crossref_primary_10_1016_j_apenergy_2023_121181
crossref_primary_10_1016_j_est_2025_115802
crossref_primary_10_1109_TASE_2023_3263005
crossref_primary_10_3389_fenrg_2023_1333827
crossref_primary_10_1109_JIOT_2023_3253693
crossref_primary_10_1016_j_engappai_2023_106694
crossref_primary_10_1016_j_etran_2023_100282
crossref_primary_10_3389_fenrg_2024_1361869
crossref_primary_10_1002_fuce_202400146
crossref_primary_10_1109_JESTIE_2023_3263372
Cites_doi 10.1016/j.ijhydene.2012.05.119
10.1016/j.ijhydene.2012.01.130
10.1016/j.apenergy.2020.116386
10.1109/CCDC.2016.7531681
10.1016/j.jpowsour.2008.06.064
10.1016/j.apenergy.2021.117541
10.1016/j.conengprac.2016.08.008
10.1016/j.jclepro.2021.128929
10.3390/en8031896
10.1016/j.jpowsour.2017.10.070
10.1016/j.jprocont.2012.01.015
10.1109/TEC.2015.2510030
10.1016/j.jpowsour.2012.09.048
10.1016/j.apenergy.2018.12.061
10.1016/j.jpowsour.2007.12.036
10.1109/CAC.2015.7382725
10.5220/0005043604990507
10.1109/TNNLS.2020.3006080
10.1016/j.rser.2013.06.040
10.1016/j.jpowsour.2010.07.053
10.1109/ECMSM.2015.7208702
10.1109/ACC.2013.6580674
10.1109/ACC.2013.6580409
10.1016/j.applthermaleng.2012.05.020
10.1049/iet-cta:20070435
10.1016/j.jpowsour.2009.04.022
10.1109/ICISCE.2016.207
10.1016/j.apenergy.2018.03.072
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.105818
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_105818
S0952197623000027
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c242t-1bbcf05d9ab91bf4ad60ff76370650dca296d1197fa5d3df5aee2212baf4e4713
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000924899000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:29:00 EST 2025
Sat Nov 29 07:10:29 EST 2025
Fri Feb 23 02:37:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Population evolution multi-agent double delay deep deterministic policy gradient algorithm
Gas supply system coordination management method
Distributed deep reinforcement learning
Solid oxide fuel cell
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c242t-1bbcf05d9ab91bf4ad60ff76370650dca296d1197fa5d3df5aee2212baf4e4713
ORCID 0000-0003-4097-9922
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2023_105818
crossref_primary_10_1016_j_engappai_2023_105818
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105818
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wen, Ordonez, Vargas (b25) 2013; 50
Huo, Zhu, Hu, Tu, Li, Yang (b7) 2008; 185
Xi, Wu, Xu, Sun (b28) 2021; 32
Lu, Hong (b17) 2019; 236
Wu, Zhu, Cao, Tu (b27) 2008; 179
Ghorbani, Mehrpooya, Sadeqi (b4) 2021; 47
Madani, Das (b19) 2016; 56
Li, Yu, Zhang, Li, Lin, Zhu (b16) 2021; 285
Nayeripour, Hoseintabar (b21) 2013; 27
Yang, J., Songyi, D., Pu, M., 2015. Study on SMDO-based sliding mode control for solid oxide fuel cells. In: Proceedings of the 2015 Chinese Automation Congress. CAC, Wuhan, China, pp. 1437–1442.
Tarbouriech, Turner (b24) 2009; 3
Komatsu, Kimijima, Szmyd (b10) 2013; 223
Li, Yu (b13) 2021; 321
Pan, L., Cao, C.Y., Shen, J., 2014. L1 adaptive output feedback controller with operating constraints for solid oxide fuel cells. In: Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics. ICINCO, Vienna, Austria, pp. 499–507.
Jiang, Li, Deng, Yang, Zhang, Li (b9) 2012; 37
Li, Cui, Jiang, Yu (b11) 2023
Spivey, Edgar (b23) 2012; 22
Li, Yu, Zhang (b15) 2022
Bavarian, M., Soroush, M., 2013. Control of a heat-integrated co-ionic-conducting solid oxide fuel cell system. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA, pp. 5356–5361.
Han, M.M., Zhou, B.Z., 2016. Dual-mode predictive control of solid oxide fuel cell. In: Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering. ICISCE, Beijing, China, pp. 953–957.
Li, Wu, Zhu (b12) 2015; 8
Wu, Gao (b26) 2018; 374
Cao, Li (b2) 2016; 31
.
Marzooghi, Raoofat (b20) 2012; 37
Horalek, R., Hlava, J., 2015. Multilinear model predictive control of solid oxide fuel cell output voltage. In: Proceedings of the 2015 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics. ECMSM, Liberec, Czech Republic, pp. 1–6.
Li, Yu, Yang (b14) 2021; 304
Jacobsen, L.T., Spivey, B.J., Hedengren, J.D., 2013. Model predictive control with a rigorous model of a solid oxide fuel cell. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA, pp. 3741–3746.
Yang, Li, Mou, Jian (b30) 2009; 193
Lu, Hong, Zhang (b18) 2018; 220
Deng, Cao, Li, Jiang, Yang, Qin (b3) 2010; 195
Xu, D.Z., Yan, W.X., Ji, N., 2016. RBF neural network based adaptive constrained PID control of a solid oxide fuel cell. In: Proceedings of the 2016 Chinese Control and Decision Conference. CCDC, Yinchuan, China, pp. 3986–3991.
Zhan, Y.D., Zhu, J.G., Guo, Y.G., Wang, H., 2008. Performance analysis and improvement of a proton exchange membrane fuel cell using comprehensive intelligent control. In: Proceedings of the 2008 International Conference on Electrical Machines and Systems. Wuhan, China, pp. 2378–2383.
Spivey (10.1016/j.engappai.2023.105818_b23) 2012; 22
Li (10.1016/j.engappai.2023.105818_b13) 2021; 321
Lu (10.1016/j.engappai.2023.105818_b17) 2019; 236
Wen (10.1016/j.engappai.2023.105818_b25) 2013; 50
Wu (10.1016/j.engappai.2023.105818_b26) 2018; 374
10.1016/j.engappai.2023.105818_b8
Ghorbani (10.1016/j.engappai.2023.105818_b4) 2021; 47
Madani (10.1016/j.engappai.2023.105818_b19) 2016; 56
10.1016/j.engappai.2023.105818_b32
Li (10.1016/j.engappai.2023.105818_b15) 2022
10.1016/j.engappai.2023.105818_b31
Huo (10.1016/j.engappai.2023.105818_b7) 2008; 185
Jiang (10.1016/j.engappai.2023.105818_b9) 2012; 37
Li (10.1016/j.engappai.2023.105818_b16) 2021; 285
Nayeripour (10.1016/j.engappai.2023.105818_b21) 2013; 27
Marzooghi (10.1016/j.engappai.2023.105818_b20) 2012; 37
Tarbouriech (10.1016/j.engappai.2023.105818_b24) 2009; 3
Lu (10.1016/j.engappai.2023.105818_b18) 2018; 220
Cao (10.1016/j.engappai.2023.105818_b2) 2016; 31
10.1016/j.engappai.2023.105818_b5
Yang (10.1016/j.engappai.2023.105818_b30) 2009; 193
10.1016/j.engappai.2023.105818_b6
Komatsu (10.1016/j.engappai.2023.105818_b10) 2013; 223
10.1016/j.engappai.2023.105818_b1
Li (10.1016/j.engappai.2023.105818_b14) 2021; 304
Li (10.1016/j.engappai.2023.105818_b11) 2023
Li (10.1016/j.engappai.2023.105818_b12) 2015; 8
10.1016/j.engappai.2023.105818_b22
Wu (10.1016/j.engappai.2023.105818_b27) 2008; 179
Xi (10.1016/j.engappai.2023.105818_b28) 2021; 32
10.1016/j.engappai.2023.105818_b29
Deng (10.1016/j.engappai.2023.105818_b3) 2010; 195
References_xml – volume: 185
  start-page: 338
  year: 2008
  end-page: 344
  ident: b7
  article-title: Nonlinear model predictive control of SOFC based on a Hammerstein model
  publication-title: J. Power Sources
– volume: 220
  start-page: 220
  year: 2018
  end-page: 230
  ident: b18
  article-title: A dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach
  publication-title: Appl. Energy
– volume: 3
  start-page: 1
  year: 2009
  end-page: 19
  ident: b24
  article-title: Anti-windup design: An overview of some recent advances and open problems
  publication-title: IET Control Theory A
– volume: 236
  start-page: 937
  year: 2019
  end-page: 949
  ident: b17
  article-title: Incentive-based demand response for smart grid with reinforcement learning and deep neural network
  publication-title: Appl. Energy
– reference: Han, M.M., Zhou, B.Z., 2016. Dual-mode predictive control of solid oxide fuel cell. In: Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering. ICISCE, Beijing, China, pp. 953–957.
– volume: 321
  year: 2021
  ident: b13
  article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning
  publication-title: J. Clean. Prod.
– volume: 22
  start-page: 1502
  year: 2012
  end-page: 1520
  ident: b23
  article-title: Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell
  publication-title: J. Process Control
– volume: 37
  start-page: 12317
  year: 2012
  end-page: 12331
  ident: b9
  article-title: Thermal management of an independent steam reformer for a solid oxide fuel cell with constrained generalized predictive control
  publication-title: Int. J. Hydrog. Energy
– volume: 223
  start-page: 232
  year: 2013
  end-page: 245
  ident: b10
  article-title: Numerical analysis on dynamic behavior of solid oxide fuel cell with power output control scheme
  publication-title: J. Power Sources
– reference: Zhan, Y.D., Zhu, J.G., Guo, Y.G., Wang, H., 2008. Performance analysis and improvement of a proton exchange membrane fuel cell using comprehensive intelligent control. In: Proceedings of the 2008 International Conference on Electrical Machines and Systems. Wuhan, China, pp. 2378–2383.
– reference: Yang, J., Songyi, D., Pu, M., 2015. Study on SMDO-based sliding mode control for solid oxide fuel cells. In: Proceedings of the 2015 Chinese Automation Congress. CAC, Wuhan, China, pp. 1437–1442.
– volume: 32
  start-page: 2483
  year: 2021
  end-page: 2493
  ident: b28
  article-title: Automatic generation control based on multiple neural networks with actor-critic strategy
  publication-title: IEEE Trans. Neural Netw. Learn.
– year: 2022
  ident: b15
  article-title: Coordinated Load Frequency Control of Multi-Area Integrated Energy System Using Multi-Agent Deep Reinforcement Learning
– volume: 374
  start-page: 225
  year: 2018
  end-page: 236
  ident: b26
  article-title: Optimal robust control strategy of a solid oxide fuel cell system
  publication-title: J. Power Sources
– volume: 56
  start-page: 86
  year: 2016
  end-page: 91
  ident: b19
  article-title: Feedforward based transient control in solid oxide fuel cells
  publication-title: Control Eng. Pract.
– volume: 304
  year: 2021
  ident: b14
  article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning
  publication-title: Appl. Energy
– volume: 47
  year: 2021
  ident: b4
  article-title: Thermodynamic and exergy evaluation of a novel integrated hydrogen liquefaction structure using liquid air cold energy recovery, solid oxide fuel cell and photovoltaic panels
  publication-title: Sustain. Energy Technol.
– volume: 8
  start-page: 1896
  year: 2015
  end-page: 1916
  ident: b12
  article-title: Hierarchical load tracking control of a grid-connected solid oxide fuel cell for maximum electrical efficiency operation
  publication-title: Energies
– volume: 50
  start-page: 12
  year: 2013
  end-page: 25
  ident: b25
  article-title: Optimization of single SOFC structural design for maximum power
  publication-title: Appl. Therm. Eng.
– year: 2023
  ident: b11
  article-title: Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning
  publication-title: Int. J. Hydrogen Energy
– reference: Jacobsen, L.T., Spivey, B.J., Hedengren, J.D., 2013. Model predictive control with a rigorous model of a solid oxide fuel cell. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA, pp. 3741–3746.
– volume: 285
  year: 2021
  ident: b16
  article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system
  publication-title: Appl. Energy
– reference: Pan, L., Cao, C.Y., Shen, J., 2014. L1 adaptive output feedback controller with operating constraints for solid oxide fuel cells. In: Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics. ICINCO, Vienna, Austria, pp. 499–507.
– volume: 195
  start-page: 8097
  year: 2010
  end-page: 8103
  ident: b3
  article-title: Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power
  publication-title: J. Power Sources
– volume: 193
  start-page: 699
  year: 2009
  end-page: 705
  ident: b30
  article-title: Predictive control of solid oxide fuel cell based on an improved Takagi–Sugeno fuzzy model
  publication-title: J. Power Sources
– volume: 27
  start-page: 505
  year: 2013
  end-page: 514
  ident: b21
  article-title: A new control strategy of solid oxide fuel cell based on coordination between hydrogen fuel flow rate and utilization factor
  publication-title: Renew. Sustain. Energy Rev.
– reference: Bavarian, M., Soroush, M., 2013. Control of a heat-integrated co-ionic-conducting solid oxide fuel cell system. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA, pp. 5356–5361.
– reference: .
– reference: Horalek, R., Hlava, J., 2015. Multilinear model predictive control of solid oxide fuel cell output voltage. In: Proceedings of the 2015 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics. ECMSM, Liberec, Czech Republic, pp. 1–6.
– volume: 179
  start-page: 232
  year: 2008
  end-page: 239
  ident: b27
  article-title: Predictive control of SOFC based on a GA-RBF neural network model
  publication-title: J. Power Sources
– volume: 31
  start-page: 596
  year: 2016
  end-page: 605
  ident: b2
  article-title: Thermal management-oriented multivariable robust control of a kW-scale solid oxide fuel cell stand-alone system
  publication-title: IEEE Trans. Energy Convers.
– reference: Xu, D.Z., Yan, W.X., Ji, N., 2016. RBF neural network based adaptive constrained PID control of a solid oxide fuel cell. In: Proceedings of the 2016 Chinese Control and Decision Conference. CCDC, Yinchuan, China, pp. 3986–3991.
– volume: 37
  start-page: 7796
  year: 2012
  end-page: 7806
  ident: b20
  article-title: Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller
  publication-title: Int. J. Hydrog. Energy
– volume: 37
  start-page: 12317
  issue: 17
  year: 2012
  ident: 10.1016/j.engappai.2023.105818_b9
  article-title: Thermal management of an independent steam reformer for a solid oxide fuel cell with constrained generalized predictive control
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.05.119
– year: 2022
  ident: 10.1016/j.engappai.2023.105818_b15
– volume: 37
  start-page: 7796
  issue: 9
  year: 2012
  ident: 10.1016/j.engappai.2023.105818_b20
  article-title: Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.01.130
– volume: 285
  year: 2021
  ident: 10.1016/j.engappai.2023.105818_b16
  article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116386
– ident: 10.1016/j.engappai.2023.105818_b29
  doi: 10.1109/CCDC.2016.7531681
– volume: 185
  start-page: 338
  issue: 1
  year: 2008
  ident: 10.1016/j.engappai.2023.105818_b7
  article-title: Nonlinear model predictive control of SOFC based on a Hammerstein model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.06.064
– volume: 304
  year: 2021
  ident: 10.1016/j.engappai.2023.105818_b14
  article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117541
– volume: 56
  start-page: 86
  year: 2016
  ident: 10.1016/j.engappai.2023.105818_b19
  article-title: Feedforward based transient control in solid oxide fuel cells
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2016.08.008
– volume: 321
  year: 2021
  ident: 10.1016/j.engappai.2023.105818_b13
  article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128929
– volume: 8
  start-page: 1896
  issue: 3
  year: 2015
  ident: 10.1016/j.engappai.2023.105818_b12
  article-title: Hierarchical load tracking control of a grid-connected solid oxide fuel cell for maximum electrical efficiency operation
  publication-title: Energies
  doi: 10.3390/en8031896
– volume: 374
  start-page: 225
  year: 2018
  ident: 10.1016/j.engappai.2023.105818_b26
  article-title: Optimal robust control strategy of a solid oxide fuel cell system
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.10.070
– volume: 22
  start-page: 1502
  issue: 8
  year: 2012
  ident: 10.1016/j.engappai.2023.105818_b23
  article-title: Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.01.015
– volume: 31
  start-page: 596
  issue: 2
  year: 2016
  ident: 10.1016/j.engappai.2023.105818_b2
  article-title: Thermal management-oriented multivariable robust control of a kW-scale solid oxide fuel cell stand-alone system
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2015.2510030
– volume: 223
  start-page: 232
  year: 2013
  ident: 10.1016/j.engappai.2023.105818_b10
  article-title: Numerical analysis on dynamic behavior of solid oxide fuel cell with power output control scheme
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.09.048
– volume: 236
  start-page: 937
  year: 2019
  ident: 10.1016/j.engappai.2023.105818_b17
  article-title: Incentive-based demand response for smart grid with reinforcement learning and deep neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.061
– volume: 179
  start-page: 232
  issue: 1
  year: 2008
  ident: 10.1016/j.engappai.2023.105818_b27
  article-title: Predictive control of SOFC based on a GA-RBF neural network model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.12.036
– ident: 10.1016/j.engappai.2023.105818_b31
  doi: 10.1109/CAC.2015.7382725
– ident: 10.1016/j.engappai.2023.105818_b22
  doi: 10.5220/0005043604990507
– volume: 32
  start-page: 2483
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2023.105818_b28
  article-title: Automatic generation control based on multiple neural networks with actor-critic strategy
  publication-title: IEEE Trans. Neural Netw. Learn.
  doi: 10.1109/TNNLS.2020.3006080
– volume: 27
  start-page: 505
  year: 2013
  ident: 10.1016/j.engappai.2023.105818_b21
  article-title: A new control strategy of solid oxide fuel cell based on coordination between hydrogen fuel flow rate and utilization factor
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.06.040
– volume: 47
  year: 2021
  ident: 10.1016/j.engappai.2023.105818_b4
  article-title: Thermodynamic and exergy evaluation of a novel integrated hydrogen liquefaction structure using liquid air cold energy recovery, solid oxide fuel cell and photovoltaic panels
  publication-title: Sustain. Energy Technol.
– volume: 195
  start-page: 8097
  issue: 24
  year: 2010
  ident: 10.1016/j.engappai.2023.105818_b3
  article-title: Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.07.053
– ident: 10.1016/j.engappai.2023.105818_b32
– ident: 10.1016/j.engappai.2023.105818_b6
  doi: 10.1109/ECMSM.2015.7208702
– ident: 10.1016/j.engappai.2023.105818_b1
  doi: 10.1109/ACC.2013.6580674
– ident: 10.1016/j.engappai.2023.105818_b8
  doi: 10.1109/ACC.2013.6580409
– volume: 50
  start-page: 12
  issue: 1
  year: 2013
  ident: 10.1016/j.engappai.2023.105818_b25
  article-title: Optimization of single SOFC structural design for maximum power
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.05.020
– year: 2023
  ident: 10.1016/j.engappai.2023.105818_b11
  article-title: Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.engappai.2023.105818_b24
  article-title: Anti-windup design: An overview of some recent advances and open problems
  publication-title: IET Control Theory A
  doi: 10.1049/iet-cta:20070435
– volume: 193
  start-page: 699
  issue: 2
  year: 2009
  ident: 10.1016/j.engappai.2023.105818_b30
  article-title: Predictive control of solid oxide fuel cell based on an improved Takagi–Sugeno fuzzy model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.04.022
– ident: 10.1016/j.engappai.2023.105818_b5
  doi: 10.1109/ICISCE.2016.207
– volume: 220
  start-page: 220
  year: 2018
  ident: 10.1016/j.engappai.2023.105818_b18
  article-title: A dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.072
SSID ssj0003846
Score 2.449244
Snippet In order to sustain solid oxide fuel cell (SOFC) net output power and prevent violation of oxygen excess ratio (OER) constraint and fuel utilization (FU)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105818
SubjectTerms Distributed deep reinforcement learning
Gas supply system coordination management method
Population evolution multi-agent double delay deep deterministic policy gradient algorithm
Solid oxide fuel cell
Title Distributed deep reinforcement learning-based gas supply system coordination management method for solid oxide fuel cell
URI https://dx.doi.org/10.1016/j.engappai.2023.105818
Volume 120
WOSCitedRecordID wos000924899000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMXyiraApoDN8vB8WRiz7EqRVChikOB3KzxLJGryImytOlP6b_tm812oKL0wMWKRppxJu_L2-ab9xD6kI2oKRkiYkkIBCgyY3FuyDSDRA1LmqtcWVblz2_Z2Vk-HrPvvd5NuAtzOc3qOt9s2Py_ihrGQNjm6uwDxN0sCgPwGYQOTxA7PP9J8J9MKVzTxQpcSanUPFooWx1V2ERgaBMxiY39ktGEL6Ol6ex57Ys6R2IG8WjlkoSe3Gonul7TlpYIG6hkNNtUUkV6raaRSf9v5fjbKodR94jcsg4Wlp5km4V06oE2zCBLLzit-FV7Se147Xpr89k195bWkH4qn-v-papu8iIlHc5LyEKm8YC5FjCNQk6TjkoFBzB3KvoPbe8SDxd9VU9gL7zqm1f02wnb5bV_M3sNGTHw3C6KsE5h1incOo_QbppRBgpz9-jryfi0MfMkd7fAwg4618_v_kZ3ez4db-b8GXrqwxB85ODzHPVU_QLt-ZAEe4W_hKHQ9SOMvUSbDsCwARjeAhjeBhgGgGEHMOwAhrsAwy3AsAMYhpWwBRi2AMMGYNgA7BX68fnk_PhL7Pt3xAIcv1U8KEuhEyoZL9mg1EMuR4nWYNDM0XoiBU_ZSJpjbM2pJFJTrlQKrlTJ9VCB00Reo516Vqs3CBNJU5GVqYbwGDyovAS7oRKicpoxnWiyj2j4bQvhi9ubHivT4u_S3Ucfm3lzV97l3hksiK7wTqpzPgtA5T1zDx78tkP0pP3bvEU7q8VavUOPxeWqWi7ee0jeAufavbQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+deep+reinforcement+learning-based+gas+supply+system+coordination+management+method+for+solid+oxide+fuel+cell&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Li%2C+Jiawen&rft.au=Cui%2C+Haoyang&rft.au=Jiang%2C+Wei&rft.date=2023-04-01&rft.issn=0952-1976&rft.volume=120&rft.spage=105818&rft_id=info:doi/10.1016%2Fj.engappai.2023.105818&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_105818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon