More About the Corpus of Involutions From Two-to-One Mappings and Related Cryptographic S-Boxes
Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been u...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 69; H. 2; S. 1315 - 1327 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been used frequently for block cipher designs and coding theory. In this article, we further investigate this corpus using new approaches, specifically from two-to-one (2-to-1) functions and (in some cases) using the graph indicators introduced by Carlet in 2020. In our constructions of involutions over the finite field <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{2^{n}} </tex-math></inline-formula> of order <inline-formula> <tex-math notation="LaTeX">2^{n} </tex-math></inline-formula>, we shall intensively use 2-to-1 mappings over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{2^{n}} </tex-math></inline-formula>. More specifically, we present a new constructive method to design involutions from 2-to-1 mappings through their graph indicator and derive new involutions from known 2-to-1 mappings. Besides, we also propose several new classes of 2-to-1 mappings, including 2-to-1 hexanomials, 2-to-1 mappings of the form <inline-formula> <tex-math notation="LaTeX">(x^{2^{k}}+x+\delta)^{s_{1}}+(x^{2^{k}}+x+\delta)^{s_{2}}+cx </tex-math></inline-formula>, and 2-to-1 mappings from linear 2-to-1 mappings. We also exhibit the corresponding involutions of the constructed 2-to-1 mappings. Furthermore, an infinite family of involutions with differential uniformity at most 4 (EA-inequivalent to the inverse function) is obtained. Finally, we highlight that all our derived families of involutions have no fixed point, further accentuating their cryptographic interest. |
|---|---|
| AbstractList | Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been used frequently for block cipher designs and coding theory. In this article, we further investigate this corpus using new approaches, specifically from two-to-one (2-to-1) functions and (in some cases) using the graph indicators introduced by Carlet in 2020. In our constructions of involutions over the finite field [Formula Omitted] of order [Formula Omitted], we shall intensively use 2-to-1 mappings over [Formula Omitted]. More specifically, we present a new constructive method to design involutions from 2-to-1 mappings through their graph indicator and derive new involutions from known 2-to-1 mappings. Besides, we also propose several new classes of 2-to-1 mappings, including 2-to-1 hexanomials, 2-to-1 mappings of the form [Formula Omitted], and 2-to-1 mappings from linear 2-to-1 mappings. We also exhibit the corresponding involutions of the constructed 2-to-1 mappings. Furthermore, an infinite family of involutions with differential uniformity at most 4 (EA-inequivalent to the inverse function) is obtained. Finally, we highlight that all our derived families of involutions have no fixed point, further accentuating their cryptographic interest. Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been used frequently for block cipher designs and coding theory. In this article, we further investigate this corpus using new approaches, specifically from two-to-one (2-to-1) functions and (in some cases) using the graph indicators introduced by Carlet in 2020. In our constructions of involutions over the finite field <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{2^{n}} </tex-math></inline-formula> of order <inline-formula> <tex-math notation="LaTeX">2^{n} </tex-math></inline-formula>, we shall intensively use 2-to-1 mappings over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{2^{n}} </tex-math></inline-formula>. More specifically, we present a new constructive method to design involutions from 2-to-1 mappings through their graph indicator and derive new involutions from known 2-to-1 mappings. Besides, we also propose several new classes of 2-to-1 mappings, including 2-to-1 hexanomials, 2-to-1 mappings of the form <inline-formula> <tex-math notation="LaTeX">(x^{2^{k}}+x+\delta)^{s_{1}}+(x^{2^{k}}+x+\delta)^{s_{2}}+cx </tex-math></inline-formula>, and 2-to-1 mappings from linear 2-to-1 mappings. We also exhibit the corresponding involutions of the constructed 2-to-1 mappings. Furthermore, an infinite family of involutions with differential uniformity at most 4 (EA-inequivalent to the inverse function) is obtained. Finally, we highlight that all our derived families of involutions have no fixed point, further accentuating their cryptographic interest. |
| Author | Zheng, Dabin Mesnager, Sihem Yuan, Mu |
| Author_xml | – sequence: 1 givenname: Sihem orcidid: 0000-0003-4008-2031 surname: Mesnager fullname: Mesnager, Sihem email: smesnager@univ-paris8.fr organization: Department of Mathematics, University of Paris VIII, Saint-Denis, France – sequence: 2 givenname: Mu orcidid: 0000-0002-1300-8170 surname: Yuan fullname: Yuan, Mu email: yuanmu847566@outlook.com organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China – sequence: 3 givenname: Dabin orcidid: 0000-0003-3947-1590 surname: Zheng fullname: Zheng, Dabin email: dzheng@hubu.edu.cn organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China |
| BookMark | eNp9kEtLw0AURgepYH3sBTcDrlPnnZllLT4KFUHrepgkN5rSZuLMxMe_N6XFhQtXlwvf-S73HKNR61tA6JySCaXEXC3nywkjjE04o5Qzc4DGVMo8M0qKERoTQnVmhNBH6DjG1bAKSdkY2QcfAE8L3yec3gDPfOj6iH2N5-2HX_ep8W3Et8Fv8PLTZ8lnjy3gB9d1TfsasWsr_ARrl6DCs_DdJf8aXPfWlPg5u_ZfEE_RYe3WEc728wS93N4sZ_fZ4vFuPpsuspIJprKa8ErleWmc1KLgQkKhneZSl3mhjdG6rkoQILgrZa4LVRElKuFUroVSjgI_QZe73i749x5isivfh3Y4aVmuck61NmxIqV2qDD7GALUtm-S2P6bgmrWlxG5l2kGm3cq0e5kDSP6AXWg2Lnz_h1zskAYAfuPGEGUk5z9r9ICM |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1007_s10623_024_01474_y crossref_primary_10_24330_ieja_1611885 crossref_primary_10_1016_j_ffa_2025_102678 crossref_primary_10_1007_s10623_024_01499_3 crossref_primary_10_1007_s10623_024_01463_1 crossref_primary_10_1016_j_jcta_2025_106046 crossref_primary_10_1016_j_ffa_2025_102573 |
| Cites_doi | 10.1007/3-540-60590-8_16 10.1016/j.ffa.2020.101797 10.1007/3-540-48285-7_6 10.1109/ISIT.2016.7541271 10.1016/j.ffa.2016.02.005 10.1007/s12095-015-0144-7 10.1142/9789814719261_0003 10.1007/s10623-015-0151-x 10.1109/TIT.2021.3068743 10.1007/978-0-387-35651-8 10.1007/s00145-013-9175-4 10.1007/s10623-011-9564-3 10.1016/j.jcta.2011.06.005 10.1016/j.ffa.2015.07.006 10.1007/3-540-48519-8_12 10.1016/j.ffa.2017.01.006 10.1016/j.ffa.2021.101913 10.1109/TIT.2019.2933832 10.6028/nist.fips.185 10.1016/S0019-9958(67)91016-9 10.1109/TIT.2016.2526022 10.1007/978-3-540-39887-5_5 10.1007/s12095-018-0283-8 10.1007/s12095-019-00386-2 10.1109/TIT.2021.3089145 10.1109/TIT.2020.2981524 10.1016/j.ffa.2014.10.001 10.1007/978-3-030-17653-2_11 10.1007/978-3-642-34961-4_14 10.1109/TIT.2017.2777961 10.1007/978-3-319-32595-8 10.1007/BF00630563 10.1007/s10623-015-0145-8 10.3934/amc.2017022 10.1016/j.ffa.2017.06.004 10.1016/j.ffa.2009.07.001 10.1007/978-1-4615-2694-0_23 10.1007/s10623-018-0482-5 10.1007/3-540-48285-7_33 10.1090/conm/518/10194 10.1016/j.jcta.2010.08.005 10.1017/9781108606806 10.1016/j.disc.2011.03.023 10.1109/TIT.2021.3057094 10.1016/j.ffa.2010.10.002 10.1109/TIT.2019.2919511 10.1007/978-3-319-78375-8_22 10.46586/tosc.v2018.i3.290-310 10.1007/s10623-015-0143-x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIT.2022.3211329 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1557-9654 |
| EndPage | 1327 |
| ExternalDocumentID | 10_1109_TIT_2022_3211329 9906953 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: French Agence Nationale de la Recherche through Agence Nationale de la Recherche (ANR), algeBrA, pRoofs, pRotocols, Algorithms, Curves, and surfaces for coDes and their Applications (BARRACUDA) grantid: ANR-21-CE39-0009 funderid: 10.13039/501100001665 – fundername: National Natural Science Foundation of China grantid: 11971156; 62272148 funderid: 10.13039/501100001809 – fundername: China’s National Key Research and Development Program grantid: 2021YFA1000600 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2426-f03d677c9a584b345eb8a8358c7b89988fdce4e43ac578b6d064d4a678466a1e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9448 |
| IngestDate | Sun Nov 09 08:12:57 EST 2025 Sat Nov 29 03:31:49 EST 2025 Tue Nov 18 22:35:26 EST 2025 Wed Aug 27 02:55:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2426-f03d677c9a584b345eb8a8358c7b89988fdce4e43ac578b6d064d4a678466a1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3947-1590 0000-0002-1300-8170 0000-0003-4008-2031 |
| PQID | 2767318892 |
| PQPubID | 36024 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIT_2022_3211329 crossref_primary_10_1109_TIT_2022_3211329 proquest_journals_2767318892 ieee_primary_9906953 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 Hyunwoo (ref24) 2018; 28 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref33 ref32 ref2 ref1 Cox (ref20) 2007 ref39 ref38 Youssef (ref49) ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 Lidl (ref30) 1993; 65 Lidl (ref31) 1997 |
| References_xml | – ident: ref25 doi: 10.1007/3-540-60590-8_16 – ident: ref22 doi: 10.1016/j.ffa.2020.101797 – ident: ref40 doi: 10.1007/3-540-48285-7_6 – ident: ref35 doi: 10.1109/ISIT.2016.7541271 – volume: 28 start-page: 1379 issue: 6 year: 2018 ident: ref24 article-title: Improved differential-linear cryptanalysis using DLCT publication-title: J. Korea Inst. Inf. Secur. Cryptol. – ident: ref51 doi: 10.1016/j.ffa.2016.02.005 – start-page: 132 volume-title: Proc. Workshop Sel. Areas Cryptography ident: ref49 article-title: A new class of substitution-permutation networks – ident: ref34 doi: 10.1007/s12095-015-0144-7 – ident: ref17 doi: 10.1142/9789814719261_0003 – ident: ref41 doi: 10.1007/s10623-015-0151-x – ident: ref28 doi: 10.1109/TIT.2021.3068743 – volume-title: Ideals, Varieties, and Algorithms year: 2007 ident: ref20 doi: 10.1007/978-0-387-35651-8 – ident: ref43 doi: 10.1007/s00145-013-9175-4 – ident: ref47 doi: 10.1007/s10623-011-9564-3 – ident: ref13 doi: 10.1016/j.jcta.2011.06.005 – ident: ref53 doi: 10.1016/j.ffa.2015.07.006 – ident: ref45 doi: 10.1007/3-540-48519-8_12 – ident: ref46 doi: 10.1016/j.ffa.2017.01.006 – ident: ref50 doi: 10.1016/j.ffa.2021.101913 – ident: ref36 doi: 10.1109/TIT.2019.2933832 – ident: ref37 doi: 10.6028/nist.fips.185 – ident: ref3 doi: 10.1016/S0019-9958(67)91016-9 – ident: ref16 doi: 10.1109/TIT.2016.2526022 – ident: ref5 doi: 10.1007/978-3-540-39887-5_5 – ident: ref44 doi: 10.1007/s12095-018-0283-8 – ident: ref39 doi: 10.1007/s12095-019-00386-2 – ident: ref38 doi: 10.1109/TIT.2021.3089145 – volume: 65 year: 1993 ident: ref30 publication-title: Dickson Polynomials, Pitman Monographs in Pure and Applied Mathematics – ident: ref11 doi: 10.1109/TIT.2020.2981524 – ident: ref23 doi: 10.1016/j.ffa.2014.10.001 – ident: ref2 doi: 10.1007/978-3-030-17653-2_11 – ident: ref6 doi: 10.1007/978-3-642-34961-4_14 – ident: ref19 doi: 10.1109/TIT.2017.2777961 – ident: ref33 doi: 10.1007/978-3-319-32595-8 – ident: ref4 doi: 10.1007/BF00630563 – ident: ref14 doi: 10.1007/s10623-015-0145-8 – ident: ref42 doi: 10.3934/amc.2017022 – ident: ref48 doi: 10.1016/j.ffa.2017.06.004 – ident: ref15 doi: 10.1016/j.ffa.2009.07.001 – ident: ref27 doi: 10.1007/978-1-4615-2694-0_23 – volume-title: Finite Fields Encyclopedia of Mathematics and Its Applications year: 1997 ident: ref31 – ident: ref21 doi: 10.1007/s10623-018-0482-5 – ident: ref32 doi: 10.1007/3-540-48285-7_33 – ident: ref9 doi: 10.1090/conm/518/10194 – ident: ref26 doi: 10.1016/j.jcta.2010.08.005 – ident: ref12 doi: 10.1017/9781108606806 – ident: ref18 doi: 10.1016/j.disc.2011.03.023 – ident: ref29 doi: 10.1109/TIT.2021.3057094 – ident: ref1 doi: 10.1016/j.ffa.2010.10.002 – ident: ref52 doi: 10.1109/TIT.2019.2919511 – ident: ref10 doi: 10.1007/978-3-319-78375-8_22 – ident: ref7 doi: 10.46586/tosc.v2018.i3.290-310 – ident: ref8 doi: 10.1007/s10623-015-0143-x |
| SSID | ssj0014512 |
| Score | 2.4614086 |
| Snippet | Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1315 |
| SubjectTerms | Algorithms Boolean functions Ciphers Codes Coding Coding theory Combinatorial analysis Cryptography Dickson polynomial differentially 4-uniform Encryption Fields (mathematics) Fixed points (mathematics) graph indicator involution Mathematical analysis Mathematics permutation polynomial Permutations Polynomials Resists resultant S-box Systematics two-to-one mapping Vectorial function |
| Title | More About the Corpus of Involutions From Two-to-One Mappings and Related Cryptographic S-Boxes |
| URI | https://ieeexplore.ieee.org/document/9906953 https://www.proquest.com/docview/2767318892 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc4UNqCWGgrH7gg4e6u7djJEaqu2sMWJLZSb5FjT1ClklSbbIF_z9j5EBUIqZcoiWwl0vN45nnsNwDv9KzwaEzCpReOK58obgvhiapYbeeWrkUai02Yy8v0-jr7sgUfxrMwiBg3n-FJuI25fF-7TVgqm9LMqbNEbsO2Mbo7qzVmDFQy75TB52TAxDmGlOQsm64uVkQEhTiRItZVf-CCYk2Vvybi6F0Wu4_7rxfwvI8i2ccO9j3YwmofdocKDaw32H149ofcID0tR43W5gDyJX2GhbRPy-g1C5rGm4bVJbuo7ocByRbr-jtb_ah5W_PPFbKlDYIO3xpmK8_iTjr07HT9667ttK9vHPvKP9U_sXkJV4uz1ek578stcBf8NC9n0mtjXGYpKCmkSrBILQVoqTNFYGVp6R0qVNI6MvNCe4pmvLLk7ZQmXFG-gp2qrvA1MOF0itIXxLUCgRRZqZy1uiylKg2KbALTAYHc9VrkoSTGbR45ySzLCbM8YJb3mE3g_djjrtPh-E_bg4DR2K6HZwKHA8h5b6hNLow2NK2lmXjz715v4WmoMN9t1D6EnXa9wSN44u7bm2Z9HMfgb_2y2J8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD7MKbg9ON0cuzo1D74IZrc3SdP2UYeXXdy9ClbYW0iTdAxcO257N_3vPUl_oCiCL6UtCS18OTnny0m-A_BaRoV1SRJTbpmhwsaC6oJZpCpa6pnGa5GGYhPJapVeXGSft-DteBbGORc2n7kTfxty-bY2G79UNsWZU2Yxvwf3YyFY1J3WGnMGIp512uAzNGFkHUNSMsqm-SJHKsjYCWehsvpvTihUVfljKg7-Zb73f3_2GB71cSR51wH_BLZctQ97Q40G0pvsPuz-IjiIT8tRpbU5ALXEzxCf-GkJviZe1XjTkLoki-p2GJJkvq6vSX5X07amnypHltpLOlw2RFeWhL10zpLT9Y-btlO_vjLkC31ff3fNU_g6_5CfntG-4AI13lPTMuJWJonJNIYlBRexK1KNIVpqksLzsrS0xgknuDZo6IW0GM9YodHfCYnIOn4I21VduSMgzMjUcVsg2_IUkmWlMFrLsuSiTBzLJjAdEFCmVyP3RTG-qcBKokwhZspjpnrMJvBm7HHTKXH8o-2Bx2hs18MzgeMBZNWbaqNYIhOc2NKMPft7r1fw8Cxfnqvzxerjc9jx9ea7bdvHsN2uN-4FPDC37VWzfhnG409q1Nvm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+About+the+Corpus+of+Involutions+From+Two-to-One+Mappings+and+Related+Cryptographic+S-Boxes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Mesnager%2C+Sihem&rft.au=Yuan%2C+Mu&rft.au=Zheng%2C+Dabin&rft.date=2023-02-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=2&rft.spage=1315&rft.epage=1327&rft_id=info:doi/10.1109%2FTIT.2022.3211329&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2022_3211329 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |