More About the Corpus of Involutions From Two-to-One Mappings and Related Cryptographic S-Boxes

Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 69; H. 2; S. 1315 - 1327
Hauptverfasser: Mesnager, Sihem, Yuan, Mu, Zheng, Dabin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been used frequently for block cipher designs and coding theory. In this article, we further investigate this corpus using new approaches, specifically from two-to-one (2-to-1) functions and (in some cases) using the graph indicators introduced by Carlet in 2020. In our constructions of involutions over the finite field <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{2^{n}} </tex-math></inline-formula> of order <inline-formula> <tex-math notation="LaTeX">2^{n} </tex-math></inline-formula>, we shall intensively use 2-to-1 mappings over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{2^{n}} </tex-math></inline-formula>. More specifically, we present a new constructive method to design involutions from 2-to-1 mappings through their graph indicator and derive new involutions from known 2-to-1 mappings. Besides, we also propose several new classes of 2-to-1 mappings, including 2-to-1 hexanomials, 2-to-1 mappings of the form <inline-formula> <tex-math notation="LaTeX">(x^{2^{k}}+x+\delta)^{s_{1}}+(x^{2^{k}}+x+\delta)^{s_{2}}+cx </tex-math></inline-formula>, and 2-to-1 mappings from linear 2-to-1 mappings. We also exhibit the corresponding involutions of the constructed 2-to-1 mappings. Furthermore, an infinite family of involutions with differential uniformity at most 4 (EA-inequivalent to the inverse function) is obtained. Finally, we highlight that all our derived families of involutions have no fixed point, further accentuating their cryptographic interest.
AbstractList Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been used frequently for block cipher designs and coding theory. In this article, we further investigate this corpus using new approaches, specifically from two-to-one (2-to-1) functions and (in some cases) using the graph indicators introduced by Carlet in 2020. In our constructions of involutions over the finite field [Formula Omitted] of order [Formula Omitted], we shall intensively use 2-to-1 mappings over [Formula Omitted]. More specifically, we present a new constructive method to design involutions from 2-to-1 mappings through their graph indicator and derive new involutions from known 2-to-1 mappings. Besides, we also propose several new classes of 2-to-1 mappings, including 2-to-1 hexanomials, 2-to-1 mappings of the form [Formula Omitted], and 2-to-1 mappings from linear 2-to-1 mappings. We also exhibit the corresponding involutions of the constructed 2-to-1 mappings. Furthermore, an infinite family of involutions with differential uniformity at most 4 (EA-inequivalent to the inverse function) is obtained. Finally, we highlight that all our derived families of involutions have no fixed point, further accentuating their cryptographic interest.
Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily of permutations is the class of involutions (those permutations are equal to their compositional inverse). Elements of this class have been used frequently for block cipher designs and coding theory. In this article, we further investigate this corpus using new approaches, specifically from two-to-one (2-to-1) functions and (in some cases) using the graph indicators introduced by Carlet in 2020. In our constructions of involutions over the finite field <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{2^{n}} </tex-math></inline-formula> of order <inline-formula> <tex-math notation="LaTeX">2^{n} </tex-math></inline-formula>, we shall intensively use 2-to-1 mappings over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{2^{n}} </tex-math></inline-formula>. More specifically, we present a new constructive method to design involutions from 2-to-1 mappings through their graph indicator and derive new involutions from known 2-to-1 mappings. Besides, we also propose several new classes of 2-to-1 mappings, including 2-to-1 hexanomials, 2-to-1 mappings of the form <inline-formula> <tex-math notation="LaTeX">(x^{2^{k}}+x+\delta)^{s_{1}}+(x^{2^{k}}+x+\delta)^{s_{2}}+cx </tex-math></inline-formula>, and 2-to-1 mappings from linear 2-to-1 mappings. We also exhibit the corresponding involutions of the constructed 2-to-1 mappings. Furthermore, an infinite family of involutions with differential uniformity at most 4 (EA-inequivalent to the inverse function) is obtained. Finally, we highlight that all our derived families of involutions have no fixed point, further accentuating their cryptographic interest.
Author Zheng, Dabin
Mesnager, Sihem
Yuan, Mu
Author_xml – sequence: 1
  givenname: Sihem
  orcidid: 0000-0003-4008-2031
  surname: Mesnager
  fullname: Mesnager, Sihem
  email: smesnager@univ-paris8.fr
  organization: Department of Mathematics, University of Paris VIII, Saint-Denis, France
– sequence: 2
  givenname: Mu
  orcidid: 0000-0002-1300-8170
  surname: Yuan
  fullname: Yuan, Mu
  email: yuanmu847566@outlook.com
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
– sequence: 3
  givenname: Dabin
  orcidid: 0000-0003-3947-1590
  surname: Zheng
  fullname: Zheng, Dabin
  email: dzheng@hubu.edu.cn
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
BookMark eNp9kEtLw0AURgepYH3sBTcDrlPnnZllLT4KFUHrepgkN5rSZuLMxMe_N6XFhQtXlwvf-S73HKNR61tA6JySCaXEXC3nywkjjE04o5Qzc4DGVMo8M0qKERoTQnVmhNBH6DjG1bAKSdkY2QcfAE8L3yec3gDPfOj6iH2N5-2HX_ep8W3Et8Fv8PLTZ8lnjy3gB9d1TfsasWsr_ARrl6DCs_DdJf8aXPfWlPg5u_ZfEE_RYe3WEc728wS93N4sZ_fZ4vFuPpsuspIJprKa8ErleWmc1KLgQkKhneZSl3mhjdG6rkoQILgrZa4LVRElKuFUroVSjgI_QZe73i749x5isivfh3Y4aVmuck61NmxIqV2qDD7GALUtm-S2P6bgmrWlxG5l2kGm3cq0e5kDSP6AXWg2Lnz_h1zskAYAfuPGEGUk5z9r9ICM
CODEN IETTAW
CitedBy_id crossref_primary_10_1007_s10623_024_01474_y
crossref_primary_10_24330_ieja_1611885
crossref_primary_10_1016_j_ffa_2025_102678
crossref_primary_10_1007_s10623_024_01499_3
crossref_primary_10_1007_s10623_024_01463_1
crossref_primary_10_1016_j_jcta_2025_106046
crossref_primary_10_1016_j_ffa_2025_102573
Cites_doi 10.1007/3-540-60590-8_16
10.1016/j.ffa.2020.101797
10.1007/3-540-48285-7_6
10.1109/ISIT.2016.7541271
10.1016/j.ffa.2016.02.005
10.1007/s12095-015-0144-7
10.1142/9789814719261_0003
10.1007/s10623-015-0151-x
10.1109/TIT.2021.3068743
10.1007/978-0-387-35651-8
10.1007/s00145-013-9175-4
10.1007/s10623-011-9564-3
10.1016/j.jcta.2011.06.005
10.1016/j.ffa.2015.07.006
10.1007/3-540-48519-8_12
10.1016/j.ffa.2017.01.006
10.1016/j.ffa.2021.101913
10.1109/TIT.2019.2933832
10.6028/nist.fips.185
10.1016/S0019-9958(67)91016-9
10.1109/TIT.2016.2526022
10.1007/978-3-540-39887-5_5
10.1007/s12095-018-0283-8
10.1007/s12095-019-00386-2
10.1109/TIT.2021.3089145
10.1109/TIT.2020.2981524
10.1016/j.ffa.2014.10.001
10.1007/978-3-030-17653-2_11
10.1007/978-3-642-34961-4_14
10.1109/TIT.2017.2777961
10.1007/978-3-319-32595-8
10.1007/BF00630563
10.1007/s10623-015-0145-8
10.3934/amc.2017022
10.1016/j.ffa.2017.06.004
10.1016/j.ffa.2009.07.001
10.1007/978-1-4615-2694-0_23
10.1007/s10623-018-0482-5
10.1007/3-540-48285-7_33
10.1090/conm/518/10194
10.1016/j.jcta.2010.08.005
10.1017/9781108606806
10.1016/j.disc.2011.03.023
10.1109/TIT.2021.3057094
10.1016/j.ffa.2010.10.002
10.1109/TIT.2019.2919511
10.1007/978-3-319-78375-8_22
10.46586/tosc.v2018.i3.290-310
10.1007/s10623-015-0143-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3211329
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1557-9654
EndPage 1327
ExternalDocumentID 10_1109_TIT_2022_3211329
9906953
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: French Agence Nationale de la Recherche through Agence Nationale de la Recherche (ANR), algeBrA, pRoofs, pRotocols, Algorithms, Curves, and surfaces for coDes and their Applications (BARRACUDA)
  grantid: ANR-21-CE39-0009
  funderid: 10.13039/501100001665
– fundername: National Natural Science Foundation of China
  grantid: 11971156; 62272148
  funderid: 10.13039/501100001809
– fundername: China’s National Key Research and Development Program
  grantid: 2021YFA1000600
  funderid: 10.13039/501100012166
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2426-f03d677c9a584b345eb8a8358c7b89988fdce4e43ac578b6d064d4a678466a1e3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Nov 09 08:12:57 EST 2025
Sat Nov 29 03:31:49 EST 2025
Tue Nov 18 22:35:26 EST 2025
Wed Aug 27 02:55:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2426-f03d677c9a584b345eb8a8358c7b89988fdce4e43ac578b6d064d4a678466a1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3947-1590
0000-0002-1300-8170
0000-0003-4008-2031
PQID 2767318892
PQPubID 36024
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIT_2022_3211329
crossref_primary_10_1109_TIT_2022_3211329
proquest_journals_2767318892
ieee_primary_9906953
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
Hyunwoo (ref24) 2018; 28
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref33
ref32
ref2
ref1
Cox (ref20) 2007
ref39
ref38
Youssef (ref49)
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
Lidl (ref30) 1993; 65
Lidl (ref31) 1997
References_xml – ident: ref25
  doi: 10.1007/3-540-60590-8_16
– ident: ref22
  doi: 10.1016/j.ffa.2020.101797
– ident: ref40
  doi: 10.1007/3-540-48285-7_6
– ident: ref35
  doi: 10.1109/ISIT.2016.7541271
– volume: 28
  start-page: 1379
  issue: 6
  year: 2018
  ident: ref24
  article-title: Improved differential-linear cryptanalysis using DLCT
  publication-title: J. Korea Inst. Inf. Secur. Cryptol.
– ident: ref51
  doi: 10.1016/j.ffa.2016.02.005
– start-page: 132
  volume-title: Proc. Workshop Sel. Areas Cryptography
  ident: ref49
  article-title: A new class of substitution-permutation networks
– ident: ref34
  doi: 10.1007/s12095-015-0144-7
– ident: ref17
  doi: 10.1142/9789814719261_0003
– ident: ref41
  doi: 10.1007/s10623-015-0151-x
– ident: ref28
  doi: 10.1109/TIT.2021.3068743
– volume-title: Ideals, Varieties, and Algorithms
  year: 2007
  ident: ref20
  doi: 10.1007/978-0-387-35651-8
– ident: ref43
  doi: 10.1007/s00145-013-9175-4
– ident: ref47
  doi: 10.1007/s10623-011-9564-3
– ident: ref13
  doi: 10.1016/j.jcta.2011.06.005
– ident: ref53
  doi: 10.1016/j.ffa.2015.07.006
– ident: ref45
  doi: 10.1007/3-540-48519-8_12
– ident: ref46
  doi: 10.1016/j.ffa.2017.01.006
– ident: ref50
  doi: 10.1016/j.ffa.2021.101913
– ident: ref36
  doi: 10.1109/TIT.2019.2933832
– ident: ref37
  doi: 10.6028/nist.fips.185
– ident: ref3
  doi: 10.1016/S0019-9958(67)91016-9
– ident: ref16
  doi: 10.1109/TIT.2016.2526022
– ident: ref5
  doi: 10.1007/978-3-540-39887-5_5
– ident: ref44
  doi: 10.1007/s12095-018-0283-8
– ident: ref39
  doi: 10.1007/s12095-019-00386-2
– ident: ref38
  doi: 10.1109/TIT.2021.3089145
– volume: 65
  year: 1993
  ident: ref30
  publication-title: Dickson Polynomials, Pitman Monographs in Pure and Applied Mathematics
– ident: ref11
  doi: 10.1109/TIT.2020.2981524
– ident: ref23
  doi: 10.1016/j.ffa.2014.10.001
– ident: ref2
  doi: 10.1007/978-3-030-17653-2_11
– ident: ref6
  doi: 10.1007/978-3-642-34961-4_14
– ident: ref19
  doi: 10.1109/TIT.2017.2777961
– ident: ref33
  doi: 10.1007/978-3-319-32595-8
– ident: ref4
  doi: 10.1007/BF00630563
– ident: ref14
  doi: 10.1007/s10623-015-0145-8
– ident: ref42
  doi: 10.3934/amc.2017022
– ident: ref48
  doi: 10.1016/j.ffa.2017.06.004
– ident: ref15
  doi: 10.1016/j.ffa.2009.07.001
– ident: ref27
  doi: 10.1007/978-1-4615-2694-0_23
– volume-title: Finite Fields Encyclopedia of Mathematics and Its Applications
  year: 1997
  ident: ref31
– ident: ref21
  doi: 10.1007/s10623-018-0482-5
– ident: ref32
  doi: 10.1007/3-540-48285-7_33
– ident: ref9
  doi: 10.1090/conm/518/10194
– ident: ref26
  doi: 10.1016/j.jcta.2010.08.005
– ident: ref12
  doi: 10.1017/9781108606806
– ident: ref18
  doi: 10.1016/j.disc.2011.03.023
– ident: ref29
  doi: 10.1109/TIT.2021.3057094
– ident: ref1
  doi: 10.1016/j.ffa.2010.10.002
– ident: ref52
  doi: 10.1109/TIT.2019.2919511
– ident: ref10
  doi: 10.1007/978-3-319-78375-8_22
– ident: ref7
  doi: 10.46586/tosc.v2018.i3.290-310
– ident: ref8
  doi: 10.1007/s10623-015-0143-x
SSID ssj0014512
Score 2.4614086
Snippet Permutation polynomials have been extensively studied for their applications in cryptography, coding theory, combinatorial design, etc. An important subfamily...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1315
SubjectTerms Algorithms
Boolean functions
Ciphers
Codes
Coding
Coding theory
Combinatorial analysis
Cryptography
Dickson polynomial
differentially 4-uniform
Encryption
Fields (mathematics)
Fixed points (mathematics)
graph indicator
involution
Mathematical analysis
Mathematics
permutation polynomial
Permutations
Polynomials
Resists
resultant
S-box
Systematics
two-to-one mapping
Vectorial function
Title More About the Corpus of Involutions From Two-to-One Mappings and Related Cryptographic S-Boxes
URI https://ieeexplore.ieee.org/document/9906953
https://www.proquest.com/docview/2767318892
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc4UNqCWGgrH7gg4e6u7djJEaqu2sMWJLZSb5FjT1ClklSbbIF_z9j5EBUIqZcoiWwl0vN45nnsNwDv9KzwaEzCpReOK58obgvhiapYbeeWrkUai02Yy8v0-jr7sgUfxrMwiBg3n-FJuI25fF-7TVgqm9LMqbNEbsO2Mbo7qzVmDFQy75TB52TAxDmGlOQsm64uVkQEhTiRItZVf-CCYk2Vvybi6F0Wu4_7rxfwvI8i2ccO9j3YwmofdocKDaw32H149ofcID0tR43W5gDyJX2GhbRPy-g1C5rGm4bVJbuo7ocByRbr-jtb_ah5W_PPFbKlDYIO3xpmK8_iTjr07HT9667ttK9vHPvKP9U_sXkJV4uz1ek578stcBf8NC9n0mtjXGYpKCmkSrBILQVoqTNFYGVp6R0qVNI6MvNCe4pmvLLk7ZQmXFG-gp2qrvA1MOF0itIXxLUCgRRZqZy1uiylKg2KbALTAYHc9VrkoSTGbR45ySzLCbM8YJb3mE3g_djjrtPh-E_bg4DR2K6HZwKHA8h5b6hNLow2NK2lmXjz715v4WmoMN9t1D6EnXa9wSN44u7bm2Z9HMfgb_2y2J8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD7MKbg9ON0cuzo1D74IZrc3SdP2UYeXXdy9ClbYW0iTdAxcO257N_3vPUl_oCiCL6UtCS18OTnny0m-A_BaRoV1SRJTbpmhwsaC6oJZpCpa6pnGa5GGYhPJapVeXGSft-DteBbGORc2n7kTfxty-bY2G79UNsWZU2Yxvwf3YyFY1J3WGnMGIp512uAzNGFkHUNSMsqm-SJHKsjYCWehsvpvTihUVfljKg7-Zb73f3_2GB71cSR51wH_BLZctQ97Q40G0pvsPuz-IjiIT8tRpbU5ALXEzxCf-GkJviZe1XjTkLoki-p2GJJkvq6vSX5X07amnypHltpLOlw2RFeWhL10zpLT9Y-btlO_vjLkC31ff3fNU_g6_5CfntG-4AI13lPTMuJWJonJNIYlBRexK1KNIVpqksLzsrS0xgknuDZo6IW0GM9YodHfCYnIOn4I21VduSMgzMjUcVsg2_IUkmWlMFrLsuSiTBzLJjAdEFCmVyP3RTG-qcBKokwhZspjpnrMJvBm7HHTKXH8o-2Bx2hs18MzgeMBZNWbaqNYIhOc2NKMPft7r1fw8Cxfnqvzxerjc9jx9ea7bdvHsN2uN-4FPDC37VWzfhnG409q1Nvm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+About+the+Corpus+of+Involutions+From+Two-to-One+Mappings+and+Related+Cryptographic+S-Boxes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Mesnager%2C+Sihem&rft.au=Yuan%2C+Mu&rft.au=Zheng%2C+Dabin&rft.date=2023-02-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=2&rft.spage=1315&rft.epage=1327&rft_id=info:doi/10.1109%2FTIT.2022.3211329&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2022_3211329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon