Automated multi-stream spiral-wound heat exchanger design and optimization

•A novel optimization framework is proposed for automated multi-stream SWHE design.•Simultaneous optimization of geometries and multi-stream allocation is achieved.•New models are developed for SWHE modelling and validated using Aspen EDR.•SWHEs can achieve 31.8 %–40.7 % reductions in exchanger volu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering Jg. 284; S. 128914
Hauptverfasser: Yang, Zekun, Pan, Ting, Zhang, Shuhao, Chang, ChengLin, Zhang, Nan, Smith, Robin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 30.01.2026
Schlagworte:
ISSN:1359-4311
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel optimization framework is proposed for automated multi-stream SWHE design.•Simultaneous optimization of geometries and multi-stream allocation is achieved.•New models are developed for SWHE modelling and validated using Aspen EDR.•SWHEs can achieve 31.8 %–40.7 % reductions in exchanger volume compared to STHEs.•Key design limitations of SWHEs are identified to support exchanger integration. Spiral-wound heat exchangers (SWHEs) offer high heat transfer efficiency and compact design advantages, making them well-suited for services in process industries. Accelerating the application of SWHEs demands design methodologies that avoid extensive user manipulations and complex solution procedures. This study develops a novel incremental-based heat transfer framework for the automated design of single-phase SWHEs, which simultaneously optimizes multi-stream allocation across activated tube layers and exchanger geometries. At each increment, energy balances are enforced for all streams using local heat transfer coefficients and areas. On the tube-side, flow distribution is optimized by permitting variable split heat capacities and mass flow rates within tube layers while ensuring pressure balance for each stream at the bundle outlet. New correlations for shell-side flow regimes are introduced into the proposed sizing model to link discrete tube-layer selections with their corresponding cross-sectional areas throughout the optimization process. The capability of the proposed framework is demonstrated through four case studies, including model validation, two-stream and multi-stream SWHE design, and application to an industrial-scale heat exchanger network (HEN). Rigorous Aspen EDR-CoilWound simulations validate the proposed model and design results, with the HEN case exhibiting only a 2.95 % deviation from the target duty. In Case Study 2, SWHE results in a 24.29 % reduction in required heat transfer area. Case Studies 3 and 4 demonstrate that SWHE configurations can achieve 31.8 %–40.7 % reductions in exchanger volume, attributable to their superior compactness relative to conventional shell-and-tube heat exchangers (STHEs). Benchmarking against detailed STHE designs further clarifies optimal deployment strategies and highlights residual limitations of SWHE technology.
AbstractList •A novel optimization framework is proposed for automated multi-stream SWHE design.•Simultaneous optimization of geometries and multi-stream allocation is achieved.•New models are developed for SWHE modelling and validated using Aspen EDR.•SWHEs can achieve 31.8 %–40.7 % reductions in exchanger volume compared to STHEs.•Key design limitations of SWHEs are identified to support exchanger integration. Spiral-wound heat exchangers (SWHEs) offer high heat transfer efficiency and compact design advantages, making them well-suited for services in process industries. Accelerating the application of SWHEs demands design methodologies that avoid extensive user manipulations and complex solution procedures. This study develops a novel incremental-based heat transfer framework for the automated design of single-phase SWHEs, which simultaneously optimizes multi-stream allocation across activated tube layers and exchanger geometries. At each increment, energy balances are enforced for all streams using local heat transfer coefficients and areas. On the tube-side, flow distribution is optimized by permitting variable split heat capacities and mass flow rates within tube layers while ensuring pressure balance for each stream at the bundle outlet. New correlations for shell-side flow regimes are introduced into the proposed sizing model to link discrete tube-layer selections with their corresponding cross-sectional areas throughout the optimization process. The capability of the proposed framework is demonstrated through four case studies, including model validation, two-stream and multi-stream SWHE design, and application to an industrial-scale heat exchanger network (HEN). Rigorous Aspen EDR-CoilWound simulations validate the proposed model and design results, with the HEN case exhibiting only a 2.95 % deviation from the target duty. In Case Study 2, SWHE results in a 24.29 % reduction in required heat transfer area. Case Studies 3 and 4 demonstrate that SWHE configurations can achieve 31.8 %–40.7 % reductions in exchanger volume, attributable to their superior compactness relative to conventional shell-and-tube heat exchangers (STHEs). Benchmarking against detailed STHE designs further clarifies optimal deployment strategies and highlights residual limitations of SWHE technology.
ArticleNumber 128914
Author Chang, ChengLin
Smith, Robin
Yang, Zekun
Pan, Ting
Zhang, Nan
Zhang, Shuhao
Author_xml – sequence: 1
  givenname: Zekun
  orcidid: 0000-0002-9537-3939
  surname: Yang
  fullname: Yang, Zekun
  organization: Centre for Process Integration, Department of Chemical Engineering, The University of Manchester, Manchester, UK
– sequence: 2
  givenname: Ting
  orcidid: 0000-0001-5377-2117
  surname: Pan
  fullname: Pan, Ting
  organization: Széchenyi István University, Egyetem Square 1., Győr H-9026, Hungary
– sequence: 3
  givenname: Shuhao
  surname: Zhang
  fullname: Zhang, Shuhao
  organization: Institute of Clean Energy, School of Civil Engineering, Chongqing University, Chongqing 400050, China
– sequence: 4
  givenname: ChengLin
  surname: Chang
  fullname: Chang, ChengLin
  organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 5
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  email: nan.zhang@manchester.ac.uk
  organization: Centre for Process Integration, Department of Chemical Engineering, The University of Manchester, Manchester, UK
– sequence: 6
  givenname: Robin
  surname: Smith
  fullname: Smith, Robin
  organization: Centre for Process Integration, Department of Chemical Engineering, The University of Manchester, Manchester, UK
BookMark eNqNkDtPwzAUhT0UibbwHzKwJviVRyWWqqI8VIkFZuvWvmldJXZku7x-PanKwsZ0hqPz6eibkYnzDgm5YbRglFW3hwKGoUt7DD106HYFp7wsGG8WTE7IlIlykUvB2CWZxXigdGxqOSXPy2PyPSQ0WX_sks1jCgh9FgcboMs__NGZbI-QMvzUe3A7DJnBaHcug7HxQ7K9_YZkvbsiFy10Ea9_c07e1vevq8d88_LwtFpucs0ll3mJsmlAaN1WCzS0loJLXVG6hbZtDdaArASOQLngZWUoaNxWpuawrbUUdSPm5O7M1cHHGLBVQ7A9hC_FqDq5UAf114U6uVBnF-N8fZ7j-PHdYlBRW3QajQ2okzLe_g_0Az2sdtA
Cites_doi 10.1016/j.applthermaleng.2019.114381
10.1016/j.energy.2024.131075
10.1016/j.applthermaleng.2018.01.128
10.1016/j.applthermaleng.2022.118956
10.1007/s00521-016-2683-z
10.1016/j.applthermaleng.2019.114157
10.1016/j.energy.2025.136011
10.1002/aic.15705
10.1016/j.compchemeng.2009.11.008
10.1016/j.compchemeng.2020.106821
10.1016/0017-9310(63)90100-5
10.1016/j.ijheatmasstransfer.2012.03.074
10.1016/j.csite.2024.104872
10.1016/j.applthermaleng.2014.02.053
10.1016/j.applthermaleng.2019.114731
10.1016/j.applthermaleng.2016.09.032
10.1016/j.energy.2023.127253
10.1002/aic.14965
10.1016/j.applthermaleng.2017.03.100
10.1080/01457632.2015.963386
10.1016/j.ijthermalsci.2020.106618
10.1016/j.ijrefrig.2020.08.010
10.1016/0098-1354(90)85010-8
10.1007/s10973-023-12067-7
10.1016/S0017-9310(83)80154-9
10.1016/j.ijthermalsci.2019.01.038
10.1016/0890-4332(89)90008-2
10.1016/j.proeng.2015.12.222
10.1108/HFF-01-2020-0025
10.1016/j.icheatmasstransfer.2018.03.027
10.1002/aic.14766
10.1002/aic.15714
10.1016/j.applthermaleng.2019.114674
10.1016/j.applthermaleng.2015.04.084
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2025.128914
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2025_128914
S1359431125035069
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
~HD
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
M41
R2-
ID FETCH-LOGICAL-c2424-5e488a3ccf69ed074324c600bafffde7ae15a2ea023256d0aceb6d72ab7c43783
ISSN 1359-4311
IngestDate Thu Nov 27 00:57:42 EST 2025
Sat Nov 29 17:13:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spiral-wound heat exchangers
Optimization
Heat exchanger design
Mathematical programming
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2424-5e488a3ccf69ed074324c600bafffde7ae15a2ea023256d0aceb6d72ab7c43783
ORCID 0000-0002-9537-3939
0000-0001-5377-2117
OpenAccessLink https://dx.doi.org/10.1016/j.applthermaleng.2025.128914
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2025_128914
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_128914
PublicationCentury 2000
PublicationDate 2026-01-30
PublicationDateYYYYMMDD 2026-01-30
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-30
  day: 30
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sethumadhavan, Raja Rao (b0215) 1983; 26
Wu, Liu, Wang (b0120) 2018; 134
Saffari, Moosavi, Khamda (b0135) 2012; 4
Prajapati, Raja, Patel, Jouhara (b0185) 2024; 56
Marzouk, Abou Al-Sood, El-Said, El-Fakharany, Younes (b0080) 2023; 148
Yang, Ma, Zhang, Smith (b0170) 2020; 137
Prajapati, Patel, Raja, Jouhara (b0190) 2024; 54
Abolmaali, Afshin (b0035) 2019; 139
Dhavle, Kulkarni, Shastri, Kale (b0165) 2018; 30
Yang, Zhu, Ji, Chang, Zhang, Smith (b0175) 2024; 296
Tsay, Pattison, Baldea (b0100) 2017; 63
Prasad, Das, Prabhakar (b0015) 1989; 9
Prajapati, Patel, Raja, Jouhara (b0195) 2023; 274
Pattison, Baldea (b0090) 2015; 61
Wang, Jian, Xiao, Wen, Zhang (b0140) 2017; 119
Lu, Zhang, Chen, Wang, Zeng (b0025) 2015; 89
Sharqawy, Saad, Ahmed (b0055) 2019; 161
Yee, Grossmann (b0200) 1990; 14
Hosseinian, Mostafazade Abolmaali, Afshin (b0130) 2021; 31
Smith (b0220) 2016
Yang, Pan, Zhang, Smith (b0205) 2025; 324
de Vasconcelos Segundo, Amoroso, Mariani, dos Santos Coelho (b0160) 2017; 111
Jian, Wang, Wen (b0070) 2021; 159
He, Chen, Yu, Yan, Zhang, Song (b0045) 2022; 29
Wu, Zhao, Sun, Liu, Wang (b0125) 2020; 166
Wang, Jian, Xiao, Wen, Zhang, Tu (b0145) 2018; 95
Abolmaali, Afshin (b0040) 2020; 120
Sales, Queiroz, Nahes, Bagajewicz, Costa (b0180) 2021; 25
Wu, Tian, Sun, Zhao, Wang, Peng, Liao (b0060) 2019; 163
Zeng, Zhang, Li, Niu, Ma, Wang (b0030) 2015; 36
Chen, Chen, Jiang, Chen, Zhang (b0005) 2015; 130
Jian, Wang, Sun, Wen, Tu (b0065) 2020; 166
Abolmaali, Afshin (b0115) 2023; 218
Yang, Chang, Ding (b0155) 2024; 61
Yang, Pan, Chang, Zhang, Zhang, Smith (b0210) 2025; 136300
Watson, Khan, Barton (b0095) 2015; 61
Seban, McLaughlin (b0010) 1963; 6
Jayakumar, Mahajani, Mandal, Iyer, Vijayan (b0075) 2010; 34
Kazi, Biegler, Gandhi (b0110) 2022
Musthafa, Ghosh (b0150) 2022; 215
Lu, Du, Zeng, Zhang, Wang (b0020) 2014; 70
Onal, Kirkar, Akgul, Celen, Acikgoz, Dalkilic, Kazi, Wongwises (b0085) 2022; 27
Nagesh Rao, Karimi (b0105) 2017; 63
Genić, Jaćimović, Jarić, Budimir, Dobrnjac (b0050) 2012; 55
Lu (10.1016/j.applthermaleng.2025.128914_b0025) 2015; 89
Zeng (10.1016/j.applthermaleng.2025.128914_b0030) 2015; 36
Wang (10.1016/j.applthermaleng.2025.128914_b0145) 2018; 95
Jian (10.1016/j.applthermaleng.2025.128914_b0065) 2020; 166
Wang (10.1016/j.applthermaleng.2025.128914_b0140) 2017; 119
Prasad (10.1016/j.applthermaleng.2025.128914_b0015) 1989; 9
Jayakumar (10.1016/j.applthermaleng.2025.128914_b0075) 2010; 34
Prajapati (10.1016/j.applthermaleng.2025.128914_b0195) 2023; 274
Yang (10.1016/j.applthermaleng.2025.128914_b0155) 2024; 61
Prajapati (10.1016/j.applthermaleng.2025.128914_b0185) 2024; 56
Nagesh Rao (10.1016/j.applthermaleng.2025.128914_b0105) 2017; 63
Yang (10.1016/j.applthermaleng.2025.128914_b0210) 2025; 136300
Genić (10.1016/j.applthermaleng.2025.128914_b0050) 2012; 55
Tsay (10.1016/j.applthermaleng.2025.128914_b0100) 2017; 63
Yee (10.1016/j.applthermaleng.2025.128914_b0200) 1990; 14
de Vasconcelos Segundo (10.1016/j.applthermaleng.2025.128914_b0160) 2017; 111
Yang (10.1016/j.applthermaleng.2025.128914_b0175) 2024; 296
Chen (10.1016/j.applthermaleng.2025.128914_b0005) 2015; 130
Lu (10.1016/j.applthermaleng.2025.128914_b0020) 2014; 70
Watson (10.1016/j.applthermaleng.2025.128914_b0095) 2015; 61
Seban (10.1016/j.applthermaleng.2025.128914_b0010) 1963; 6
Abolmaali (10.1016/j.applthermaleng.2025.128914_b0115) 2023; 218
Onal (10.1016/j.applthermaleng.2025.128914_b0085) 2022; 27
Wu (10.1016/j.applthermaleng.2025.128914_b0060) 2019; 163
Musthafa (10.1016/j.applthermaleng.2025.128914_b0150) 2022; 215
Dhavle (10.1016/j.applthermaleng.2025.128914_b0165) 2018; 30
Smith (10.1016/j.applthermaleng.2025.128914_b0220) 2016
Abolmaali (10.1016/j.applthermaleng.2025.128914_b0040) 2020; 120
Marzouk (10.1016/j.applthermaleng.2025.128914_b0080) 2023; 148
Sharqawy (10.1016/j.applthermaleng.2025.128914_b0055) 2019; 161
Yang (10.1016/j.applthermaleng.2025.128914_b0205) 2025; 324
Pattison (10.1016/j.applthermaleng.2025.128914_b0090) 2015; 61
Sethumadhavan (10.1016/j.applthermaleng.2025.128914_b0215) 1983; 26
Wu (10.1016/j.applthermaleng.2025.128914_b0125) 2020; 166
Hosseinian (10.1016/j.applthermaleng.2025.128914_b0130) 2021; 31
Prajapati (10.1016/j.applthermaleng.2025.128914_b0190) 2024; 54
Saffari (10.1016/j.applthermaleng.2025.128914_b0135) 2012; 4
Abolmaali (10.1016/j.applthermaleng.2025.128914_b0035) 2019; 139
Yang (10.1016/j.applthermaleng.2025.128914_b0170) 2020; 137
Kazi (10.1016/j.applthermaleng.2025.128914_b0110) 2022
He (10.1016/j.applthermaleng.2025.128914_b0045) 2022; 29
Jian (10.1016/j.applthermaleng.2025.128914_b0070) 2021; 159
Sales (10.1016/j.applthermaleng.2025.128914_b0180) 2021; 25
Wu (10.1016/j.applthermaleng.2025.128914_b0120) 2018; 134
References_xml – volume: 296
  year: 2024
  ident: b0175
  article-title: Global optimization for the design of shell and tube horizontal thermosyphon reboiler
  publication-title: Energy
– volume: 166
  year: 2020
  ident: b0125
  article-title: Design method and software development for the spiral-wound heat exchanger with bilateral phase change
  publication-title: Appl. Therm. Eng.
– volume: 6
  start-page: 387
  year: 1963
  end-page: 395
  ident: b0010
  article-title: Heat transfer in tube coils with laminar and turbulent flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 36
  start-page: 790
  year: 2015
  end-page: 805
  ident: b0030
  article-title: Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger
  publication-title: Heat Transfer Eng.
– volume: 26
  start-page: 1833
  year: 1983
  end-page: 1845
  ident: b0215
  article-title: Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 9
  start-page: 249
  year: 1989
  end-page: 256
  ident: b0015
  article-title: Pressure drop, heat transfer and performance of a helically coiled tubular exchanger
  publication-title: Heat Recovery Syst. CHP
– volume: 27
  year: 2022
  ident: b0085
  article-title: Heat transfer and pressure drop characteristics of two phase flow in helical coils
  publication-title: Therm. Sci. Eng. Prog.
– volume: 56
  year: 2024
  ident: b0185
  article-title: Energy-economic analysis and optimization of a shell and tube heat exchanger using a multi-objective heat transfer search algorithm
  publication-title: Therm. Sci. Eng. Prog.
– volume: 63
  start-page: 3778
  year: 2017
  end-page: 3789
  ident: b0100
  article-title: Equation‐oriented simulation and optimization of process flowsheets incorporating detailed spiral‐wound multistream heat exchanger models
  publication-title: AIChE J
– volume: 54
  year: 2024
  ident: b0190
  article-title: Energy-exergy-economic-environmental (4E) analysis and multi-objective optimization of a cascade refrigeration system
  publication-title: Therm. Sci. Eng. Prog.
– volume: 119
  start-page: 603
  year: 2017
  end-page: 609
  ident: b0140
  article-title: Optimization investigation on configuration parameters of spiral-wound heat exchanger using genetic aggregation response surface and multi-objective genetic algorithm
  publication-title: Appl. Therm. Eng.
– volume: 120
  start-page: 285
  year: 2020
  end-page: 295
  ident: b0040
  article-title: Numerical study of heat transfer between shell-side fluid and shell wall in the spiral-wound heat exchangers
  publication-title: Int. J. Refrig
– volume: 4
  start-page: 119
  year: 2012
  end-page: 134
  ident: b0135
  article-title: Optimization of heat transfer and pressure drop for a spiral-wound heat exchanger due to the geometry of helical tubes
  publication-title: Sci. Ser. Data Rep
– volume: 159
  year: 2021
  ident: b0070
  article-title: Experimental study on the tube-side thermal-hydraulic performance of spiral wound heat exchangers
  publication-title: Int. J. Therm. Sci.
– volume: 31
  start-page: 471
  year: 2021
  end-page: 496
  ident: b0130
  article-title: An analytical method for spiral-wound heat exchanger: design and cost estimation considering temperature-dependent fluid properties
  publication-title: Internat. J. Numer. Methods Heat Fluid Flow
– volume: 30
  start-page: 111
  year: 2018
  end-page: 125
  ident: b0165
  article-title: Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm
  publication-title: Neural Comput. & Applic.
– volume: 136300
  year: 2025
  ident: b0210
  article-title: Multi-objective-period heat exchanger network synthesis and decarbonization for industrial-scale crude oil distillation system
  publication-title: Energy
– volume: 137
  year: 2020
  ident: b0170
  article-title: Design optimization of shell and tube heat exchangers sizing with heat transfer enhancement
  publication-title: Comput. Chem. Eng.
– volume: 163
  year: 2019
  ident: b0060
  article-title: Numerical simulation and experimental research on the comprehensive performance of the shell side of the spiral wound heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 61
  start-page: 3390
  year: 2015
  end-page: 3403
  ident: b0095
  article-title: Multistream heat exchanger modeling and design
  publication-title: AIChE J
– volume: 25
  year: 2021
  ident: b0180
  article-title: Globally optimal design of kettle vaporizers
  publication-title: Therm. Sci. Eng. Prog.
– volume: 139
  start-page: 105
  year: 2019
  end-page: 117
  ident: b0035
  article-title: Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers
  publication-title: Int. J. Therm. Sci.
– volume: 61
  start-page: 1856
  year: 2015
  end-page: 1866
  ident: b0090
  article-title: Multistream heat exchangers: Equation‐oriented modeling and flowsheet optimization
  publication-title: AIChE J
– start-page: 673
  year: 2022
  end-page: 678
  ident: b0110
  article-title: Equation oriented optimization of multi stream heat exchanger design and operation in natural gas liquefaction process
  publication-title: Computer Aided Chemical Engineering
– volume: 89
  start-page: 1104
  year: 2015
  end-page: 1116
  ident: b0025
  article-title: Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 95
  start-page: 42
  year: 2018
  end-page: 52
  ident: b0145
  article-title: Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 274
  year: 2023
  ident: b0195
  article-title: Multi objective ecological optimization of an irreversible Stirling cryogenic refrigerator cycle
  publication-title: Energy
– volume: 130
  start-page: 286
  year: 2015
  end-page: 297
  ident: b0005
  article-title: Design technology of large-scale spiral wound heat exchanger in refinery industry
  publication-title: Proc. Eng.
– volume: 161
  year: 2019
  ident: b0055
  article-title: Effect of flow configuration on the performance of spiral-wound heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 324
  year: 2025
  ident: b0205
  article-title: Heat exchanger network synthesis with optimal waste heat recovery and multiple hot utilities
  publication-title: Energy
– volume: 34
  start-page: 430
  year: 2010
  end-page: 446
  ident: b0075
  article-title: CFD analysis of single-phase flows inside helically coiled tubes
  publication-title: Comput. Chem. Eng.
– volume: 29
  year: 2022
  ident: b0045
  article-title: Effect of winding angles on flow and heat transfer characteristics in the shell side of spiral wound heat exchangers
  publication-title: Therm. Sci. Eng. Prog.
– volume: 215
  year: 2022
  ident: b0150
  article-title: Spirally wound tubular heat exchanger optimisation using genetic algorithm
  publication-title: Appl. Therm. Eng.
– volume: 111
  start-page: 143
  year: 2017
  end-page: 151
  ident: b0160
  article-title: Economic optimization design for shell-and-tube heat exchangers by a Tsallis differential evolution
  publication-title: Appl. Therm. Eng.
– year: 2016
  ident: b0220
  article-title: Chemical Process Design And Integration
– volume: 61
  year: 2024
  ident: b0155
  article-title: Experimental study on optimizing liquid distribution in spiral wound heat exchangers: Influence of two-phase flow parameters and geometry
  publication-title: Case Stud. Therm. Eng.
– volume: 148
  start-page: 6267
  year: 2023
  end-page: 6282
  ident: b0080
  article-title: Study of heat transfer and pressure drop for novel configurations of helical tube heat exchanger: a numerical and experimental approach
  publication-title: J. Therm. Anal. Calorim.
– volume: 14
  start-page: 1165
  year: 1990
  end-page: 1184
  ident: b0200
  article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis
  publication-title: Comput. Chem. Eng.
– volume: 55
  start-page: 4295
  year: 2012
  end-page: 4300
  ident: b0050
  article-title: Research on the shell-side thermal performances of heat exchangers with helical tube coils
  publication-title: Int. J. Heat Mass Transf.
– volume: 63
  start-page: 3764
  year: 2017
  end-page: 3777
  ident: b0105
  article-title: A superstructure‐based model for multistream heat exchanger design within flow sheet optimization
  publication-title: AIChE J
– volume: 70
  start-page: 1216
  year: 2014
  end-page: 1227
  ident: b0020
  article-title: Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions
  publication-title: Appl. Therm. Eng.
– volume: 134
  start-page: 360
  year: 2018
  end-page: 368
  ident: b0120
  article-title: Process calculation method and optimization of the spiral-wound heat exchanger with bilateral phase change
  publication-title: Appl. Therm. Eng.
– volume: 166
  year: 2020
  ident: b0065
  article-title: Experimental study of the effects of key geometry parameters on shell-side vapor condensation of spiral-wound heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 218
  year: 2023
  ident: b0115
  article-title: A design model for spiral wound heat exchangers which accounts for property variation, longitudinal heat conduction, and heat-in-leak
  publication-title: Appl. Therm. Eng.
– start-page: 673
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.128914_b0110
  article-title: Equation oriented optimization of multi stream heat exchanger design and operation in natural gas liquefaction process
– volume: 163
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.128914_b0060
  article-title: Numerical simulation and experimental research on the comprehensive performance of the shell side of the spiral wound heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114381
– volume: 218
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.128914_b0115
  article-title: A design model for spiral wound heat exchangers which accounts for property variation, longitudinal heat conduction, and heat-in-leak
  publication-title: Appl. Therm. Eng.
– volume: 296
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.128914_b0175
  article-title: Global optimization for the design of shell and tube horizontal thermosyphon reboiler
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131075
– volume: 134
  start-page: 360
  year: 2018
  ident: 10.1016/j.applthermaleng.2025.128914_b0120
  article-title: Process calculation method and optimization of the spiral-wound heat exchanger with bilateral phase change
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.01.128
– volume: 215
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.128914_b0150
  article-title: Spirally wound tubular heat exchanger optimisation using genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118956
– volume: 54
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.128914_b0190
  article-title: Energy-exergy-economic-environmental (4E) analysis and multi-objective optimization of a cascade refrigeration system
  publication-title: Therm. Sci. Eng. Prog.
– volume: 30
  start-page: 111
  year: 2018
  ident: 10.1016/j.applthermaleng.2025.128914_b0165
  article-title: Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-016-2683-z
– volume: 161
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.128914_b0055
  article-title: Effect of flow configuration on the performance of spiral-wound heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114157
– volume: 324
  year: 2025
  ident: 10.1016/j.applthermaleng.2025.128914_b0205
  article-title: Heat exchanger network synthesis with optimal waste heat recovery and multiple hot utilities
  publication-title: Energy
  doi: 10.1016/j.energy.2025.136011
– volume: 63
  start-page: 3778
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.128914_b0100
  article-title: Equation‐oriented simulation and optimization of process flowsheets incorporating detailed spiral‐wound multistream heat exchanger models
  publication-title: AIChE J
  doi: 10.1002/aic.15705
– volume: 29
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.128914_b0045
  article-title: Effect of winding angles on flow and heat transfer characteristics in the shell side of spiral wound heat exchangers
  publication-title: Therm. Sci. Eng. Prog.
– year: 2016
  ident: 10.1016/j.applthermaleng.2025.128914_b0220
– volume: 34
  start-page: 430
  year: 2010
  ident: 10.1016/j.applthermaleng.2025.128914_b0075
  article-title: CFD analysis of single-phase flows inside helically coiled tubes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.11.008
– volume: 137
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.128914_b0170
  article-title: Design optimization of shell and tube heat exchangers sizing with heat transfer enhancement
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106821
– volume: 6
  start-page: 387
  year: 1963
  ident: 10.1016/j.applthermaleng.2025.128914_b0010
  article-title: Heat transfer in tube coils with laminar and turbulent flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(63)90100-5
– volume: 25
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.128914_b0180
  article-title: Globally optimal design of kettle vaporizers
  publication-title: Therm. Sci. Eng. Prog.
– volume: 55
  start-page: 4295
  year: 2012
  ident: 10.1016/j.applthermaleng.2025.128914_b0050
  article-title: Research on the shell-side thermal performances of heat exchangers with helical tube coils
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.03.074
– volume: 61
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.128914_b0155
  article-title: Experimental study on optimizing liquid distribution in spiral wound heat exchangers: Influence of two-phase flow parameters and geometry
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2024.104872
– volume: 70
  start-page: 1216
  year: 2014
  ident: 10.1016/j.applthermaleng.2025.128914_b0020
  article-title: Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.02.053
– volume: 166
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.128914_b0065
  article-title: Experimental study of the effects of key geometry parameters on shell-side vapor condensation of spiral-wound heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114731
– volume: 111
  start-page: 143
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.128914_b0160
  article-title: Economic optimization design for shell-and-tube heat exchangers by a Tsallis differential evolution
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.032
– volume: 274
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.128914_b0195
  article-title: Multi objective ecological optimization of an irreversible Stirling cryogenic refrigerator cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127253
– volume: 61
  start-page: 3390
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.128914_b0095
  article-title: Multistream heat exchanger modeling and design
  publication-title: AIChE J
  doi: 10.1002/aic.14965
– volume: 119
  start-page: 603
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.128914_b0140
  article-title: Optimization investigation on configuration parameters of spiral-wound heat exchanger using genetic aggregation response surface and multi-objective genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.100
– volume: 36
  start-page: 790
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.128914_b0030
  article-title: Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2015.963386
– volume: 159
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.128914_b0070
  article-title: Experimental study on the tube-side thermal-hydraulic performance of spiral wound heat exchangers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106618
– volume: 120
  start-page: 285
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.128914_b0040
  article-title: Numerical study of heat transfer between shell-side fluid and shell wall in the spiral-wound heat exchangers
  publication-title: Int. J. Refrig
  doi: 10.1016/j.ijrefrig.2020.08.010
– volume: 56
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.128914_b0185
  article-title: Energy-economic analysis and optimization of a shell and tube heat exchanger using a multi-objective heat transfer search algorithm
  publication-title: Therm. Sci. Eng. Prog.
– volume: 14
  start-page: 1165
  year: 1990
  ident: 10.1016/j.applthermaleng.2025.128914_b0200
  article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(90)85010-8
– volume: 148
  start-page: 6267
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.128914_b0080
  article-title: Study of heat transfer and pressure drop for novel configurations of helical tube heat exchanger: a numerical and experimental approach
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12067-7
– volume: 26
  start-page: 1833
  year: 1983
  ident: 10.1016/j.applthermaleng.2025.128914_b0215
  article-title: Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(83)80154-9
– volume: 139
  start-page: 105
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.128914_b0035
  article-title: Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.01.038
– volume: 9
  start-page: 249
  year: 1989
  ident: 10.1016/j.applthermaleng.2025.128914_b0015
  article-title: Pressure drop, heat transfer and performance of a helically coiled tubular exchanger
  publication-title: Heat Recovery Syst. CHP
  doi: 10.1016/0890-4332(89)90008-2
– volume: 136300
  year: 2025
  ident: 10.1016/j.applthermaleng.2025.128914_b0210
  article-title: Multi-objective-period heat exchanger network synthesis and decarbonization for industrial-scale crude oil distillation system
  publication-title: Energy
– volume: 130
  start-page: 286
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.128914_b0005
  article-title: Design technology of large-scale spiral wound heat exchanger in refinery industry
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2015.12.222
– volume: 31
  start-page: 471
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.128914_b0130
  article-title: An analytical method for spiral-wound heat exchanger: design and cost estimation considering temperature-dependent fluid properties
  publication-title: Internat. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-01-2020-0025
– volume: 95
  start-page: 42
  year: 2018
  ident: 10.1016/j.applthermaleng.2025.128914_b0145
  article-title: Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2018.03.027
– volume: 27
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.128914_b0085
  article-title: Heat transfer and pressure drop characteristics of two phase flow in helical coils
  publication-title: Therm. Sci. Eng. Prog.
– volume: 61
  start-page: 1856
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.128914_b0090
  article-title: Multistream heat exchangers: Equation‐oriented modeling and flowsheet optimization
  publication-title: AIChE J
  doi: 10.1002/aic.14766
– volume: 4
  start-page: 119
  year: 2012
  ident: 10.1016/j.applthermaleng.2025.128914_b0135
  article-title: Optimization of heat transfer and pressure drop for a spiral-wound heat exchanger due to the geometry of helical tubes
  publication-title: Sci. Ser. Data Rep
– volume: 63
  start-page: 3764
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.128914_b0105
  article-title: A superstructure‐based model for multistream heat exchanger design within flow sheet optimization
  publication-title: AIChE J
  doi: 10.1002/aic.15714
– volume: 166
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.128914_b0125
  article-title: Design method and software development for the spiral-wound heat exchanger with bilateral phase change
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114674
– volume: 89
  start-page: 1104
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.128914_b0025
  article-title: Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.084
SSID ssj0012874
Score 2.4744172
Snippet •A novel optimization framework is proposed for automated multi-stream SWHE design.•Simultaneous optimization of geometries and multi-stream allocation is...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128914
SubjectTerms Heat exchanger design
Mathematical programming
Optimization
Spiral-wound heat exchangers
Title Automated multi-stream spiral-wound heat exchanger design and optimization
URI https://dx.doi.org/10.1016/j.applthermaleng.2025.128914
Volume 284
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA5ziuiDeMU7efBNIpomy_IkQxQVER9Uhi8lbTPmdJ3oNue_96RJ23iDKfhSRthO156vp1_OFaEdnZh6RVkjPAkoYRHoQoGtJIwl-5zHOqplrovbC3F5WW825VWl8pbXwgwfRZrWRyP59K-qhjVQtimd_YW6C6GwAJ9B6XAEtcNxLMU3Bv0e0FAgklmyIDHVIKq7m0XUH8mrGaNk6GF_V4_yqt8kS-PI4gg9MCFdV5vpE9ecrRq-2AW16rKPYWE4nOv5Tj8MCshdufHH3vdKH3V70FY9L8HALh-1QfiF6wjuHBI0c0i42Iq1oQGXBHjJgW9kaZ15ZhJeitLWjn6x4NaZ0Nkz8Xt3SXBS2MhTvlf-7GPj7E8vtCLNMM9g64QfpYVGWmilTaBJKrgEgzjZODtunhchKDMIINutu6uZRjtlcuDP_-57fuNxlut5NOc2G7hhQbKAKjpdRLNeC8oldF7ABftwwT5csIELLuCCLVwwwAX7cFlGNyfH10enxM3XILEpCiJcg_VWQRy3alInhktSFgMBjlSr1Uq0UPqAK6oV0Dogxsm-Mo9uIqiKRMwCUQ9WUDXtpXoVYdiUmtEFUqhazLSGZ14xTjWQSRFJxdka4vldCZ9sG5VwHO2socP8FoaOElqqFwJexpKw_sczb6CZEtybqNp_HugtNBUP-_cvz9sOLO8grY8A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+multi-stream+spiral-wound+heat+exchanger+design+and+optimization&rft.jtitle=Applied+thermal+engineering&rft.au=Yang%2C+Zekun&rft.au=Pan%2C+Ting&rft.au=Zhang%2C+Shuhao&rft.au=Chang%2C+ChengLin&rft.date=2026-01-30&rft.issn=1359-4311&rft.volume=284&rft.spage=128914&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.128914&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2025_128914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon