Automated multi-stream spiral-wound heat exchanger design and optimization
•A novel optimization framework is proposed for automated multi-stream SWHE design.•Simultaneous optimization of geometries and multi-stream allocation is achieved.•New models are developed for SWHE modelling and validated using Aspen EDR.•SWHEs can achieve 31.8 %–40.7 % reductions in exchanger volu...
Gespeichert in:
| Veröffentlicht in: | Applied thermal engineering Jg. 284; S. 128914 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
30.01.2026
|
| Schlagworte: | |
| ISSN: | 1359-4311 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A novel optimization framework is proposed for automated multi-stream SWHE design.•Simultaneous optimization of geometries and multi-stream allocation is achieved.•New models are developed for SWHE modelling and validated using Aspen EDR.•SWHEs can achieve 31.8 %–40.7 % reductions in exchanger volume compared to STHEs.•Key design limitations of SWHEs are identified to support exchanger integration.
Spiral-wound heat exchangers (SWHEs) offer high heat transfer efficiency and compact design advantages, making them well-suited for services in process industries. Accelerating the application of SWHEs demands design methodologies that avoid extensive user manipulations and complex solution procedures. This study develops a novel incremental-based heat transfer framework for the automated design of single-phase SWHEs, which simultaneously optimizes multi-stream allocation across activated tube layers and exchanger geometries. At each increment, energy balances are enforced for all streams using local heat transfer coefficients and areas. On the tube-side, flow distribution is optimized by permitting variable split heat capacities and mass flow rates within tube layers while ensuring pressure balance for each stream at the bundle outlet. New correlations for shell-side flow regimes are introduced into the proposed sizing model to link discrete tube-layer selections with their corresponding cross-sectional areas throughout the optimization process. The capability of the proposed framework is demonstrated through four case studies, including model validation, two-stream and multi-stream SWHE design, and application to an industrial-scale heat exchanger network (HEN). Rigorous Aspen EDR-CoilWound simulations validate the proposed model and design results, with the HEN case exhibiting only a 2.95 % deviation from the target duty. In Case Study 2, SWHE results in a 24.29 % reduction in required heat transfer area. Case Studies 3 and 4 demonstrate that SWHE configurations can achieve 31.8 %–40.7 % reductions in exchanger volume, attributable to their superior compactness relative to conventional shell-and-tube heat exchangers (STHEs). Benchmarking against detailed STHE designs further clarifies optimal deployment strategies and highlights residual limitations of SWHE technology. |
|---|---|
| AbstractList | •A novel optimization framework is proposed for automated multi-stream SWHE design.•Simultaneous optimization of geometries and multi-stream allocation is achieved.•New models are developed for SWHE modelling and validated using Aspen EDR.•SWHEs can achieve 31.8 %–40.7 % reductions in exchanger volume compared to STHEs.•Key design limitations of SWHEs are identified to support exchanger integration.
Spiral-wound heat exchangers (SWHEs) offer high heat transfer efficiency and compact design advantages, making them well-suited for services in process industries. Accelerating the application of SWHEs demands design methodologies that avoid extensive user manipulations and complex solution procedures. This study develops a novel incremental-based heat transfer framework for the automated design of single-phase SWHEs, which simultaneously optimizes multi-stream allocation across activated tube layers and exchanger geometries. At each increment, energy balances are enforced for all streams using local heat transfer coefficients and areas. On the tube-side, flow distribution is optimized by permitting variable split heat capacities and mass flow rates within tube layers while ensuring pressure balance for each stream at the bundle outlet. New correlations for shell-side flow regimes are introduced into the proposed sizing model to link discrete tube-layer selections with their corresponding cross-sectional areas throughout the optimization process. The capability of the proposed framework is demonstrated through four case studies, including model validation, two-stream and multi-stream SWHE design, and application to an industrial-scale heat exchanger network (HEN). Rigorous Aspen EDR-CoilWound simulations validate the proposed model and design results, with the HEN case exhibiting only a 2.95 % deviation from the target duty. In Case Study 2, SWHE results in a 24.29 % reduction in required heat transfer area. Case Studies 3 and 4 demonstrate that SWHE configurations can achieve 31.8 %–40.7 % reductions in exchanger volume, attributable to their superior compactness relative to conventional shell-and-tube heat exchangers (STHEs). Benchmarking against detailed STHE designs further clarifies optimal deployment strategies and highlights residual limitations of SWHE technology. |
| ArticleNumber | 128914 |
| Author | Chang, ChengLin Smith, Robin Yang, Zekun Pan, Ting Zhang, Nan Zhang, Shuhao |
| Author_xml | – sequence: 1 givenname: Zekun orcidid: 0000-0002-9537-3939 surname: Yang fullname: Yang, Zekun organization: Centre for Process Integration, Department of Chemical Engineering, The University of Manchester, Manchester, UK – sequence: 2 givenname: Ting orcidid: 0000-0001-5377-2117 surname: Pan fullname: Pan, Ting organization: Széchenyi István University, Egyetem Square 1., Győr H-9026, Hungary – sequence: 3 givenname: Shuhao surname: Zhang fullname: Zhang, Shuhao organization: Institute of Clean Energy, School of Civil Engineering, Chongqing University, Chongqing 400050, China – sequence: 4 givenname: ChengLin surname: Chang fullname: Chang, ChengLin organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China – sequence: 5 givenname: Nan surname: Zhang fullname: Zhang, Nan email: nan.zhang@manchester.ac.uk organization: Centre for Process Integration, Department of Chemical Engineering, The University of Manchester, Manchester, UK – sequence: 6 givenname: Robin surname: Smith fullname: Smith, Robin organization: Centre for Process Integration, Department of Chemical Engineering, The University of Manchester, Manchester, UK |
| BookMark | eNqNkDtPwzAUhT0UibbwHzKwJviVRyWWqqI8VIkFZuvWvmldJXZku7x-PanKwsZ0hqPz6eibkYnzDgm5YbRglFW3hwKGoUt7DD106HYFp7wsGG8WTE7IlIlykUvB2CWZxXigdGxqOSXPy2PyPSQ0WX_sks1jCgh9FgcboMs__NGZbI-QMvzUe3A7DJnBaHcug7HxQ7K9_YZkvbsiFy10Ea9_c07e1vevq8d88_LwtFpucs0ll3mJsmlAaN1WCzS0loJLXVG6hbZtDdaArASOQLngZWUoaNxWpuawrbUUdSPm5O7M1cHHGLBVQ7A9hC_FqDq5UAf114U6uVBnF-N8fZ7j-PHdYlBRW3QajQ2okzLe_g_0Az2sdtA |
| Cites_doi | 10.1016/j.applthermaleng.2019.114381 10.1016/j.energy.2024.131075 10.1016/j.applthermaleng.2018.01.128 10.1016/j.applthermaleng.2022.118956 10.1007/s00521-016-2683-z 10.1016/j.applthermaleng.2019.114157 10.1016/j.energy.2025.136011 10.1002/aic.15705 10.1016/j.compchemeng.2009.11.008 10.1016/j.compchemeng.2020.106821 10.1016/0017-9310(63)90100-5 10.1016/j.ijheatmasstransfer.2012.03.074 10.1016/j.csite.2024.104872 10.1016/j.applthermaleng.2014.02.053 10.1016/j.applthermaleng.2019.114731 10.1016/j.applthermaleng.2016.09.032 10.1016/j.energy.2023.127253 10.1002/aic.14965 10.1016/j.applthermaleng.2017.03.100 10.1080/01457632.2015.963386 10.1016/j.ijthermalsci.2020.106618 10.1016/j.ijrefrig.2020.08.010 10.1016/0098-1354(90)85010-8 10.1007/s10973-023-12067-7 10.1016/S0017-9310(83)80154-9 10.1016/j.ijthermalsci.2019.01.038 10.1016/0890-4332(89)90008-2 10.1016/j.proeng.2015.12.222 10.1108/HFF-01-2020-0025 10.1016/j.icheatmasstransfer.2018.03.027 10.1002/aic.14766 10.1002/aic.15714 10.1016/j.applthermaleng.2019.114674 10.1016/j.applthermaleng.2015.04.084 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2025.128914 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_applthermaleng_2025_128914 S1359431125035069 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- ~HD 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ M41 R2- |
| ID | FETCH-LOGICAL-c2424-5e488a3ccf69ed074324c600bafffde7ae15a2ea023256d0aceb6d72ab7c43783 |
| ISSN | 1359-4311 |
| IngestDate | Thu Nov 27 00:57:42 EST 2025 Sat Nov 29 17:13:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spiral-wound heat exchangers Optimization Heat exchanger design Mathematical programming |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2424-5e488a3ccf69ed074324c600bafffde7ae15a2ea023256d0aceb6d72ab7c43783 |
| ORCID | 0000-0002-9537-3939 0000-0001-5377-2117 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.applthermaleng.2025.128914 |
| ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2025_128914 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_128914 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-30 |
| PublicationDateYYYYMMDD | 2026-01-30 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sethumadhavan, Raja Rao (b0215) 1983; 26 Wu, Liu, Wang (b0120) 2018; 134 Saffari, Moosavi, Khamda (b0135) 2012; 4 Prajapati, Raja, Patel, Jouhara (b0185) 2024; 56 Marzouk, Abou Al-Sood, El-Said, El-Fakharany, Younes (b0080) 2023; 148 Yang, Ma, Zhang, Smith (b0170) 2020; 137 Prajapati, Patel, Raja, Jouhara (b0190) 2024; 54 Abolmaali, Afshin (b0035) 2019; 139 Dhavle, Kulkarni, Shastri, Kale (b0165) 2018; 30 Yang, Zhu, Ji, Chang, Zhang, Smith (b0175) 2024; 296 Tsay, Pattison, Baldea (b0100) 2017; 63 Prasad, Das, Prabhakar (b0015) 1989; 9 Prajapati, Patel, Raja, Jouhara (b0195) 2023; 274 Pattison, Baldea (b0090) 2015; 61 Wang, Jian, Xiao, Wen, Zhang (b0140) 2017; 119 Lu, Zhang, Chen, Wang, Zeng (b0025) 2015; 89 Sharqawy, Saad, Ahmed (b0055) 2019; 161 Yee, Grossmann (b0200) 1990; 14 Hosseinian, Mostafazade Abolmaali, Afshin (b0130) 2021; 31 Smith (b0220) 2016 Yang, Pan, Zhang, Smith (b0205) 2025; 324 de Vasconcelos Segundo, Amoroso, Mariani, dos Santos Coelho (b0160) 2017; 111 Jian, Wang, Wen (b0070) 2021; 159 He, Chen, Yu, Yan, Zhang, Song (b0045) 2022; 29 Wu, Zhao, Sun, Liu, Wang (b0125) 2020; 166 Wang, Jian, Xiao, Wen, Zhang, Tu (b0145) 2018; 95 Abolmaali, Afshin (b0040) 2020; 120 Sales, Queiroz, Nahes, Bagajewicz, Costa (b0180) 2021; 25 Wu, Tian, Sun, Zhao, Wang, Peng, Liao (b0060) 2019; 163 Zeng, Zhang, Li, Niu, Ma, Wang (b0030) 2015; 36 Chen, Chen, Jiang, Chen, Zhang (b0005) 2015; 130 Jian, Wang, Sun, Wen, Tu (b0065) 2020; 166 Abolmaali, Afshin (b0115) 2023; 218 Yang, Chang, Ding (b0155) 2024; 61 Yang, Pan, Chang, Zhang, Zhang, Smith (b0210) 2025; 136300 Watson, Khan, Barton (b0095) 2015; 61 Seban, McLaughlin (b0010) 1963; 6 Jayakumar, Mahajani, Mandal, Iyer, Vijayan (b0075) 2010; 34 Kazi, Biegler, Gandhi (b0110) 2022 Musthafa, Ghosh (b0150) 2022; 215 Lu, Du, Zeng, Zhang, Wang (b0020) 2014; 70 Onal, Kirkar, Akgul, Celen, Acikgoz, Dalkilic, Kazi, Wongwises (b0085) 2022; 27 Nagesh Rao, Karimi (b0105) 2017; 63 Genić, Jaćimović, Jarić, Budimir, Dobrnjac (b0050) 2012; 55 Lu (10.1016/j.applthermaleng.2025.128914_b0025) 2015; 89 Zeng (10.1016/j.applthermaleng.2025.128914_b0030) 2015; 36 Wang (10.1016/j.applthermaleng.2025.128914_b0145) 2018; 95 Jian (10.1016/j.applthermaleng.2025.128914_b0065) 2020; 166 Wang (10.1016/j.applthermaleng.2025.128914_b0140) 2017; 119 Prasad (10.1016/j.applthermaleng.2025.128914_b0015) 1989; 9 Jayakumar (10.1016/j.applthermaleng.2025.128914_b0075) 2010; 34 Prajapati (10.1016/j.applthermaleng.2025.128914_b0195) 2023; 274 Yang (10.1016/j.applthermaleng.2025.128914_b0155) 2024; 61 Prajapati (10.1016/j.applthermaleng.2025.128914_b0185) 2024; 56 Nagesh Rao (10.1016/j.applthermaleng.2025.128914_b0105) 2017; 63 Yang (10.1016/j.applthermaleng.2025.128914_b0210) 2025; 136300 Genić (10.1016/j.applthermaleng.2025.128914_b0050) 2012; 55 Tsay (10.1016/j.applthermaleng.2025.128914_b0100) 2017; 63 Yee (10.1016/j.applthermaleng.2025.128914_b0200) 1990; 14 de Vasconcelos Segundo (10.1016/j.applthermaleng.2025.128914_b0160) 2017; 111 Yang (10.1016/j.applthermaleng.2025.128914_b0175) 2024; 296 Chen (10.1016/j.applthermaleng.2025.128914_b0005) 2015; 130 Lu (10.1016/j.applthermaleng.2025.128914_b0020) 2014; 70 Watson (10.1016/j.applthermaleng.2025.128914_b0095) 2015; 61 Seban (10.1016/j.applthermaleng.2025.128914_b0010) 1963; 6 Abolmaali (10.1016/j.applthermaleng.2025.128914_b0115) 2023; 218 Onal (10.1016/j.applthermaleng.2025.128914_b0085) 2022; 27 Wu (10.1016/j.applthermaleng.2025.128914_b0060) 2019; 163 Musthafa (10.1016/j.applthermaleng.2025.128914_b0150) 2022; 215 Dhavle (10.1016/j.applthermaleng.2025.128914_b0165) 2018; 30 Smith (10.1016/j.applthermaleng.2025.128914_b0220) 2016 Abolmaali (10.1016/j.applthermaleng.2025.128914_b0040) 2020; 120 Marzouk (10.1016/j.applthermaleng.2025.128914_b0080) 2023; 148 Sharqawy (10.1016/j.applthermaleng.2025.128914_b0055) 2019; 161 Yang (10.1016/j.applthermaleng.2025.128914_b0205) 2025; 324 Pattison (10.1016/j.applthermaleng.2025.128914_b0090) 2015; 61 Sethumadhavan (10.1016/j.applthermaleng.2025.128914_b0215) 1983; 26 Wu (10.1016/j.applthermaleng.2025.128914_b0125) 2020; 166 Hosseinian (10.1016/j.applthermaleng.2025.128914_b0130) 2021; 31 Prajapati (10.1016/j.applthermaleng.2025.128914_b0190) 2024; 54 Saffari (10.1016/j.applthermaleng.2025.128914_b0135) 2012; 4 Abolmaali (10.1016/j.applthermaleng.2025.128914_b0035) 2019; 139 Yang (10.1016/j.applthermaleng.2025.128914_b0170) 2020; 137 Kazi (10.1016/j.applthermaleng.2025.128914_b0110) 2022 He (10.1016/j.applthermaleng.2025.128914_b0045) 2022; 29 Jian (10.1016/j.applthermaleng.2025.128914_b0070) 2021; 159 Sales (10.1016/j.applthermaleng.2025.128914_b0180) 2021; 25 Wu (10.1016/j.applthermaleng.2025.128914_b0120) 2018; 134 |
| References_xml | – volume: 296 year: 2024 ident: b0175 article-title: Global optimization for the design of shell and tube horizontal thermosyphon reboiler publication-title: Energy – volume: 166 year: 2020 ident: b0125 article-title: Design method and software development for the spiral-wound heat exchanger with bilateral phase change publication-title: Appl. Therm. Eng. – volume: 6 start-page: 387 year: 1963 end-page: 395 ident: b0010 article-title: Heat transfer in tube coils with laminar and turbulent flow publication-title: Int. J. Heat Mass Transf. – volume: 36 start-page: 790 year: 2015 end-page: 805 ident: b0030 article-title: Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger publication-title: Heat Transfer Eng. – volume: 26 start-page: 1833 year: 1983 end-page: 1845 ident: b0215 article-title: Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes publication-title: Int. J. Heat Mass Transf. – volume: 9 start-page: 249 year: 1989 end-page: 256 ident: b0015 article-title: Pressure drop, heat transfer and performance of a helically coiled tubular exchanger publication-title: Heat Recovery Syst. CHP – volume: 27 year: 2022 ident: b0085 article-title: Heat transfer and pressure drop characteristics of two phase flow in helical coils publication-title: Therm. Sci. Eng. Prog. – volume: 56 year: 2024 ident: b0185 article-title: Energy-economic analysis and optimization of a shell and tube heat exchanger using a multi-objective heat transfer search algorithm publication-title: Therm. Sci. Eng. Prog. – volume: 63 start-page: 3778 year: 2017 end-page: 3789 ident: b0100 article-title: Equation‐oriented simulation and optimization of process flowsheets incorporating detailed spiral‐wound multistream heat exchanger models publication-title: AIChE J – volume: 54 year: 2024 ident: b0190 article-title: Energy-exergy-economic-environmental (4E) analysis and multi-objective optimization of a cascade refrigeration system publication-title: Therm. Sci. Eng. Prog. – volume: 119 start-page: 603 year: 2017 end-page: 609 ident: b0140 article-title: Optimization investigation on configuration parameters of spiral-wound heat exchanger using genetic aggregation response surface and multi-objective genetic algorithm publication-title: Appl. Therm. Eng. – volume: 120 start-page: 285 year: 2020 end-page: 295 ident: b0040 article-title: Numerical study of heat transfer between shell-side fluid and shell wall in the spiral-wound heat exchangers publication-title: Int. J. Refrig – volume: 4 start-page: 119 year: 2012 end-page: 134 ident: b0135 article-title: Optimization of heat transfer and pressure drop for a spiral-wound heat exchanger due to the geometry of helical tubes publication-title: Sci. Ser. Data Rep – volume: 159 year: 2021 ident: b0070 article-title: Experimental study on the tube-side thermal-hydraulic performance of spiral wound heat exchangers publication-title: Int. J. Therm. Sci. – volume: 31 start-page: 471 year: 2021 end-page: 496 ident: b0130 article-title: An analytical method for spiral-wound heat exchanger: design and cost estimation considering temperature-dependent fluid properties publication-title: Internat. J. Numer. Methods Heat Fluid Flow – volume: 30 start-page: 111 year: 2018 end-page: 125 ident: b0165 article-title: Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm publication-title: Neural Comput. & Applic. – volume: 136300 year: 2025 ident: b0210 article-title: Multi-objective-period heat exchanger network synthesis and decarbonization for industrial-scale crude oil distillation system publication-title: Energy – volume: 137 year: 2020 ident: b0170 article-title: Design optimization of shell and tube heat exchangers sizing with heat transfer enhancement publication-title: Comput. Chem. Eng. – volume: 163 year: 2019 ident: b0060 article-title: Numerical simulation and experimental research on the comprehensive performance of the shell side of the spiral wound heat exchanger publication-title: Appl. Therm. Eng. – volume: 61 start-page: 3390 year: 2015 end-page: 3403 ident: b0095 article-title: Multistream heat exchanger modeling and design publication-title: AIChE J – volume: 25 year: 2021 ident: b0180 article-title: Globally optimal design of kettle vaporizers publication-title: Therm. Sci. Eng. Prog. – volume: 139 start-page: 105 year: 2019 end-page: 117 ident: b0035 article-title: Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers publication-title: Int. J. Therm. Sci. – volume: 61 start-page: 1856 year: 2015 end-page: 1866 ident: b0090 article-title: Multistream heat exchangers: Equation‐oriented modeling and flowsheet optimization publication-title: AIChE J – start-page: 673 year: 2022 end-page: 678 ident: b0110 article-title: Equation oriented optimization of multi stream heat exchanger design and operation in natural gas liquefaction process publication-title: Computer Aided Chemical Engineering – volume: 89 start-page: 1104 year: 2015 end-page: 1116 ident: b0025 article-title: Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers publication-title: Appl. Therm. Eng. – volume: 95 start-page: 42 year: 2018 end-page: 52 ident: b0145 article-title: Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger publication-title: Int. Commun. Heat Mass Transfer – volume: 274 year: 2023 ident: b0195 article-title: Multi objective ecological optimization of an irreversible Stirling cryogenic refrigerator cycle publication-title: Energy – volume: 130 start-page: 286 year: 2015 end-page: 297 ident: b0005 article-title: Design technology of large-scale spiral wound heat exchanger in refinery industry publication-title: Proc. Eng. – volume: 161 year: 2019 ident: b0055 article-title: Effect of flow configuration on the performance of spiral-wound heat exchanger publication-title: Appl. Therm. Eng. – volume: 324 year: 2025 ident: b0205 article-title: Heat exchanger network synthesis with optimal waste heat recovery and multiple hot utilities publication-title: Energy – volume: 34 start-page: 430 year: 2010 end-page: 446 ident: b0075 article-title: CFD analysis of single-phase flows inside helically coiled tubes publication-title: Comput. Chem. Eng. – volume: 29 year: 2022 ident: b0045 article-title: Effect of winding angles on flow and heat transfer characteristics in the shell side of spiral wound heat exchangers publication-title: Therm. Sci. Eng. Prog. – volume: 215 year: 2022 ident: b0150 article-title: Spirally wound tubular heat exchanger optimisation using genetic algorithm publication-title: Appl. Therm. Eng. – volume: 111 start-page: 143 year: 2017 end-page: 151 ident: b0160 article-title: Economic optimization design for shell-and-tube heat exchangers by a Tsallis differential evolution publication-title: Appl. Therm. Eng. – year: 2016 ident: b0220 article-title: Chemical Process Design And Integration – volume: 61 year: 2024 ident: b0155 article-title: Experimental study on optimizing liquid distribution in spiral wound heat exchangers: Influence of two-phase flow parameters and geometry publication-title: Case Stud. Therm. Eng. – volume: 148 start-page: 6267 year: 2023 end-page: 6282 ident: b0080 article-title: Study of heat transfer and pressure drop for novel configurations of helical tube heat exchanger: a numerical and experimental approach publication-title: J. Therm. Anal. Calorim. – volume: 14 start-page: 1165 year: 1990 end-page: 1184 ident: b0200 article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis publication-title: Comput. Chem. Eng. – volume: 55 start-page: 4295 year: 2012 end-page: 4300 ident: b0050 article-title: Research on the shell-side thermal performances of heat exchangers with helical tube coils publication-title: Int. J. Heat Mass Transf. – volume: 63 start-page: 3764 year: 2017 end-page: 3777 ident: b0105 article-title: A superstructure‐based model for multistream heat exchanger design within flow sheet optimization publication-title: AIChE J – volume: 70 start-page: 1216 year: 2014 end-page: 1227 ident: b0020 article-title: Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions publication-title: Appl. Therm. Eng. – volume: 134 start-page: 360 year: 2018 end-page: 368 ident: b0120 article-title: Process calculation method and optimization of the spiral-wound heat exchanger with bilateral phase change publication-title: Appl. Therm. Eng. – volume: 166 year: 2020 ident: b0065 article-title: Experimental study of the effects of key geometry parameters on shell-side vapor condensation of spiral-wound heat exchangers publication-title: Appl. Therm. Eng. – volume: 218 year: 2023 ident: b0115 article-title: A design model for spiral wound heat exchangers which accounts for property variation, longitudinal heat conduction, and heat-in-leak publication-title: Appl. Therm. Eng. – start-page: 673 year: 2022 ident: 10.1016/j.applthermaleng.2025.128914_b0110 article-title: Equation oriented optimization of multi stream heat exchanger design and operation in natural gas liquefaction process – volume: 163 year: 2019 ident: 10.1016/j.applthermaleng.2025.128914_b0060 article-title: Numerical simulation and experimental research on the comprehensive performance of the shell side of the spiral wound heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114381 – volume: 218 year: 2023 ident: 10.1016/j.applthermaleng.2025.128914_b0115 article-title: A design model for spiral wound heat exchangers which accounts for property variation, longitudinal heat conduction, and heat-in-leak publication-title: Appl. Therm. Eng. – volume: 296 year: 2024 ident: 10.1016/j.applthermaleng.2025.128914_b0175 article-title: Global optimization for the design of shell and tube horizontal thermosyphon reboiler publication-title: Energy doi: 10.1016/j.energy.2024.131075 – volume: 134 start-page: 360 year: 2018 ident: 10.1016/j.applthermaleng.2025.128914_b0120 article-title: Process calculation method and optimization of the spiral-wound heat exchanger with bilateral phase change publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.01.128 – volume: 215 year: 2022 ident: 10.1016/j.applthermaleng.2025.128914_b0150 article-title: Spirally wound tubular heat exchanger optimisation using genetic algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118956 – volume: 54 year: 2024 ident: 10.1016/j.applthermaleng.2025.128914_b0190 article-title: Energy-exergy-economic-environmental (4E) analysis and multi-objective optimization of a cascade refrigeration system publication-title: Therm. Sci. Eng. Prog. – volume: 30 start-page: 111 year: 2018 ident: 10.1016/j.applthermaleng.2025.128914_b0165 article-title: Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-016-2683-z – volume: 161 year: 2019 ident: 10.1016/j.applthermaleng.2025.128914_b0055 article-title: Effect of flow configuration on the performance of spiral-wound heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114157 – volume: 324 year: 2025 ident: 10.1016/j.applthermaleng.2025.128914_b0205 article-title: Heat exchanger network synthesis with optimal waste heat recovery and multiple hot utilities publication-title: Energy doi: 10.1016/j.energy.2025.136011 – volume: 63 start-page: 3778 year: 2017 ident: 10.1016/j.applthermaleng.2025.128914_b0100 article-title: Equation‐oriented simulation and optimization of process flowsheets incorporating detailed spiral‐wound multistream heat exchanger models publication-title: AIChE J doi: 10.1002/aic.15705 – volume: 29 year: 2022 ident: 10.1016/j.applthermaleng.2025.128914_b0045 article-title: Effect of winding angles on flow and heat transfer characteristics in the shell side of spiral wound heat exchangers publication-title: Therm. Sci. Eng. Prog. – year: 2016 ident: 10.1016/j.applthermaleng.2025.128914_b0220 – volume: 34 start-page: 430 year: 2010 ident: 10.1016/j.applthermaleng.2025.128914_b0075 article-title: CFD analysis of single-phase flows inside helically coiled tubes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.11.008 – volume: 137 year: 2020 ident: 10.1016/j.applthermaleng.2025.128914_b0170 article-title: Design optimization of shell and tube heat exchangers sizing with heat transfer enhancement publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106821 – volume: 6 start-page: 387 year: 1963 ident: 10.1016/j.applthermaleng.2025.128914_b0010 article-title: Heat transfer in tube coils with laminar and turbulent flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(63)90100-5 – volume: 25 year: 2021 ident: 10.1016/j.applthermaleng.2025.128914_b0180 article-title: Globally optimal design of kettle vaporizers publication-title: Therm. Sci. Eng. Prog. – volume: 55 start-page: 4295 year: 2012 ident: 10.1016/j.applthermaleng.2025.128914_b0050 article-title: Research on the shell-side thermal performances of heat exchangers with helical tube coils publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.03.074 – volume: 61 year: 2024 ident: 10.1016/j.applthermaleng.2025.128914_b0155 article-title: Experimental study on optimizing liquid distribution in spiral wound heat exchangers: Influence of two-phase flow parameters and geometry publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2024.104872 – volume: 70 start-page: 1216 year: 2014 ident: 10.1016/j.applthermaleng.2025.128914_b0020 article-title: Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.02.053 – volume: 166 year: 2020 ident: 10.1016/j.applthermaleng.2025.128914_b0065 article-title: Experimental study of the effects of key geometry parameters on shell-side vapor condensation of spiral-wound heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114731 – volume: 111 start-page: 143 year: 2017 ident: 10.1016/j.applthermaleng.2025.128914_b0160 article-title: Economic optimization design for shell-and-tube heat exchangers by a Tsallis differential evolution publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.032 – volume: 274 year: 2023 ident: 10.1016/j.applthermaleng.2025.128914_b0195 article-title: Multi objective ecological optimization of an irreversible Stirling cryogenic refrigerator cycle publication-title: Energy doi: 10.1016/j.energy.2023.127253 – volume: 61 start-page: 3390 year: 2015 ident: 10.1016/j.applthermaleng.2025.128914_b0095 article-title: Multistream heat exchanger modeling and design publication-title: AIChE J doi: 10.1002/aic.14965 – volume: 119 start-page: 603 year: 2017 ident: 10.1016/j.applthermaleng.2025.128914_b0140 article-title: Optimization investigation on configuration parameters of spiral-wound heat exchanger using genetic aggregation response surface and multi-objective genetic algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.100 – volume: 36 start-page: 790 year: 2015 ident: 10.1016/j.applthermaleng.2025.128914_b0030 article-title: Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger publication-title: Heat Transfer Eng. doi: 10.1080/01457632.2015.963386 – volume: 159 year: 2021 ident: 10.1016/j.applthermaleng.2025.128914_b0070 article-title: Experimental study on the tube-side thermal-hydraulic performance of spiral wound heat exchangers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106618 – volume: 120 start-page: 285 year: 2020 ident: 10.1016/j.applthermaleng.2025.128914_b0040 article-title: Numerical study of heat transfer between shell-side fluid and shell wall in the spiral-wound heat exchangers publication-title: Int. J. Refrig doi: 10.1016/j.ijrefrig.2020.08.010 – volume: 56 year: 2024 ident: 10.1016/j.applthermaleng.2025.128914_b0185 article-title: Energy-economic analysis and optimization of a shell and tube heat exchanger using a multi-objective heat transfer search algorithm publication-title: Therm. Sci. Eng. Prog. – volume: 14 start-page: 1165 year: 1990 ident: 10.1016/j.applthermaleng.2025.128914_b0200 article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(90)85010-8 – volume: 148 start-page: 6267 year: 2023 ident: 10.1016/j.applthermaleng.2025.128914_b0080 article-title: Study of heat transfer and pressure drop for novel configurations of helical tube heat exchanger: a numerical and experimental approach publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12067-7 – volume: 26 start-page: 1833 year: 1983 ident: 10.1016/j.applthermaleng.2025.128914_b0215 article-title: Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(83)80154-9 – volume: 139 start-page: 105 year: 2019 ident: 10.1016/j.applthermaleng.2025.128914_b0035 article-title: Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.01.038 – volume: 9 start-page: 249 year: 1989 ident: 10.1016/j.applthermaleng.2025.128914_b0015 article-title: Pressure drop, heat transfer and performance of a helically coiled tubular exchanger publication-title: Heat Recovery Syst. CHP doi: 10.1016/0890-4332(89)90008-2 – volume: 136300 year: 2025 ident: 10.1016/j.applthermaleng.2025.128914_b0210 article-title: Multi-objective-period heat exchanger network synthesis and decarbonization for industrial-scale crude oil distillation system publication-title: Energy – volume: 130 start-page: 286 year: 2015 ident: 10.1016/j.applthermaleng.2025.128914_b0005 article-title: Design technology of large-scale spiral wound heat exchanger in refinery industry publication-title: Proc. Eng. doi: 10.1016/j.proeng.2015.12.222 – volume: 31 start-page: 471 year: 2021 ident: 10.1016/j.applthermaleng.2025.128914_b0130 article-title: An analytical method for spiral-wound heat exchanger: design and cost estimation considering temperature-dependent fluid properties publication-title: Internat. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-01-2020-0025 – volume: 95 start-page: 42 year: 2018 ident: 10.1016/j.applthermaleng.2025.128914_b0145 article-title: Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2018.03.027 – volume: 27 year: 2022 ident: 10.1016/j.applthermaleng.2025.128914_b0085 article-title: Heat transfer and pressure drop characteristics of two phase flow in helical coils publication-title: Therm. Sci. Eng. Prog. – volume: 61 start-page: 1856 year: 2015 ident: 10.1016/j.applthermaleng.2025.128914_b0090 article-title: Multistream heat exchangers: Equation‐oriented modeling and flowsheet optimization publication-title: AIChE J doi: 10.1002/aic.14766 – volume: 4 start-page: 119 year: 2012 ident: 10.1016/j.applthermaleng.2025.128914_b0135 article-title: Optimization of heat transfer and pressure drop for a spiral-wound heat exchanger due to the geometry of helical tubes publication-title: Sci. Ser. Data Rep – volume: 63 start-page: 3764 year: 2017 ident: 10.1016/j.applthermaleng.2025.128914_b0105 article-title: A superstructure‐based model for multistream heat exchanger design within flow sheet optimization publication-title: AIChE J doi: 10.1002/aic.15714 – volume: 166 year: 2020 ident: 10.1016/j.applthermaleng.2025.128914_b0125 article-title: Design method and software development for the spiral-wound heat exchanger with bilateral phase change publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114674 – volume: 89 start-page: 1104 year: 2015 ident: 10.1016/j.applthermaleng.2025.128914_b0025 article-title: Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.084 |
| SSID | ssj0012874 |
| Score | 2.4744172 |
| Snippet | •A novel optimization framework is proposed for automated multi-stream SWHE design.•Simultaneous optimization of geometries and multi-stream allocation is... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 128914 |
| SubjectTerms | Heat exchanger design Mathematical programming Optimization Spiral-wound heat exchangers |
| Title | Automated multi-stream spiral-wound heat exchanger design and optimization |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2025.128914 |
| Volume | 284 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA5ziuiDeMU7efBNIpomy_IkQxQVER9Uhi8lbTPmdJ3oNue_96RJ23iDKfhSRthO156vp1_OFaEdnZh6RVkjPAkoYRHoQoGtJIwl-5zHOqplrovbC3F5WW825VWl8pbXwgwfRZrWRyP59K-qhjVQtimd_YW6C6GwAJ9B6XAEtcNxLMU3Bv0e0FAgklmyIDHVIKq7m0XUH8mrGaNk6GF_V4_yqt8kS-PI4gg9MCFdV5vpE9ecrRq-2AW16rKPYWE4nOv5Tj8MCshdufHH3vdKH3V70FY9L8HALh-1QfiF6wjuHBI0c0i42Iq1oQGXBHjJgW9kaZ15ZhJeitLWjn6x4NaZ0Nkz8Xt3SXBS2MhTvlf-7GPj7E8vtCLNMM9g64QfpYVGWmilTaBJKrgEgzjZODtunhchKDMIINutu6uZRjtlcuDP_-57fuNxlut5NOc2G7hhQbKAKjpdRLNeC8oldF7ABftwwT5csIELLuCCLVwwwAX7cFlGNyfH10enxM3XILEpCiJcg_VWQRy3alInhktSFgMBjlSr1Uq0UPqAK6oV0Dogxsm-Mo9uIqiKRMwCUQ9WUDXtpXoVYdiUmtEFUqhazLSGZ14xTjWQSRFJxdka4vldCZ9sG5VwHO2socP8FoaOElqqFwJexpKw_sczb6CZEtybqNp_HugtNBUP-_cvz9sOLO8grY8A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+multi-stream+spiral-wound+heat+exchanger+design+and+optimization&rft.jtitle=Applied+thermal+engineering&rft.au=Yang%2C+Zekun&rft.au=Pan%2C+Ting&rft.au=Zhang%2C+Shuhao&rft.au=Chang%2C+ChengLin&rft.date=2026-01-30&rft.issn=1359-4311&rft.volume=284&rft.spage=128914&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.128914&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2025_128914 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |