Deformation Behavior of Optical Ceramic Nanomultilayers: The Role of Aperiodicity
Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of aperiodic layer thicknesses on mechanical deformation remain poorly understood. In this article, the relationships between individual layer thic...
Uložené v:
| Vydané v: | Advanced engineering materials Ročník 27; číslo 21 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.11.2025
|
| Predmet: | |
| ISSN: | 1438-1656, 1527-2648 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of aperiodic layer thicknesses on mechanical deformation remain poorly understood. In this article, the relationships between individual layer thicknesses, optical transmittance, and mechanical behavior are investigated for AlN/Al2O3, YSZ/Al2O3, and AlN/YSZ nanomultilayered coatings. These NMs are synthesized with aperiodic layer configurations from individual constituents selected for their optical constants, elastic modulus, and hardness values; the layer designs of select samples are optimized to achieve a transmittance exceeding 90% across the ultraviolet, visible, and near‐infrared spectral range. The effect of aperiodicity on the mechanical properties and deformation is explored at various length scales via nanoindentation, micropillar splitting, and Vickers microindentation. However, competing factors, such as interface type and local microstructure, also play critical roles. It is observed that layer composition strongly influences fracture toughness, as samples with amorphous Al2O3 layers and crystalline/amorphous interfaces exhibit superior mechanical performance and the highest fracture toughness values. Yet, distinct failure modes, including delamination and intergranular fracture, across the different nanomultilayered architectures highlight the relation of optical and mechanical properties to local volume fractions within aperiodic layer stacks and interface characteristics in the coating design.
Ceramic nanomultilayers demonstrate optical and mechanical behavior tunability through aperiodicity. Within the studied systems, optically optimized coatings exhibit an average ultraviolet, visible, and near‐infrared spectral transmittance above 90%. Residual stress, local volume fractions within layer stacks, and layer composition are shown to influence mechanical deformation, where crystalline/amorphous interfaces and/or Al2O3 are linked to the highest fracture toughness. |
|---|---|
| AbstractList | Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of aperiodic layer thicknesses on mechanical deformation remain poorly understood. In this article, the relationships between individual layer thicknesses, optical transmittance, and mechanical behavior are investigated for AlN/Al2O3, YSZ/Al2O3, and AlN/YSZ nanomultilayered coatings. These NMs are synthesized with aperiodic layer configurations from individual constituents selected for their optical constants, elastic modulus, and hardness values; the layer designs of select samples are optimized to achieve a transmittance exceeding 90% across the ultraviolet, visible, and near‐infrared spectral range. The effect of aperiodicity on the mechanical properties and deformation is explored at various length scales via nanoindentation, micropillar splitting, and Vickers microindentation. However, competing factors, such as interface type and local microstructure, also play critical roles. It is observed that layer composition strongly influences fracture toughness, as samples with amorphous Al2O3 layers and crystalline/amorphous interfaces exhibit superior mechanical performance and the highest fracture toughness values. Yet, distinct failure modes, including delamination and intergranular fracture, across the different nanomultilayered architectures highlight the relation of optical and mechanical properties to local volume fractions within aperiodic layer stacks and interface characteristics in the coating design.
Ceramic nanomultilayers demonstrate optical and mechanical behavior tunability through aperiodicity. Within the studied systems, optically optimized coatings exhibit an average ultraviolet, visible, and near‐infrared spectral transmittance above 90%. Residual stress, local volume fractions within layer stacks, and layer composition are shown to influence mechanical deformation, where crystalline/amorphous interfaces and/or Al2O3 are linked to the highest fracture toughness. Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of aperiodic layer thicknesses on mechanical deformation remain poorly understood. In this article, the relationships between individual layer thicknesses, optical transmittance, and mechanical behavior are investigated for AlN/Al 2 O 3 , YSZ/Al 2 O 3 , and AlN/YSZ nanomultilayered coatings. These NMs are synthesized with aperiodic layer configurations from individual constituents selected for their optical constants, elastic modulus, and hardness values; the layer designs of select samples are optimized to achieve a transmittance exceeding 90% across the ultraviolet, visible, and near‐infrared spectral range. The effect of aperiodicity on the mechanical properties and deformation is explored at various length scales via nanoindentation, micropillar splitting, and Vickers microindentation. However, competing factors, such as interface type and local microstructure, also play critical roles. It is observed that layer composition strongly influences fracture toughness, as samples with amorphous Al 2 O 3 layers and crystalline/amorphous interfaces exhibit superior mechanical performance and the highest fracture toughness values. Yet, distinct failure modes, including delamination and intergranular fracture, across the different nanomultilayered architectures highlight the relation of optical and mechanical properties to local volume fractions within aperiodic layer stacks and interface characteristics in the coating design. |
| Author | Hodge, Andrea M. Jagadish, Koushik Rossi, Edoardo White, Danielle E. Shao, Yu‐Tsun Cheng, Wenjuan |
| Author_xml | – sequence: 1 givenname: Danielle E. surname: White fullname: White, Danielle E. organization: University of Southern California – sequence: 2 givenname: Wenjuan surname: Cheng fullname: Cheng, Wenjuan organization: Università degli Studi Roma Tre – sequence: 3 givenname: Koushik surname: Jagadish fullname: Jagadish, Koushik organization: University of Southern California – sequence: 4 givenname: Edoardo surname: Rossi fullname: Rossi, Edoardo organization: Università degli Studi Roma Tre – sequence: 5 givenname: Yu‐Tsun surname: Shao fullname: Shao, Yu‐Tsun organization: University of Southern California – sequence: 6 givenname: Andrea M. orcidid: 0000-0001-9945-7841 surname: Hodge fullname: Hodge, Andrea M. email: ahodge@usc.edu organization: University of Southern California |
| BookMark | eNqFkD1PwzAURS1UJNrCypw_kOJnO47LVtryIRUqUJmjV-dZNUriygmg_HtaFbEy3Tvcc4czYoMmNMTYNfAJcC5usKR6IrjIOAg9PWNDyESeCq3M4NCVNCnoTF-wUdt-cA7AQQ7Z64JciDV2PjTJHe3wy4eYBJes9523WCVzilh7m7xgE-rPqvMV9hTb22Szo-QtVHQcz_YUfSi99V1_yc4dVi1d_eaYvd8vN_PHdLV-eJrPVqkVSkAqc1RSOwVkDIDSbpo7k5cZSJ1ru822pTRokHNpBYIz5QFw5NAKY1WphRyzyenXxtC2kVyxj77G2BfAi6OQ4iik-BNyALIT8O0r6v9ZF7PF8jnnoEH-ACGxZgk |
| Cites_doi | 10.2478/s11772-013-0085-7 10.1016/j.matdes.2019.107762 10.1007/978-3-319-75325-6 10.1016/j.matdes.2017.05.063 10.1007/BF02647421 10.1557/JMR.1986.0601 10.1016/j.surfcoat.2014.07.007 10.1016/S0921-5093(03)00339-3 10.1179/026708309X12584564052012 10.1016/j.cossms.2015.04.003 10.3390/mi13122084 10.1016/j.tsf.2015.01.067 10.1016/S0257-8972(97)00522-7 10.1557/jmr.2009.0126 10.1007/978-1-4419-9872-9 10.3390/app10217538 10.1016/j.jnoncrysol.2008.11.040 10.1557/jmr.2009.0418 10.1063/1.1357228 10.1080/14786435.2014.913110 10.1364/OME.389156 10.1557/JMR.1992.1564 10.1016/S0257-8972(99)00655-6 10.1117/3.349896 10.1016/j.apsusc.2006.10.050 10.1111/jace.15093 10.1016/j.jallcom.2009.05.133 10.1179/095066003225010227 10.1016/j.solmat.2018.12.006 10.1016/j.ceramint.2020.06.248 10.1016/j.tsf.2025.140638 10.1007/978-981-99-7390-3 10.1016/j.dental.2017.03.006 10.1016/j.surfcoat.2017.12.042 10.1504/IJSURFSE.2008.022284 10.1002/adem.202200951 10.1364/AO.48.004536 10.1016/j.vacuum.2008.05.031 10.1016/j.matdes.2018.01.015 10.1016/j.apsusc.2016.08.133 10.2320/matertrans.MER2008055 10.1016/j.ceramint.2020.10.095 10.1002/adem.201801268 10.1116/1.4961570 10.1039/c1ee01297e 10.1016/j.matdes.2019.108311 10.1179/1743280414Y.0000000029 10.1016/j.actamat.2006.06.008 10.1016/j.apsusc.2012.10.003 10.1016/j.matdes.2023.112014 10.1002/adom.201600833 10.1143/APEX.4.052503 10.1016/j.tsf.2011.09.079 10.1016/S0040-6090(01)00864-1 10.5006/3560 10.1116/1.5011790 10.1017/CBO9780511810930 10.1016/j.actamat.2022.118345 10.1038/s41467-025-56512-7 10.1016/j.dental.2013.05.003 10.1016/S0921-5093(02)00259-9 10.1088/2053-1591/ab4d29 10.1557/s43578-023-01111-9 10.1016/j.tsf.2021.138920 10.1364/AO.57.001645 10.1016/j.surfcoat.2025.131817 10.1016/j.ceramint.2023.07.270 10.1016/j.actaastro.2020.05.032 10.1007/s11837-019-03614-5 10.1016/j.jallcom.2019.07.342 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Advanced Engineering Materials published by Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2025 The Author(s). Advanced Engineering Materials published by Wiley‐VCH GmbH |
| DBID | 24P AAYXX CITATION |
| DOI | 10.1002/adem.202501269 |
| DatabaseName | Wiley Online Library Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1527-2648 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adem_202501269 ADEM70161 |
| Genre | article |
| GrantInformation_xml | – fundername: Office of Naval Research funderid: N00014‐18‐1‐2263; N00014‐23‐1‐2390 – fundername: Charles Lee Powell Foundation – fundername: PNRR Project funderid: IR0000027 – fundername: European Project funderid: 101092211 |
| GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 24P 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W QRW R.K ROL RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR XPP XV2 ZZTAW AAYXX CITATION |
| ID | FETCH-LOGICAL-c2421-37a436f41e881146f97f87d513676cb5bd38a8a003c2a1f8d37afefac28c4d623 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001574891300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1438-1656 |
| IngestDate | Wed Nov 05 20:53:20 EST 2025 Wed Nov 05 09:46:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2421-37a436f41e881146f97f87d513676cb5bd38a8a003c2a1f8d37afefac28c4d623 |
| ORCID | 0000-0001-9945-7841 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202501269 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1002_adem_202501269 wiley_primary_10_1002_adem_202501269_ADEM70161 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced engineering materials |
| PublicationYear | 2025 |
| References | 2017; 5 2013; 29 2003; 359 2012; 520 2013; 21 2023; 38 2015; 584 2019; 808 2009; 355 2020; 10 2024 2008; 2 1993; 2 2014; 258 2009; 48 2001; 389 2016; 34 1992; 7 1986; 1 2010; 26 2023; 25 2022; 240 2000; 124 2020; 175 2019; 21 2018; 338 2007; 253 2017; 33 2014; 59 2009; 485 2003; 48 2020; 46 2016; 390 1998; 99 2018; 36 2021; 47 2018; 142 2025; 498 2009; 24 2001; 72 2019; 191 2019; 71 2019; 6 2015; 19 2011 2015; 95 2006; 54 2020; 186 2020; 187 2005 2017; 130 2025; 16 2013; 264 2020; 76 2011; 4 2025; 815 1999 2021; 736 2023; 49 2008; 49 2023; 231 2022; 13 2018 2014 2019; 173 2017; 100 2008; 83 2003; 342 2018; 57 e_1_2_9_75_1 Appleget C. D. (e_1_2_9_22_1) 2020; 187 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Callister W. D. (e_1_2_9_58_1) 2014 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 Ghosh M. (e_1_2_9_60_1) 2024 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – year: 2011 – volume: 253 start-page: 4734 year: 2007 publication-title: Appl. Surf. Sci. – volume: 49 start-page: 32953 year: 2023 publication-title: Ceram. Int. – volume: 142 start-page: 340 year: 2018 publication-title: Mater. Des. – start-page: 45 year: 2011 – volume: 76 start-page: 895 year: 2020 publication-title: Corrosion – volume: 10 start-page: 7538 year: 2020 publication-title: Appl. Sci. – volume: 26 start-page: 127 year: 2010 publication-title: Mater. Sci. Technol. – volume: 59 start-page: 179 year: 2014 publication-title: Int. Mater. Rev. – volume: 54 start-page: 4745 year: 2006 publication-title: Acta Mater. – year: 2005 – volume: 173 start-page: 107762 year: 2019 publication-title: Mater. Des. – year: 2024 – volume: 7 start-page: 1564 year: 1992 publication-title: J. Mater. Res. – volume: 4 start-page: 052503 year: 2011 publication-title: Appl. Phys. Express – volume: 34 start-page: 051513 year: 2016 publication-title: J. Vacuum Sci. Technol. A – volume: 186 start-page: 108311 year: 2020 publication-title: Mater. Des. – volume: 191 start-page: 372 year: 2019 publication-title: Solar Energy Mater. Solar Cells – year: 2018 – volume: 48 start-page: 4536 year: 2009 publication-title: Appl. Opt. – year: 2014 – volume: 38 start-page: 3950 year: 2023 publication-title: J. Mater. Res. – volume: 13 start-page: 2084 year: 2022 publication-title: Micromachines – volume: 21 start-page: 233 year: 2013 publication-title: Opto‐Electron. Rev. – volume: 57 start-page: 1645 year: 2018 publication-title: Appl. Opt. – volume: 29 start-page: 881 year: 2013 publication-title: Dental Mater. – volume: 389 start-page: 278 year: 2001 publication-title: Thin Solid Films – volume: 498 start-page: 131817 year: 2025 publication-title: Surf. Coat. Technol. – volume: 355 start-page: 1115 year: 2009 publication-title: J. Non‐Cryst. Solids – volume: 342 start-page: 58 year: 2003 publication-title: Mater. Sci. Eng. A – volume: 264 start-page: 207 year: 2013 publication-title: Appl. Surf. Sci. – volume: 124 start-page: 210 year: 2000 publication-title: Surf. Coat. Technol. – volume: 231 start-page: 112014 year: 2023 publication-title: Mater. Des. – volume: 258 start-page: 1 year: 2014 publication-title: Surf. Coat. Technol. – volume: 47 start-page: 5177 year: 2021 publication-title: Ceram. Int. – volume: 175 start-page: 277 year: 2020 publication-title: Acta Astronautica – volume: 485 start-page: 435 year: 2009 publication-title: J. Alloys Compd. – volume: 16 start-page: 1355 year: 2025 publication-title: Nat. Commun. – volume: 46 start-page: 24592 year: 2020 publication-title: Ceram. Int. – volume: 1 start-page: 601 year: 1986 publication-title: J. Mater. Res. – volume: 25 start-page: 2200951 year: 2023 publication-title: Adv. Eng. Mater. – volume: 359 start-page: 112 year: 2003 publication-title: Mater. Sci. Eng. A – volume: 33 start-page: 575 year: 2017 publication-title: Dental Mater. – volume: 338 start-page: 75 year: 2018 publication-title: Surf. Coat. Technol. – volume: 24 start-page: 3387 year: 2009 publication-title: J. Mater. Res. – volume: 100 start-page: 5731 year: 2017 publication-title: J. Am. Ceram. Soc. – volume: 187 start-page: 157 year: 2020 publication-title: Scr. – volume: 19 start-page: 324 year: 2015 publication-title: Curr. Opin. Solid Mater. Sci. – volume: 520 start-page: 2032 year: 2012 publication-title: Thin Solid Films – volume: 808 start-page: 151630 year: 2019 publication-title: J. Alloys Compd. – volume: 4 start-page: 3779 year: 2011 publication-title: Energy Environ. Sci. – volume: 736 start-page: 138920 year: 2021 publication-title: Thin Solid Films – volume: 6 start-page: 116443 year: 2019 publication-title: Mater. Res. Express – volume: 2 start-page: 35 year: 1993 publication-title: J. Therm. Spray Technol. – volume: 95 start-page: 1928 year: 2015 publication-title: Philos. Mag. – volume: 390 start-page: 406 year: 2016 publication-title: Appl. Surf. Sci. – volume: 71 start-page: 3711 year: 2019 publication-title: J. Minerals Met. Mater. Soc. – volume: 99 start-page: 171 year: 1998 publication-title: Surf. Coat. Technol. – volume: 48 start-page: 125 year: 2003 publication-title: Int. Mater. Rev. – volume: 24 start-page: 801 year: 2009 publication-title: J. Mater. Res. – volume: 83 start-page: 366 year: 2008 publication-title: Vacuum – volume: 2 start-page: 439 year: 2008 publication-title: Int. J. Surf. Sci. Eng. – volume: 130 start-page: 275 year: 2017 publication-title: Mater. Des. – volume: 815 start-page: 140638 year: 2025 publication-title: Thin Solid Films – volume: 5 start-page: 1600833 year: 2017 publication-title: Adv. Opt. Mater. – volume: 36 start-page: 020801 year: 2018 publication-title: J. Vacuum Sci. Technol. A – volume: 584 start-page: 270 year: 2015 publication-title: Thin Solid Films – volume: 72 start-page: 2128 year: 2001 publication-title: Rev. Sci. Instrum. – volume: 49 start-page: 2714 year: 2008 publication-title: Mater. Trans. – volume: 10 start-page: 850 year: 2020 publication-title: Opt. Mater. Express – volume: 21 start-page: 1801268 year: 2019 publication-title: Adv. Eng. Mater. – volume: 240 start-page: 118345 year: 2022 publication-title: Acta Mater. – year: 1999 – ident: e_1_2_9_17_1 doi: 10.2478/s11772-013-0085-7 – ident: e_1_2_9_33_1 doi: 10.1016/j.matdes.2019.107762 – ident: e_1_2_9_54_1 doi: 10.1007/978-3-319-75325-6 – ident: e_1_2_9_16_1 doi: 10.1016/j.matdes.2017.05.063 – ident: e_1_2_9_27_1 doi: 10.1007/BF02647421 – ident: e_1_2_9_69_1 doi: 10.1557/JMR.1986.0601 – ident: e_1_2_9_57_1 doi: 10.1016/j.surfcoat.2014.07.007 – ident: e_1_2_9_73_1 – ident: e_1_2_9_76_1 doi: 10.1016/S0921-5093(03)00339-3 – ident: e_1_2_9_23_1 doi: 10.1179/026708309X12584564052012 – ident: e_1_2_9_34_1 doi: 10.1016/j.cossms.2015.04.003 – ident: e_1_2_9_59_1 doi: 10.3390/mi13122084 – ident: e_1_2_9_65_1 doi: 10.1016/j.tsf.2015.01.067 – ident: e_1_2_9_70_1 doi: 10.1016/S0257-8972(97)00522-7 – ident: e_1_2_9_71_1 doi: 10.1557/jmr.2009.0126 – ident: e_1_2_9_26_1 doi: 10.1007/978-1-4419-9872-9 – ident: e_1_2_9_20_1 doi: 10.3390/app10217538 – ident: e_1_2_9_50_1 doi: 10.1016/j.jnoncrysol.2008.11.040 – ident: e_1_2_9_30_1 doi: 10.1557/jmr.2009.0418 – ident: e_1_2_9_61_1 doi: 10.1063/1.1357228 – volume: 187 start-page: 157 year: 2020 ident: e_1_2_9_22_1 publication-title: Scr. – ident: e_1_2_9_36_1 doi: 10.1080/14786435.2014.913110 – ident: e_1_2_9_29_1 doi: 10.1364/OME.389156 – ident: e_1_2_9_68_1 doi: 10.1557/JMR.1992.1564 – ident: e_1_2_9_44_1 – ident: e_1_2_9_11_1 doi: 10.1016/S0257-8972(99)00655-6 – ident: e_1_2_9_3_1 doi: 10.1117/3.349896 – ident: e_1_2_9_12_1 doi: 10.1016/j.apsusc.2006.10.050 – ident: e_1_2_9_40_1 doi: 10.1111/jace.15093 – ident: e_1_2_9_28_1 doi: 10.1016/j.jallcom.2009.05.133 – ident: e_1_2_9_24_1 doi: 10.1179/095066003225010227 – volume-title: Comprehensive Materials Processing year: 2024 ident: e_1_2_9_60_1 – ident: e_1_2_9_18_1 doi: 10.1016/j.solmat.2018.12.006 – ident: e_1_2_9_7_1 doi: 10.1016/j.ceramint.2020.06.248 – ident: e_1_2_9_31_1 doi: 10.1016/j.tsf.2025.140638 – ident: e_1_2_9_64_1 doi: 10.1007/978-981-99-7390-3 – ident: e_1_2_9_38_1 doi: 10.1016/j.dental.2017.03.006 – ident: e_1_2_9_67_1 doi: 10.1016/j.surfcoat.2017.12.042 – ident: e_1_2_9_9_1 doi: 10.1504/IJSURFSE.2008.022284 – ident: e_1_2_9_43_1 doi: 10.1002/adem.202200951 – ident: e_1_2_9_62_1 doi: 10.1364/AO.48.004536 – ident: e_1_2_9_47_1 doi: 10.1016/j.vacuum.2008.05.031 – ident: e_1_2_9_37_1 doi: 10.1016/j.matdes.2018.01.015 – ident: e_1_2_9_14_1 doi: 10.1016/j.apsusc.2016.08.133 – ident: e_1_2_9_48_1 doi: 10.2320/matertrans.MER2008055 – ident: e_1_2_9_2_1 doi: 10.1016/j.ceramint.2020.10.095 – ident: e_1_2_9_21_1 doi: 10.1002/adem.201801268 – ident: e_1_2_9_45_1 doi: 10.1116/1.4961570 – ident: e_1_2_9_4_1 doi: 10.1039/c1ee01297e – volume-title: Materials science and engineering: An introduction year: 2014 ident: e_1_2_9_58_1 – ident: e_1_2_9_72_1 doi: 10.1016/j.matdes.2019.108311 – ident: e_1_2_9_25_1 doi: 10.1179/1743280414Y.0000000029 – ident: e_1_2_9_39_1 doi: 10.1016/j.actamat.2006.06.008 – ident: e_1_2_9_32_1 doi: 10.1016/j.apsusc.2012.10.003 – ident: e_1_2_9_15_1 doi: 10.1016/j.matdes.2023.112014 – ident: e_1_2_9_51_1 doi: 10.1002/adom.201600833 – ident: e_1_2_9_53_1 doi: 10.1143/APEX.4.052503 – ident: e_1_2_9_13_1 doi: 10.1016/j.tsf.2011.09.079 – ident: e_1_2_9_63_1 doi: 10.1016/S0040-6090(01)00864-1 – ident: e_1_2_9_5_1 doi: 10.5006/3560 – ident: e_1_2_9_56_1 doi: 10.1116/1.5011790 – ident: e_1_2_9_41_1 doi: 10.1017/CBO9780511810930 – ident: e_1_2_9_66_1 doi: 10.1016/j.actamat.2022.118345 – ident: e_1_2_9_74_1 doi: 10.1038/s41467-025-56512-7 – ident: e_1_2_9_75_1 doi: 10.1016/j.dental.2013.05.003 – ident: e_1_2_9_6_1 doi: 10.1016/S0921-5093(02)00259-9 – ident: e_1_2_9_8_1 doi: 10.1088/2053-1591/ab4d29 – ident: e_1_2_9_35_1 doi: 10.1557/s43578-023-01111-9 – ident: e_1_2_9_55_1 doi: 10.1016/j.tsf.2021.138920 – ident: e_1_2_9_52_1 doi: 10.1364/AO.57.001645 – ident: e_1_2_9_42_1 doi: 10.1016/j.surfcoat.2025.131817 – ident: e_1_2_9_46_1 doi: 10.1016/j.ceramint.2023.07.270 – ident: e_1_2_9_19_1 doi: 10.1016/j.actaastro.2020.05.032 – ident: e_1_2_9_49_1 doi: 10.1007/s11837-019-03614-5 – ident: e_1_2_9_10_1 doi: 10.1016/j.jallcom.2019.07.342 |
| SSID | ssj0011013 |
| Score | 2.4496243 |
| Snippet | Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| SubjectTerms | Al2O3 fracture toughness magnetron sputtering nanolaminates optical coatings |
| Title | Deformation Behavior of Optical Ceramic Nanomultilayers: The Role of Aperiodicity |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202501269 |
| Volume | 27 |
| WOSCitedRecordID | wos001574891300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1527-2648 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011013 issn: 1438-1656 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH32J9lD0InkKTzTa76620Fg9Sa7HQW9hsdkEoTUmr4L93J2ljexLxGnZgGebxZWfmG4A7ZL-VjIUeZZp7LuCFXqJY5CV-wrl2kCRiulg2wQcDMZnI4cYUf8kPUT24oWcU8RodXCWL1g9pKHaPu_87l8IDGsldqAdBKHB5A2XDqo7gDK5osWfOrZFnZk3b6NPWtvxWWtqEqUWe6R_9_4bHcLjCmKRTGsUJ7JjZKRxsMA-ewWvPVGOLZMWRmJPMkpd58bhNuibHTfXERd-saDqcKgTnD8TZFRllU4OHO0iTnGFxfvl1DuP-41v3yVttV_A0loFdZFEsjCwLjBA4mmwlt4Kn7YLDTSftJA2FEsp5vaYqsCJ1AtZYpanQLHWo6QJqs2xmLoH40reyrZX0HTiR3E_aLpyrkBlmKLW-acD9WrnxvCTRiEu6ZBqjkuJKSQ0oNfrLsRitlCNavfqrwDXs49dynPAGasv8w9zCnv5cvi_yZmE9Taj3Rv3x8zdhdcXR |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA46BfXBuziveRB8KuvStEl8G9Mxcc4pE_ZW0jQBYayjTsF_b07a1e1JBN9zoBzO5eu5fAehK2C_FZQGHqGKeTbgBV4iaeQlfsKYspAkosodm2D9Ph-NxKCcJoRdmIIfoiq4gWe4eA0ODgXpxg9rKIyP2x88m8ObJBKraI3aVAOmTuigaiRYi3Mz9tT6NRDNzHkbfdJYll_KS4s41SWazs4_fOIu2i5RJm4VZrGHVvRkH20tcA8eoOdbXS0u4pIlMceZwU9TV97GbZ3DrXps42_mxg7HEuD5DbaWhV-ysYbHLSBKzqA9P_s6RK-du2G765X3FTwFjWAbWyQNIkObmnNYTjaCGc7S0LG4qSRM0oBLLq3fKyKbhqdWwGgjFeGKphY3HaHaJJvoY4R94RsRKil8C08E85PQBnQZUE01IcbXdXQ91248LWg04oIwmcSgpLhSUh0VKv3lWQx2ygCvnvxV4BJtdIePvbh33384RZvwolguPEO1Wf6hz9G6-py9vecXzpS-AQpzyBw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7E-9yB4CqabbXbjrbQGxVJrsdBb2Gx2QShNiVXw37uTpLE9ieB9NizDPL7szHwDcI3stwFjnkOZ4o4NeJ4TS-Y7sRtzriwk8ZnKl03wfl-Mx8Gg7CbEWZiCH6J6cEPPyOM1OrieJeb2hzUU28ftD57N4U3qB-tQZ7hJpgb17jAc9apSgrW5vMueWc9GqpkFc6NLb1e_sJKZlpFqnmrC3X-45B7slDiTtAvD2Ic1PT2A7SX2wUN46epqdJGUPIkZSQ15nuUP3KSjM9xWT2wETvPGw4lEgH5HrG2RYTrRKNxGquQUC_TzryMYhfevnQen3LDgKCwF2-gimecb1tRC4HiyCbgRPGnlPG4qbsWJJ6SQ1vMVlU0jEnvAaCMVFYolFjkdQ22aTvUJEDdwTdBSMnAtQAm4G7dsSJce00xTalzdgJuFdqNZQaQRFZTJNEIlRZWSGlCo9BexCC2VI2I9_euBK9gcdMOo99h_OoMtFCimC8-hNs8-9AVsqM_523t2WdrSN6AGyTI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+Behavior+of+Optical+Ceramic+Nanomultilayers%3A+The+Role+of+Aperiodicity&rft.jtitle=Advanced+engineering+materials&rft.au=White%2C+Danielle+E.&rft.au=Cheng%2C+Wenjuan&rft.au=Jagadish%2C+Koushik&rft.au=Rossi%2C+Edoardo&rft.date=2025-11-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=27&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.202501269&rft.externalDBID=10.1002%252Fadem.202501269&rft.externalDocID=ADEM70161 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |