Deformation Behavior of Optical Ceramic Nanomultilayers: The Role of Aperiodicity

Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of aperiodic layer thicknesses on mechanical deformation remain poorly understood. In this article, the relationships between individual layer thic...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials Vol. 27; no. 21
Main Authors: White, Danielle E., Cheng, Wenjuan, Jagadish, Koushik, Rossi, Edoardo, Shao, Yu‐Tsun, Hodge, Andrea M.
Format: Journal Article
Language:English
Published: 01.11.2025
Subjects:
ISSN:1438-1656, 1527-2648
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of aperiodic layer thicknesses on mechanical deformation remain poorly understood. In this article, the relationships between individual layer thicknesses, optical transmittance, and mechanical behavior are investigated for AlN/Al2O3, YSZ/Al2O3, and AlN/YSZ nanomultilayered coatings. These NMs are synthesized with aperiodic layer configurations from individual constituents selected for their optical constants, elastic modulus, and hardness values; the layer designs of select samples are optimized to achieve a transmittance exceeding 90% across the ultraviolet, visible, and near‐infrared spectral range. The effect of aperiodicity on the mechanical properties and deformation is explored at various length scales via nanoindentation, micropillar splitting, and Vickers microindentation. However, competing factors, such as interface type and local microstructure, also play critical roles. It is observed that layer composition strongly influences fracture toughness, as samples with amorphous Al2O3 layers and crystalline/amorphous interfaces exhibit superior mechanical performance and the highest fracture toughness values. Yet, distinct failure modes, including delamination and intergranular fracture, across the different nanomultilayered architectures highlight the relation of optical and mechanical properties to local volume fractions within aperiodic layer stacks and interface characteristics in the coating design. Ceramic nanomultilayers demonstrate optical and mechanical behavior tunability through aperiodicity. Within the studied systems, optically optimized coatings exhibit an average ultraviolet, visible, and near‐infrared spectral transmittance above 90%. Residual stress, local volume fractions within layer stacks, and layer composition are shown to influence mechanical deformation, where crystalline/amorphous interfaces and/or Al2O3 are linked to the highest fracture toughness.
AbstractList Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of aperiodic layer thicknesses on mechanical deformation remain poorly understood. In this article, the relationships between individual layer thicknesses, optical transmittance, and mechanical behavior are investigated for AlN/Al 2 O 3 , YSZ/Al 2 O 3 , and AlN/YSZ nanomultilayered coatings. These NMs are synthesized with aperiodic layer configurations from individual constituents selected for their optical constants, elastic modulus, and hardness values; the layer designs of select samples are optimized to achieve a transmittance exceeding 90% across the ultraviolet, visible, and near‐infrared spectral range. The effect of aperiodicity on the mechanical properties and deformation is explored at various length scales via nanoindentation, micropillar splitting, and Vickers microindentation. However, competing factors, such as interface type and local microstructure, also play critical roles. It is observed that layer composition strongly influences fracture toughness, as samples with amorphous Al 2 O 3 layers and crystalline/amorphous interfaces exhibit superior mechanical performance and the highest fracture toughness values. Yet, distinct failure modes, including delamination and intergranular fracture, across the different nanomultilayered architectures highlight the relation of optical and mechanical properties to local volume fractions within aperiodic layer stacks and interface characteristics in the coating design.
Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of aperiodic layer thicknesses on mechanical deformation remain poorly understood. In this article, the relationships between individual layer thicknesses, optical transmittance, and mechanical behavior are investigated for AlN/Al2O3, YSZ/Al2O3, and AlN/YSZ nanomultilayered coatings. These NMs are synthesized with aperiodic layer configurations from individual constituents selected for their optical constants, elastic modulus, and hardness values; the layer designs of select samples are optimized to achieve a transmittance exceeding 90% across the ultraviolet, visible, and near‐infrared spectral range. The effect of aperiodicity on the mechanical properties and deformation is explored at various length scales via nanoindentation, micropillar splitting, and Vickers microindentation. However, competing factors, such as interface type and local microstructure, also play critical roles. It is observed that layer composition strongly influences fracture toughness, as samples with amorphous Al2O3 layers and crystalline/amorphous interfaces exhibit superior mechanical performance and the highest fracture toughness values. Yet, distinct failure modes, including delamination and intergranular fracture, across the different nanomultilayered architectures highlight the relation of optical and mechanical properties to local volume fractions within aperiodic layer stacks and interface characteristics in the coating design. Ceramic nanomultilayers demonstrate optical and mechanical behavior tunability through aperiodicity. Within the studied systems, optically optimized coatings exhibit an average ultraviolet, visible, and near‐infrared spectral transmittance above 90%. Residual stress, local volume fractions within layer stacks, and layer composition are shown to influence mechanical deformation, where crystalline/amorphous interfaces and/or Al2O3 are linked to the highest fracture toughness.
Author Hodge, Andrea M.
Jagadish, Koushik
Rossi, Edoardo
White, Danielle E.
Shao, Yu‐Tsun
Cheng, Wenjuan
Author_xml – sequence: 1
  givenname: Danielle E.
  surname: White
  fullname: White, Danielle E.
  organization: University of Southern California
– sequence: 2
  givenname: Wenjuan
  surname: Cheng
  fullname: Cheng, Wenjuan
  organization: Università degli Studi Roma Tre
– sequence: 3
  givenname: Koushik
  surname: Jagadish
  fullname: Jagadish, Koushik
  organization: University of Southern California
– sequence: 4
  givenname: Edoardo
  surname: Rossi
  fullname: Rossi, Edoardo
  organization: Università degli Studi Roma Tre
– sequence: 5
  givenname: Yu‐Tsun
  surname: Shao
  fullname: Shao, Yu‐Tsun
  organization: University of Southern California
– sequence: 6
  givenname: Andrea M.
  orcidid: 0000-0001-9945-7841
  surname: Hodge
  fullname: Hodge, Andrea M.
  email: ahodge@usc.edu
  organization: University of Southern California
BookMark eNqFkD1PwzAURS1UJNrCypw_kOJnO47LVtryIRUqUJmjV-dZNUriygmg_HtaFbEy3Tvcc4czYoMmNMTYNfAJcC5usKR6IrjIOAg9PWNDyESeCq3M4NCVNCnoTF-wUdt-cA7AQQ7Z64JciDV2PjTJHe3wy4eYBJes9523WCVzilh7m7xgE-rPqvMV9hTb22Szo-QtVHQcz_YUfSi99V1_yc4dVi1d_eaYvd8vN_PHdLV-eJrPVqkVSkAqc1RSOwVkDIDSbpo7k5cZSJ1ru822pTRokHNpBYIz5QFw5NAKY1WphRyzyenXxtC2kVyxj77G2BfAi6OQ4iik-BNyALIT8O0r6v9ZF7PF8jnnoEH-ACGxZgk
Cites_doi 10.2478/s11772-013-0085-7
10.1016/j.matdes.2019.107762
10.1007/978-3-319-75325-6
10.1016/j.matdes.2017.05.063
10.1007/BF02647421
10.1557/JMR.1986.0601
10.1016/j.surfcoat.2014.07.007
10.1016/S0921-5093(03)00339-3
10.1179/026708309X12584564052012
10.1016/j.cossms.2015.04.003
10.3390/mi13122084
10.1016/j.tsf.2015.01.067
10.1016/S0257-8972(97)00522-7
10.1557/jmr.2009.0126
10.1007/978-1-4419-9872-9
10.3390/app10217538
10.1016/j.jnoncrysol.2008.11.040
10.1557/jmr.2009.0418
10.1063/1.1357228
10.1080/14786435.2014.913110
10.1364/OME.389156
10.1557/JMR.1992.1564
10.1016/S0257-8972(99)00655-6
10.1117/3.349896
10.1016/j.apsusc.2006.10.050
10.1111/jace.15093
10.1016/j.jallcom.2009.05.133
10.1179/095066003225010227
10.1016/j.solmat.2018.12.006
10.1016/j.ceramint.2020.06.248
10.1016/j.tsf.2025.140638
10.1007/978-981-99-7390-3
10.1016/j.dental.2017.03.006
10.1016/j.surfcoat.2017.12.042
10.1504/IJSURFSE.2008.022284
10.1002/adem.202200951
10.1364/AO.48.004536
10.1016/j.vacuum.2008.05.031
10.1016/j.matdes.2018.01.015
10.1016/j.apsusc.2016.08.133
10.2320/matertrans.MER2008055
10.1016/j.ceramint.2020.10.095
10.1002/adem.201801268
10.1116/1.4961570
10.1039/c1ee01297e
10.1016/j.matdes.2019.108311
10.1179/1743280414Y.0000000029
10.1016/j.actamat.2006.06.008
10.1016/j.apsusc.2012.10.003
10.1016/j.matdes.2023.112014
10.1002/adom.201600833
10.1143/APEX.4.052503
10.1016/j.tsf.2011.09.079
10.1016/S0040-6090(01)00864-1
10.5006/3560
10.1116/1.5011790
10.1017/CBO9780511810930
10.1016/j.actamat.2022.118345
10.1038/s41467-025-56512-7
10.1016/j.dental.2013.05.003
10.1016/S0921-5093(02)00259-9
10.1088/2053-1591/ab4d29
10.1557/s43578-023-01111-9
10.1016/j.tsf.2021.138920
10.1364/AO.57.001645
10.1016/j.surfcoat.2025.131817
10.1016/j.ceramint.2023.07.270
10.1016/j.actaastro.2020.05.032
10.1007/s11837-019-03614-5
10.1016/j.jallcom.2019.07.342
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Engineering Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2025 The Author(s). Advanced Engineering Materials published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOI 10.1002/adem.202501269
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_202501269
ADEM70161
Genre article
GrantInformation_xml – fundername: Office of Naval Research
  funderid: N00014‐18‐1‐2263; N00014‐23‐1‐2390
– fundername: Charles Lee Powell Foundation
– fundername: PNRR Project
  funderid: IR0000027
– fundername: European Project
  funderid: 101092211
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
24P
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
XPP
XV2
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c2421-37a436f41e881146f97f87d513676cb5bd38a8a003c2a1f8d37afefac28c4d623
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001574891300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1438-1656
IngestDate Wed Nov 05 20:53:20 EST 2025
Wed Nov 05 09:46:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2421-37a436f41e881146f97f87d513676cb5bd38a8a003c2a1f8d37afefac28c4d623
ORCID 0000-0001-9945-7841
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202501269
PageCount 11
ParticipantIDs crossref_primary_10_1002_adem_202501269
wiley_primary_10_1002_adem_202501269_ADEM70161
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2025
References 2017; 5
2013; 29
2003; 359
2012; 520
2013; 21
2023; 38
2015; 584
2019; 808
2009; 355
2020; 10
2024
2008; 2
1993; 2
2014; 258
2009; 48
2001; 389
2016; 34
1992; 7
1986; 1
2010; 26
2023; 25
2022; 240
2000; 124
2020; 175
2019; 21
2018; 338
2007; 253
2017; 33
2014; 59
2009; 485
2003; 48
2020; 46
2016; 390
1998; 99
2018; 36
2021; 47
2018; 142
2025; 498
2009; 24
2001; 72
2019; 191
2019; 71
2019; 6
2015; 19
2011
2015; 95
2006; 54
2020; 186
2020; 187
2005
2017; 130
2025; 16
2013; 264
2020; 76
2011; 4
2025; 815
1999
2021; 736
2023; 49
2008; 49
2023; 231
2022; 13
2018
2014
2019; 173
2017; 100
2008; 83
2003; 342
2018; 57
e_1_2_9_75_1
Appleget C. D. (e_1_2_9_22_1) 2020; 187
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Callister W. D. (e_1_2_9_58_1) 2014
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
Ghosh M. (e_1_2_9_60_1) 2024
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 253
  start-page: 4734
  year: 2007
  publication-title: Appl. Surf. Sci.
– volume: 49
  start-page: 32953
  year: 2023
  publication-title: Ceram. Int.
– volume: 142
  start-page: 340
  year: 2018
  publication-title: Mater. Des.
– start-page: 45
  year: 2011
– volume: 76
  start-page: 895
  year: 2020
  publication-title: Corrosion
– volume: 10
  start-page: 7538
  year: 2020
  publication-title: Appl. Sci.
– volume: 26
  start-page: 127
  year: 2010
  publication-title: Mater. Sci. Technol.
– volume: 59
  start-page: 179
  year: 2014
  publication-title: Int. Mater. Rev.
– volume: 54
  start-page: 4745
  year: 2006
  publication-title: Acta Mater.
– year: 2005
– volume: 173
  start-page: 107762
  year: 2019
  publication-title: Mater. Des.
– year: 2024
– volume: 7
  start-page: 1564
  year: 1992
  publication-title: J. Mater. Res.
– volume: 4
  start-page: 052503
  year: 2011
  publication-title: Appl. Phys. Express
– volume: 34
  start-page: 051513
  year: 2016
  publication-title: J. Vacuum Sci. Technol. A
– volume: 186
  start-page: 108311
  year: 2020
  publication-title: Mater. Des.
– volume: 191
  start-page: 372
  year: 2019
  publication-title: Solar Energy Mater. Solar Cells
– year: 2018
– volume: 48
  start-page: 4536
  year: 2009
  publication-title: Appl. Opt.
– year: 2014
– volume: 38
  start-page: 3950
  year: 2023
  publication-title: J. Mater. Res.
– volume: 13
  start-page: 2084
  year: 2022
  publication-title: Micromachines
– volume: 21
  start-page: 233
  year: 2013
  publication-title: Opto‐Electron. Rev.
– volume: 57
  start-page: 1645
  year: 2018
  publication-title: Appl. Opt.
– volume: 29
  start-page: 881
  year: 2013
  publication-title: Dental Mater.
– volume: 389
  start-page: 278
  year: 2001
  publication-title: Thin Solid Films
– volume: 498
  start-page: 131817
  year: 2025
  publication-title: Surf. Coat. Technol.
– volume: 355
  start-page: 1115
  year: 2009
  publication-title: J. Non‐Cryst. Solids
– volume: 342
  start-page: 58
  year: 2003
  publication-title: Mater. Sci. Eng. A
– volume: 264
  start-page: 207
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 124
  start-page: 210
  year: 2000
  publication-title: Surf. Coat. Technol.
– volume: 231
  start-page: 112014
  year: 2023
  publication-title: Mater. Des.
– volume: 258
  start-page: 1
  year: 2014
  publication-title: Surf. Coat. Technol.
– volume: 47
  start-page: 5177
  year: 2021
  publication-title: Ceram. Int.
– volume: 175
  start-page: 277
  year: 2020
  publication-title: Acta Astronautica
– volume: 485
  start-page: 435
  year: 2009
  publication-title: J. Alloys Compd.
– volume: 16
  start-page: 1355
  year: 2025
  publication-title: Nat. Commun.
– volume: 46
  start-page: 24592
  year: 2020
  publication-title: Ceram. Int.
– volume: 1
  start-page: 601
  year: 1986
  publication-title: J. Mater. Res.
– volume: 25
  start-page: 2200951
  year: 2023
  publication-title: Adv. Eng. Mater.
– volume: 359
  start-page: 112
  year: 2003
  publication-title: Mater. Sci. Eng. A
– volume: 33
  start-page: 575
  year: 2017
  publication-title: Dental Mater.
– volume: 338
  start-page: 75
  year: 2018
  publication-title: Surf. Coat. Technol.
– volume: 24
  start-page: 3387
  year: 2009
  publication-title: J. Mater. Res.
– volume: 100
  start-page: 5731
  year: 2017
  publication-title: J. Am. Ceram. Soc.
– volume: 187
  start-page: 157
  year: 2020
  publication-title: Scr.
– volume: 19
  start-page: 324
  year: 2015
  publication-title: Curr. Opin. Solid Mater. Sci.
– volume: 520
  start-page: 2032
  year: 2012
  publication-title: Thin Solid Films
– volume: 808
  start-page: 151630
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 3779
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 736
  start-page: 138920
  year: 2021
  publication-title: Thin Solid Films
– volume: 6
  start-page: 116443
  year: 2019
  publication-title: Mater. Res. Express
– volume: 2
  start-page: 35
  year: 1993
  publication-title: J. Therm. Spray Technol.
– volume: 95
  start-page: 1928
  year: 2015
  publication-title: Philos. Mag.
– volume: 390
  start-page: 406
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 71
  start-page: 3711
  year: 2019
  publication-title: J. Minerals Met. Mater. Soc.
– volume: 99
  start-page: 171
  year: 1998
  publication-title: Surf. Coat. Technol.
– volume: 48
  start-page: 125
  year: 2003
  publication-title: Int. Mater. Rev.
– volume: 24
  start-page: 801
  year: 2009
  publication-title: J. Mater. Res.
– volume: 83
  start-page: 366
  year: 2008
  publication-title: Vacuum
– volume: 2
  start-page: 439
  year: 2008
  publication-title: Int. J. Surf. Sci. Eng.
– volume: 130
  start-page: 275
  year: 2017
  publication-title: Mater. Des.
– volume: 815
  start-page: 140638
  year: 2025
  publication-title: Thin Solid Films
– volume: 5
  start-page: 1600833
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 36
  start-page: 020801
  year: 2018
  publication-title: J. Vacuum Sci. Technol. A
– volume: 584
  start-page: 270
  year: 2015
  publication-title: Thin Solid Films
– volume: 72
  start-page: 2128
  year: 2001
  publication-title: Rev. Sci. Instrum.
– volume: 49
  start-page: 2714
  year: 2008
  publication-title: Mater. Trans.
– volume: 10
  start-page: 850
  year: 2020
  publication-title: Opt. Mater. Express
– volume: 21
  start-page: 1801268
  year: 2019
  publication-title: Adv. Eng. Mater.
– volume: 240
  start-page: 118345
  year: 2022
  publication-title: Acta Mater.
– year: 1999
– ident: e_1_2_9_17_1
  doi: 10.2478/s11772-013-0085-7
– ident: e_1_2_9_33_1
  doi: 10.1016/j.matdes.2019.107762
– ident: e_1_2_9_54_1
  doi: 10.1007/978-3-319-75325-6
– ident: e_1_2_9_16_1
  doi: 10.1016/j.matdes.2017.05.063
– ident: e_1_2_9_27_1
  doi: 10.1007/BF02647421
– ident: e_1_2_9_69_1
  doi: 10.1557/JMR.1986.0601
– ident: e_1_2_9_57_1
  doi: 10.1016/j.surfcoat.2014.07.007
– ident: e_1_2_9_73_1
– ident: e_1_2_9_76_1
  doi: 10.1016/S0921-5093(03)00339-3
– ident: e_1_2_9_23_1
  doi: 10.1179/026708309X12584564052012
– ident: e_1_2_9_34_1
  doi: 10.1016/j.cossms.2015.04.003
– ident: e_1_2_9_59_1
  doi: 10.3390/mi13122084
– ident: e_1_2_9_65_1
  doi: 10.1016/j.tsf.2015.01.067
– ident: e_1_2_9_70_1
  doi: 10.1016/S0257-8972(97)00522-7
– ident: e_1_2_9_71_1
  doi: 10.1557/jmr.2009.0126
– ident: e_1_2_9_26_1
  doi: 10.1007/978-1-4419-9872-9
– ident: e_1_2_9_20_1
  doi: 10.3390/app10217538
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jnoncrysol.2008.11.040
– ident: e_1_2_9_30_1
  doi: 10.1557/jmr.2009.0418
– ident: e_1_2_9_61_1
  doi: 10.1063/1.1357228
– volume: 187
  start-page: 157
  year: 2020
  ident: e_1_2_9_22_1
  publication-title: Scr.
– ident: e_1_2_9_36_1
  doi: 10.1080/14786435.2014.913110
– ident: e_1_2_9_29_1
  doi: 10.1364/OME.389156
– ident: e_1_2_9_68_1
  doi: 10.1557/JMR.1992.1564
– ident: e_1_2_9_44_1
– ident: e_1_2_9_11_1
  doi: 10.1016/S0257-8972(99)00655-6
– ident: e_1_2_9_3_1
  doi: 10.1117/3.349896
– ident: e_1_2_9_12_1
  doi: 10.1016/j.apsusc.2006.10.050
– ident: e_1_2_9_40_1
  doi: 10.1111/jace.15093
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jallcom.2009.05.133
– ident: e_1_2_9_24_1
  doi: 10.1179/095066003225010227
– volume-title: Comprehensive Materials Processing
  year: 2024
  ident: e_1_2_9_60_1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.solmat.2018.12.006
– ident: e_1_2_9_7_1
  doi: 10.1016/j.ceramint.2020.06.248
– ident: e_1_2_9_31_1
  doi: 10.1016/j.tsf.2025.140638
– ident: e_1_2_9_64_1
  doi: 10.1007/978-981-99-7390-3
– ident: e_1_2_9_38_1
  doi: 10.1016/j.dental.2017.03.006
– ident: e_1_2_9_67_1
  doi: 10.1016/j.surfcoat.2017.12.042
– ident: e_1_2_9_9_1
  doi: 10.1504/IJSURFSE.2008.022284
– ident: e_1_2_9_43_1
  doi: 10.1002/adem.202200951
– ident: e_1_2_9_62_1
  doi: 10.1364/AO.48.004536
– ident: e_1_2_9_47_1
  doi: 10.1016/j.vacuum.2008.05.031
– ident: e_1_2_9_37_1
  doi: 10.1016/j.matdes.2018.01.015
– ident: e_1_2_9_14_1
  doi: 10.1016/j.apsusc.2016.08.133
– ident: e_1_2_9_48_1
  doi: 10.2320/matertrans.MER2008055
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ceramint.2020.10.095
– ident: e_1_2_9_21_1
  doi: 10.1002/adem.201801268
– ident: e_1_2_9_45_1
  doi: 10.1116/1.4961570
– ident: e_1_2_9_4_1
  doi: 10.1039/c1ee01297e
– volume-title: Materials science and engineering: An introduction
  year: 2014
  ident: e_1_2_9_58_1
– ident: e_1_2_9_72_1
  doi: 10.1016/j.matdes.2019.108311
– ident: e_1_2_9_25_1
  doi: 10.1179/1743280414Y.0000000029
– ident: e_1_2_9_39_1
  doi: 10.1016/j.actamat.2006.06.008
– ident: e_1_2_9_32_1
  doi: 10.1016/j.apsusc.2012.10.003
– ident: e_1_2_9_15_1
  doi: 10.1016/j.matdes.2023.112014
– ident: e_1_2_9_51_1
  doi: 10.1002/adom.201600833
– ident: e_1_2_9_53_1
  doi: 10.1143/APEX.4.052503
– ident: e_1_2_9_13_1
  doi: 10.1016/j.tsf.2011.09.079
– ident: e_1_2_9_63_1
  doi: 10.1016/S0040-6090(01)00864-1
– ident: e_1_2_9_5_1
  doi: 10.5006/3560
– ident: e_1_2_9_56_1
  doi: 10.1116/1.5011790
– ident: e_1_2_9_41_1
  doi: 10.1017/CBO9780511810930
– ident: e_1_2_9_66_1
  doi: 10.1016/j.actamat.2022.118345
– ident: e_1_2_9_74_1
  doi: 10.1038/s41467-025-56512-7
– ident: e_1_2_9_75_1
  doi: 10.1016/j.dental.2013.05.003
– ident: e_1_2_9_6_1
  doi: 10.1016/S0921-5093(02)00259-9
– ident: e_1_2_9_8_1
  doi: 10.1088/2053-1591/ab4d29
– ident: e_1_2_9_35_1
  doi: 10.1557/s43578-023-01111-9
– ident: e_1_2_9_55_1
  doi: 10.1016/j.tsf.2021.138920
– ident: e_1_2_9_52_1
  doi: 10.1364/AO.57.001645
– ident: e_1_2_9_42_1
  doi: 10.1016/j.surfcoat.2025.131817
– ident: e_1_2_9_46_1
  doi: 10.1016/j.ceramint.2023.07.270
– ident: e_1_2_9_19_1
  doi: 10.1016/j.actaastro.2020.05.032
– ident: e_1_2_9_49_1
  doi: 10.1007/s11837-019-03614-5
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jallcom.2019.07.342
SSID ssj0011013
Score 2.449677
Snippet Aperiodicity in ceramic nanomultilayers (NMs) has been shown to improve coating functionality, namely, for optimized optical behavior, while the effects of...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms Al2O3
fracture toughness
magnetron sputtering
nanolaminates
optical coatings
Title Deformation Behavior of Optical Ceramic Nanomultilayers: The Role of Aperiodicity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202501269
Volume 27
WOSCitedRecordID wos001574891300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1527-2648
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011013
  issn: 1438-1656
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEIAHbT3owbdYHyUHwdNSk013U2-lWjyUWouV3pY8QSjdsq2C_97Mbru2JxGvSwJhmNdOMt8A3Gjv-hyNWCCljgNOtQqEdiagMlRNpoUrOuTeenG_L8bj1mCti7_gQ5QFN7SM3F-jgUs1b_xAQ_H1uP-_8yGcsqi1DVVKQ4HDGxgflPcIXuHyJ_bcmzVyZlbYxjvW2Ny_EZbW09Q8znQP_n_CQ9hf5pikXSjFEWzZ6THsrZEHT-DlwZZti2TJSMxI6sjzLC9uk47NcFI98d43zR8dTiQm5_fE6xUZphOLi9uISU7xcn7xdQqj7uNr5ylYTlcINF4De88ieRg5Tq0Q2JrsWrETsWnmDDetmsqEQgrprV4zSZ0wfoOzTmomNDc-azqDyjSd2nMgFAkvRmusqHKthLROSROFzCHvjcc1uF0JN5kVEI2kwCWzBIWUlEKqQSHRX5YlqKUxZqsXf91wCbv4tWgnvILKIvuw17CjPxfv86yea08dqg_D7qj3DekMxzs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdSDb7E-9yB4CnU322TrrbSWirFqaaW3sNnsglCaEqvgv3cnSWM9ieB9NizDN4_M41uAS2Vdn6Eec6RUvsOpihyhTOxQ6UYNpoTJN-ReAr_fF-Nx86mYJsRdmJwfoiy4oWVk_hoNHAvS9W_WUBwftz94NoZT5jVXocotlizIq51BdxSUrQSLuWzKnlvLRqqZBXPjNav__MKPyLScqWahprv9D5fcga0izyStHBi7sKKne7C5xD64D88dXa4ukoInMSWJIY-zrMBN2jrF1-qJ9cBJNng4kZig3xCLLTJIJhqFW0iVnGCDfv55AKPu7bDdc4oXFhyFrWDrXSR3PcOpFgLXk03TN8KPGxmPm4oaUewKKaS1fMUkNSK2B4w2UjGheGwzp0OoTJOpPgJCkeUlVgqrqlxFQmoTydhzmUHON-7X4Gqh3XCWE2mEOWUyC1FJYamkGuQq_UUsRKT6mLEe__XABaz3hg9BGNz1709gAyXy9cJTqMzTd30Ga-pj_vqWnhdg-gJcL8sh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEIAHbUX04Fuszz0InkLNZptsvZXWoFhqLVZ6C5t9QKE0JVbBf-9Oksb2JIL33bAMM7OTeXwLcC2t6zOuTx0hZOAwV8YOl0Y5rvDiBpXc5BNyb92g1-OjUbNfdBPiLEzOhygTbmgZmb9GA9czZeo_1FBsH7c_ePYOd6nfXIcqw5dkKlDtDMJhtywlWJ3LuuyZtWxEzSzIjbe0vvqFlZtpOVLNrppw9x8OuQc7RZxJWrli7MOanh7A9hJ98BBeOrocXSQFJzEliSHPsyzBTdo6xdfqifXASdZ4OBEYoN8Rq1tkkEw0Lm4hKjnBAv386wiG4f1r-8EpXlhwJJaCrXcRzPMNczXnOJ5smoHhgWpkHDcZN2LlccGFtXxJhWu4shuMNkJSLpmykdMxVKbJVJ8AcZHyoqTErCqTMRfaxEL5HjXIfGNBDW4W0o1mOUgjypHJNEIhRaWQapCL9JdlEWpqgBHr6V83XMFmvxNG3cfe0xls4YJ8uvAcKvP0Q1_Ahvycj9_Ty0KXvgEzpsqc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+Behavior+of+Optical+Ceramic+Nanomultilayers%3A+The+Role+of+Aperiodicity&rft.jtitle=Advanced+engineering+materials&rft.au=White%2C+Danielle+E.&rft.au=Cheng%2C+Wenjuan&rft.au=Jagadish%2C+Koushik&rft.au=Rossi%2C+Edoardo&rft.date=2025-11-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=27&rft.issue=21&rft_id=info:doi/10.1002%2Fadem.202501269&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202501269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon