CVAE-Transformer-based industrial short-term load forecasting
Accurate industrial load forecasting is essential for maintaining a balance between power supply and demand within intelligent power systems. In response to the challenges presented by the intricate, nonlinear, and temporal nature of industrial load data, a novel method integrating a Conditional Var...
Saved in:
| Published in: | Journal of physics. Conference series Vol. 3043; no. 1; pp. 12149 - 12154 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bristol
IOP Publishing
01.06.2025
|
| Subjects: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate industrial load forecasting is essential for maintaining a balance between power supply and demand within intelligent power systems. In response to the challenges presented by the intricate, nonlinear, and temporal nature of industrial load data, a novel method integrating a Conditional Variational Autoencoder (CVAE) with a Transformer is introduced. The CVAE, conditioned on meteorological and economic data, excels in precise feature extraction from load data, effectively identifying critical patterns that influence load behavior. This specialized feature extraction is complemented by the Transformer, which refines the understanding of complex load dynamics through its temporal encoding and attention mechanisms. Experimental results using datasets from China and South Korea reveal substantial enhancements in forecasting precision compared to current models |
|---|---|
| AbstractList | Accurate industrial load forecasting is essential for maintaining a balance between power supply and demand within intelligent power systems. In response to the challenges presented by the intricate, nonlinear, and temporal nature of industrial load data, a novel method integrating a Conditional Variational Autoencoder (CVAE) with a Transformer is introduced. The CVAE, conditioned on meteorological and economic data, excels in precise feature extraction from load data, effectively identifying critical patterns that influence load behavior. This specialized feature extraction is complemented by the Transformer, which refines the understanding of complex load dynamics through its temporal encoding and attention mechanisms. Experimental results using datasets from China and South Korea reveal substantial enhancements in forecasting precision compared to current models |
| Author | Wang, Yuanyuan Li, Jiawei Liu, Yonghuan Liao, Xiaoyu |
| Author_xml | – sequence: 1 givenname: Jiawei surname: Li fullname: Li, Jiawei organization: Changsha University of Science & Technology State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha 410114, China – sequence: 2 givenname: Yuanyuan surname: Wang fullname: Wang, Yuanyuan organization: Changsha University of Science & Technology State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha 410114, China – sequence: 3 givenname: Yonghuan surname: Liu fullname: Liu, Yonghuan organization: Changsha University of Science & Technology State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha 410114, China – sequence: 4 givenname: Xiaoyu surname: Liao fullname: Liao, Xiaoyu organization: Changsha University of Science & Technology State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha 410114, China |
| BookMark | eNqFkE1LxDAQhoOs4O7qb7DgOTaT9CM9eFjK-gELXlavIW0n2qVtatIe_Pe2VNajc5mBed93mGdDVp3tkJBbYPfApAwhjThN4iwJBYtECCEDDlF2Qdbnzeo8S3lFNt6fGBNTpWvykL_v9vTodOeNdS06WmiPVVB31egHV-sm8J_WDXRA1waN1VUw6bDUfqi7j2tyaXTj8ea3b8nb4_6YP9PD69NLvjvQkkeQUV0IxsFAgsygQMNLnbHYmJinPEIsZJzKEqIYDVQJlqhRCJ0ZLiqJmUQQW3K35PbOfo3oB3Wyo-umk0pwnrIY-PT7lqSLqnTWe4dG9a5utftWwNTMSs0U1ExEzawUqIXV5BSLs7b9X_R_rh-iOm0T |
| Cites_doi | 10.1109/TCE.2023.3266506 10.1109/TPWRD.2022.3178822 10.1016/j.conbuildmat.2020.120198 10.1109/IEEM58616.2023.10406604 10.1016/j.seta.2022.102209 10.1016/j.ijforecast.2021.03.012 10.1016/j.egyr.2023.01.060 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/3043/1/012149 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_3043_1_012149 JPCS_3043_1_012149 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KQ8 LAP N5L N9A O3W OK1 OVT P2P PHGZM PHGZT PIMPY PJBAE PQGLB RIN RNS RO9 ROL SY9 T37 TR2 TSCCA W28 XSB ~02 AAYXX AEINN AFFHD CITATION 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2419-ab3021f16e0fe3ef2ca905ff52724eeb8578c145ef1d6eceae33a9f23d8e98e13 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Sun Jul 27 14:43:24 EDT 2025 Sat Nov 29 07:50:00 EST 2025 Wed Jul 09 20:55:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2419-ab3021f16e0fe3ef2ca905ff52724eeb8578c145ef1d6eceae33a9f23d8e98e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/3043/1/012149 |
| PQID | 3227051204 |
| PQPubID | 4998668 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_3227051204 iop_journals_10_1088_1742_6596_3043_1_012149 crossref_primary_10_1088_1742_6596_3043_1_012149 |
| PublicationCentury | 2000 |
| PublicationDate | 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 20250601 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2025 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Pereira (JPCS_3043_1_012149bib9) 2022 Chafak (JPCS_3043_1_012149bib3) 2023; 9 Yi (JPCS_3043_1_012149bib11) 2023; 69 Mosbeh (JPCS_3043_1_012149bib10) 2020; 264 Wen (JPCS_3043_1_012149bib1) 2022 Baur (JPCS_3043_1_012149bib7) 2023 Bryan (JPCS_3043_1_012149bib6) 2021; 37 Yuanyuan (JPCS_3043_1_012149bib2) 2021; 129 Arash (JPCS_3043_1_012149bib12) 2022; 52 Xin (JPCS_3043_1_012149bib4) 2023; 38 Shiyi (JPCS_3043_1_012149bib8) 2022; 71 Khazeiynasab (JPCS_3043_1_012149bib13) 2023 Yuanyuan (JPCS_3043_1_012149bib5) 2020; 36 |
| References_xml | – volume: 69 start-page: 657 year: 2023 ident: JPCS_3043_1_012149bib11 article-title: A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined with Pruned and Quantized CNN for Wearable Device [J] publication-title: IEEE Transactions on Consumer Electronics doi: 10.1109/TCE.2023.3266506 – start-page: 135 year: 2022 ident: JPCS_3043_1_012149bib1 article-title: Load Demand Forecasting of Residential Buildings Using a Deep Learning Model – volume: 129 year: 2021 ident: JPCS_3043_1_012149bib2 article-title: Short-term load forecasting of industrial customers based on SVMD and XGBoost [J] publication-title: International Journal of Electrical Power and Energy Systems – volume: 71 start-page: 1 year: 2022 ident: JPCS_3043_1_012149bib8 article-title: A LiDAR SLAM with PCA-Based Feature Extraction and Two-Stage Matching [J] publication-title: IEEE Transactions on Instrumentation and Measurement – start-page: 1 year: 2023 ident: JPCS_3043_1_012149bib13 article-title: Probabilistic Individual Short-Term Load Forecasting Using Conditional Variational Autoencoder [J] – volume: 36 start-page: 1984 year: 2020 ident: JPCS_3043_1_012149bib5 article-title: Short-Term Load Forecasting for Industrial Customers Based on TCN-LightGBM [J] publication-title: IEEE Transactions on Power Systems – volume: 38 start-page: 26 year: 2023 ident: JPCS_3043_1_012149bib4 article-title: A Hybrid Short-Term Load Forecasting Approach for Individual Residential Customer [J] publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2022.3178822 – volume: 264 start-page: 120198 year: 2020 ident: JPCS_3043_1_012149bib10 article-title: Compressive Strength Prediction of High-Performance Concrete Using Gradient Tree Boosting Machine [J] publication-title: Construction and building materials doi: 10.1016/j.conbuildmat.2020.120198 – year: 2023 ident: JPCS_3043_1_012149bib7 article-title: Effect of the Training Data Quantity on the Day-ahead Load Forecasting Performance in the Industrial Sector [J] doi: 10.1109/IEEM58616.2023.10406604 – start-page: 751 year: 2022 ident: JPCS_3043_1_012149bib9 article-title: Classification Of Heart Sounds with RF Feature Extraction and CNN Modeling [J] – volume: 52 start-page: 102209 year: 2022 ident: JPCS_3043_1_012149bib12 article-title: Short-term electricity demand forecasting via variational autoencoders and batch training-based bidirectional long short-term memory [J] publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2022.102209 – volume: 37 start-page: 1748 year: 2021 ident: JPCS_3043_1_012149bib6 article-title: Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting [J] publication-title: International journal of forecasting doi: 10.1016/j.ijforecast.2021.03.012 – volume: 9 start-page: 550 year: 2023 ident: JPCS_3043_1_012149bib3 article-title: Short-Term Load Forecasting Based on ARIMA and ANN Approaches [J] publication-title: Energy Reports doi: 10.1016/j.egyr.2023.01.060 |
| SSID | ssj0033337 |
| Score | 2.3965838 |
| Snippet | Accurate industrial load forecasting is essential for maintaining a balance between power supply and demand within intelligent power systems. In response to... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 12149 |
| SubjectTerms | Electrical loads Feature extraction Forecasting |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA62KnjxLVar7MGjoZtkH8lBpJQWT6WHKsVLSLITLEi3dqu_32QfVhD04B53s7B8TOabmczOh9ANI8Cd8bo0lWYWR4xqrEOdYGUF54anSmtbik2k4zGfzcSkLrgVdVtl4xNLR53lxtfIe87wUmdANIzul2_Yq0b509VaQqOFtv2UBC_dMImfG0_M3JVWP0RS7JiWN_1dLumr74mk5_J51iM9P9vMD9T8xk6teb784aJL3hkd_PeLD9F-HXEG_cpEjtAWLI7Rbtn5aYoTdDd46g_xtIlfYYU9sWXB_EvTIyheXIyOvQ8PXnOVBW4dGFX4hulT9DgaTgcPuNZUwMZxtcBKM8fqliQQWmBgqVEijK2NaUojAM3dDjYkisGSLAEDChhTwlKWcRAcCDtD7UW-gHMUhDaxIVgRAaeRTriIVMozTmKrXZBoeQeFDZZyWY3OkOWRN-fSwy89_NLDL4ms4O-gW4e5rLdR8ffyboP85p0N7Be_P75Ee9SL-ZYllS5qr1fvcIV2zMd6XqyuS0v6BEDJysY priority: 102 providerName: ProQuest |
| Title | CVAE-Transformer-based industrial short-term load forecasting |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/3043/1/012149 https://www.proquest.com/docview/3227051204 |
| Volume | 3043 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qKnjxLb7pwaNx26SPycGDyi56cF3Ex-qlJO0EBdmVrfr7nfShLCIi2EMpJRPC18l8k3Qyw9i-DBBIeWmZKnLLQykMN76JubYKIINEG2PLYhNJrweDgZo4CzN6qU3_IT1WiYIrCOuAOGiTDy14HKm4TUtx2Q7aLi1ZqKZZSwKxOen0pbxrrLGkK6kORTohgCbG6-eOJhhqmkbxzUyX3NNd_I9RL7GF2vP0jiuJZTaFwxU2V0aAZsUqOzq9Pe7w68aPxTF3BJd7T5-1PbzikXx17my59zzSuUftMNOFC5xeYzfdzvXpGa9rK_CMOFtxbSSxuw1i9C1KtCLTyo-sjUQiQkQDNJOzIIzQBnmMGWqUUisrZA6oAAO5zmaGoyFuMM-3sfXRqhBBhCYGFeoEcggia8hZtLDJ_AbP9KVKoZGWv74BUodK6lBJHSppkFaobLIDwjGtp1Pxe_Od5gN9yZClSsjiCD_c-ltv22xeuCK_5VbLDpt5Hb_hLpvN3l-fivEea510ev2rvVLL6N6PHuhd__yif_8Bv3XMXA |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61W1C5tDxFX5AD3LA2sb2JfaiqqrTqqu1qDwsqJ2M7Y7ES2t1uCog_1d_YcR4UCQlOPZBj4kRRvi_zzdjjGYA3IkNF5KUwlZeBScEdc6nLmQ1aKa8K61yom00Uo5G6vNTjFbjp9sLEtMrOJtaGupz7OEfeJ-IVRCCeyoPFFYtdo-LqatdCo6HFGf78QSFbtT98T_i-5fzkeHJ0ytquAsyTWmlmnSBdC1mOaUCBgXur00EIA15wiegUcdhncoAhK3P0aFEIqwMXpUKtMBP03FVYk5HsPVgbDy_GnzrbL-gomi2YnJG2qy6jjMLM9pzO-yKVop_1YzW1WMLzNz1cnc4Xf4hCrXQnm__bN3oMG61PnRw2P8ETWMHZU3hY57b66hnsH308PGaTzkPHJYvSXSbTX11LkuoLRSEsqlTydW7LhMaht1VMCX8OH-7l3V9Abzaf4UtI0pCHFIOWqLh0udLSFqpU2SA4coOD2oK0w84smuIgpl7UV8pEuE2E20S4TWYauLfgHWFsWkNR_Xv4bof03T13MG___fJrWD-dXJyb8-HobAce8di6uJ5A2oXe9fIb7sED__16Wi1ftTxO4PN90-IWKskq-w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB4l5aFeSnlUtA10Dz1idtfex_jQQxQSgajSHALkZtm7YxGpSqJs4PfX3keqClUICZ_24LGsb8ffjO3xDMCliAmd8rptKi8tSwQ3zEQmY9pKxAJzbYyti03k0ykuFnLWg8n-Lcx601L_R_fZJApuIGwD4jB0PjRnWSqz0G3FRRiHPi1ZIsNNafvwxKcr8dp9I350jCxcy5uHkV4QsYvzenywB1aq72byB1XX9mfy4n_N_BiOWg80GDZSL6FHq1fwrI4ELarXcDX6PhyzeefP0pZ5Q1cGy32Nj6D66Xx25jk9uF3rMnD9qNCVD6B-A98m4_noM2trLLDC2W7JtBHOyts4o8iSIMsLLaPU2pTnPCEy6FZ0EScp2bjMqCBNQmhpuSiRJFIsTuBgtV7RWwgim9mIrEwIeWIylInOscQ4tcY5jRZPIeowVZsmlYaqr8ARlUdGeWSUR0bFqkHmFD44LFW7rKq_dx90P-lexjFW7piHR8nZv412Ac9nnybq-sv06zkccl_3tz59GcDBbvuL3sHT4vduWW3f18p2B8UczXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVAE-Transformer-based+industrial+short-term+load+forecasting&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Li%2C+Jiawei&rft.au=Wang%2C+Yuanyuan&rft.au=Liu%2C+Yonghuan&rft.au=Liao%2C+Xiaoyu&rft.date=2025-06-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=3043&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F3043%2F1%2F012149&rft.externalDocID=JPCS_3043_1_012149 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |