CVAE-Transformer-based industrial short-term load forecasting

Accurate industrial load forecasting is essential for maintaining a balance between power supply and demand within intelligent power systems. In response to the challenges presented by the intricate, nonlinear, and temporal nature of industrial load data, a novel method integrating a Conditional Var...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series Vol. 3043; no. 1; pp. 12149 - 12154
Main Authors: Li, Jiawei, Wang, Yuanyuan, Liu, Yonghuan, Liao, Xiaoyu
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.06.2025
Subjects:
ISSN:1742-6588, 1742-6596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate industrial load forecasting is essential for maintaining a balance between power supply and demand within intelligent power systems. In response to the challenges presented by the intricate, nonlinear, and temporal nature of industrial load data, a novel method integrating a Conditional Variational Autoencoder (CVAE) with a Transformer is introduced. The CVAE, conditioned on meteorological and economic data, excels in precise feature extraction from load data, effectively identifying critical patterns that influence load behavior. This specialized feature extraction is complemented by the Transformer, which refines the understanding of complex load dynamics through its temporal encoding and attention mechanisms. Experimental results using datasets from China and South Korea reveal substantial enhancements in forecasting precision compared to current models
AbstractList Accurate industrial load forecasting is essential for maintaining a balance between power supply and demand within intelligent power systems. In response to the challenges presented by the intricate, nonlinear, and temporal nature of industrial load data, a novel method integrating a Conditional Variational Autoencoder (CVAE) with a Transformer is introduced. The CVAE, conditioned on meteorological and economic data, excels in precise feature extraction from load data, effectively identifying critical patterns that influence load behavior. This specialized feature extraction is complemented by the Transformer, which refines the understanding of complex load dynamics through its temporal encoding and attention mechanisms. Experimental results using datasets from China and South Korea reveal substantial enhancements in forecasting precision compared to current models
Author Wang, Yuanyuan
Li, Jiawei
Liu, Yonghuan
Liao, Xiaoyu
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Li
  fullname: Li, Jiawei
  organization: Changsha University of Science & Technology State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha 410114, China
– sequence: 2
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
  organization: Changsha University of Science & Technology State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha 410114, China
– sequence: 3
  givenname: Yonghuan
  surname: Liu
  fullname: Liu, Yonghuan
  organization: Changsha University of Science & Technology State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha 410114, China
– sequence: 4
  givenname: Xiaoyu
  surname: Liao
  fullname: Liao, Xiaoyu
  organization: Changsha University of Science & Technology State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha 410114, China
BookMark eNqFkE1LxDAQhoOs4O7qb7DgOTaT9CM9eFjK-gELXlavIW0n2qVtatIe_Pe2VNajc5mBed93mGdDVp3tkJBbYPfApAwhjThN4iwJBYtECCEDDlF2Qdbnzeo8S3lFNt6fGBNTpWvykL_v9vTodOeNdS06WmiPVVB31egHV-sm8J_WDXRA1waN1VUw6bDUfqi7j2tyaXTj8ea3b8nb4_6YP9PD69NLvjvQkkeQUV0IxsFAgsygQMNLnbHYmJinPEIsZJzKEqIYDVQJlqhRCJ0ZLiqJmUQQW3K35PbOfo3oB3Wyo-umk0pwnrIY-PT7lqSLqnTWe4dG9a5utftWwNTMSs0U1ExEzawUqIXV5BSLs7b9X_R_rh-iOm0T
Cites_doi 10.1109/TCE.2023.3266506
10.1109/TPWRD.2022.3178822
10.1016/j.conbuildmat.2020.120198
10.1109/IEEM58616.2023.10406604
10.1016/j.seta.2022.102209
10.1016/j.ijforecast.2021.03.012
10.1016/j.egyr.2023.01.060
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/3043/1/012149
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_3043_1_012149
JPCS_3043_1_012149
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
N5L
N9A
O3W
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJBAE
PQGLB
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2419-ab3021f16e0fe3ef2ca905ff52724eeb8578c145ef1d6eceae33a9f23d8e98e13
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Sun Jul 27 14:43:24 EDT 2025
Sat Nov 29 07:50:00 EST 2025
Wed Jul 09 20:55:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2419-ab3021f16e0fe3ef2ca905ff52724eeb8578c145ef1d6eceae33a9f23d8e98e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/3043/1/012149
PQID 3227051204
PQPubID 4998668
PageCount 6
ParticipantIDs proquest_journals_3227051204
iop_journals_10_1088_1742_6596_3043_1_012149
crossref_primary_10_1088_1742_6596_3043_1_012149
PublicationCentury 2000
PublicationDate 20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 20250601
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Pereira (JPCS_3043_1_012149bib9) 2022
Chafak (JPCS_3043_1_012149bib3) 2023; 9
Yi (JPCS_3043_1_012149bib11) 2023; 69
Mosbeh (JPCS_3043_1_012149bib10) 2020; 264
Wen (JPCS_3043_1_012149bib1) 2022
Baur (JPCS_3043_1_012149bib7) 2023
Bryan (JPCS_3043_1_012149bib6) 2021; 37
Yuanyuan (JPCS_3043_1_012149bib2) 2021; 129
Arash (JPCS_3043_1_012149bib12) 2022; 52
Xin (JPCS_3043_1_012149bib4) 2023; 38
Shiyi (JPCS_3043_1_012149bib8) 2022; 71
Khazeiynasab (JPCS_3043_1_012149bib13) 2023
Yuanyuan (JPCS_3043_1_012149bib5) 2020; 36
References_xml – volume: 69
  start-page: 657
  year: 2023
  ident: JPCS_3043_1_012149bib11
  article-title: A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined with Pruned and Quantized CNN for Wearable Device [J]
  publication-title: IEEE Transactions on Consumer Electronics
  doi: 10.1109/TCE.2023.3266506
– start-page: 135
  year: 2022
  ident: JPCS_3043_1_012149bib1
  article-title: Load Demand Forecasting of Residential Buildings Using a Deep Learning Model
– volume: 129
  year: 2021
  ident: JPCS_3043_1_012149bib2
  article-title: Short-term load forecasting of industrial customers based on SVMD and XGBoost [J]
  publication-title: International Journal of Electrical Power and Energy Systems
– volume: 71
  start-page: 1
  year: 2022
  ident: JPCS_3043_1_012149bib8
  article-title: A LiDAR SLAM with PCA-Based Feature Extraction and Two-Stage Matching [J]
  publication-title: IEEE Transactions on Instrumentation and Measurement
– start-page: 1
  year: 2023
  ident: JPCS_3043_1_012149bib13
  article-title: Probabilistic Individual Short-Term Load Forecasting Using Conditional Variational Autoencoder [J]
– volume: 36
  start-page: 1984
  year: 2020
  ident: JPCS_3043_1_012149bib5
  article-title: Short-Term Load Forecasting for Industrial Customers Based on TCN-LightGBM [J]
  publication-title: IEEE Transactions on Power Systems
– volume: 38
  start-page: 26
  year: 2023
  ident: JPCS_3043_1_012149bib4
  article-title: A Hybrid Short-Term Load Forecasting Approach for Individual Residential Customer [J]
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2022.3178822
– volume: 264
  start-page: 120198
  year: 2020
  ident: JPCS_3043_1_012149bib10
  article-title: Compressive Strength Prediction of High-Performance Concrete Using Gradient Tree Boosting Machine [J]
  publication-title: Construction and building materials
  doi: 10.1016/j.conbuildmat.2020.120198
– year: 2023
  ident: JPCS_3043_1_012149bib7
  article-title: Effect of the Training Data Quantity on the Day-ahead Load Forecasting Performance in the Industrial Sector [J]
  doi: 10.1109/IEEM58616.2023.10406604
– start-page: 751
  year: 2022
  ident: JPCS_3043_1_012149bib9
  article-title: Classification Of Heart Sounds with RF Feature Extraction and CNN Modeling [J]
– volume: 52
  start-page: 102209
  year: 2022
  ident: JPCS_3043_1_012149bib12
  article-title: Short-term electricity demand forecasting via variational autoencoders and batch training-based bidirectional long short-term memory [J]
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2022.102209
– volume: 37
  start-page: 1748
  year: 2021
  ident: JPCS_3043_1_012149bib6
  article-title: Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting [J]
  publication-title: International journal of forecasting
  doi: 10.1016/j.ijforecast.2021.03.012
– volume: 9
  start-page: 550
  year: 2023
  ident: JPCS_3043_1_012149bib3
  article-title: Short-Term Load Forecasting Based on ARIMA and ANN Approaches [J]
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2023.01.060
SSID ssj0033337
Score 2.3965838
Snippet Accurate industrial load forecasting is essential for maintaining a balance between power supply and demand within intelligent power systems. In response to...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 12149
SubjectTerms Electrical loads
Feature extraction
Forecasting
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5sVfDiW6xWycGjS_eRTbIHkSItHqT0UKV4WTabXSxIU5vq73cnDysIejDHZAPhY3a-mdnJNwhdSemETCOOQVoc-3yDYE1Dg7U0LiVakMyV6voP8WiUTKdyXBfcirqtsvGJpaPOcgM18p43vNgbECPh7eINw9QoOF2tR2i00CaoJMDohrF4bjwx91dc_RDJsGfapOnv8klffU9GPZ_P8x7tgbYZCGp-Y6fWLF_8cNEl7wz3_vvF-2i3jjiDfmUiB2jDzg_Rdtn5aYojdHP31B_gSRO_2iUGYsuC2ddMj6B48TE6Bh8evOY6C_w6a3QBDdPH6HE4mNzd43qmAjaeqyXWKfes7mhkibPcOma0JMI5wWIWWpsmfgcbGgrraBZZY7XlXEvHeJZYmVjKT1B7ns_tKQrgwDBisROZ9mGY1qmPPZ1MQ6qJiURqOog0WKpFJZ2hyiPvJFEAvwL4FcCvqKrg76Brj7mqt1Hx9_Jug_z6nTXsZ78_Pkc7DIb5liWVLmqvlu_2Am2Zj9WsWF6WlvQJWfvKeg
  priority: 102
  providerName: ProQuest
Title CVAE-Transformer-based industrial short-term load forecasting
URI https://iopscience.iop.org/article/10.1088/1742-6596/3043/1/012149
https://www.proquest.com/docview/3227051204
Volume 3043
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA5uU_DFuzidow8-GntJ0yYPPsyxoaCzyNTpS0nTBAeyjXX6-z3pRRkiItiHUkpOCF-T831pTk4QOuFcU54EBJvU4hjmGw4Wri-x4FInjqBOqvPs-tfhYMBGI760F2Y6K13_GTwWiYILCMuAOGaDhvZwQHlgw1Sc2K5t0pL5vIYahAGbQ5--JY-VNyZwhcWmSGPEWBXj9XNFSwxVg1Z8c9M59_Q3_6PVW2ijVJ5Wp7DYRitqsoPW8ghQme2i8-5Dp4eHlY5Vc2wILrXGn2d7WNkLaHVsfLn1OhWpBeWUFJkJnN5D9_3esHuJy7MVsATO5lgkBNhdu4FytCJKe1Jwh2pNvdDzlUoYjGTp-lRpNw2UVEIRIrj2SMoUZ8ol-6g-mU7UAbLMwmHghZqmAuSYEAloUM0T3xWODGgim8ip8IxnRQqNOF_6Ziw2qMQGldigErtxgUoTnQKOcTmcst-Lt6oP9GUDnioEj-M5_uHfajtC65455Df_1dJC9cX8TR2jVfm-GGfzNmpc9AbRXTvvZXCP6DO8i65uoqcPyq_MEA
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUlQutIWi8mibQ3vDWsfOyweEEA-xYlntYVvRk-s4Y3UltLvdUBB_it_IOA-ohERPHJpj4kRRvi_zzdjjGYAvSrlY5YlkvrQ4o3iDMxNGlhllXc5NzAtXVdfvp4NBdnGhhgtw1-6F8WmVrU2sDHUxtX6OvEvES4lAgkf7s9_Md43yq6ttC42aFmd4e0MhW7nXOyJ8vwpxcjw6PGVNVwFmSa0UM7kkXXNhgtyhRCesUTx2LhapiBDzjDhswyhGFxYJWjQopVFOyCJDlWEo6bmLsBR5sndgadg7H_5obb-kI623YApG2p61GWUUZjbnVNKVPJLdsOurqfkSnn_p4eJ4OnsiCpXSnbz5377RW1htfOrgoP4J3sECTtZgucptteU67B1-Pzhmo9ZDxznz0l0E44euJUH5i6IQ5lUquJyaIqBxaE3pU8Lfw7cXefcN6EymE_wAgV8STUTq4sKQo2lMTt61U3kUGm6TOLebwFvs9KwuDqKrRf0s0x5u7eHWHm4d6hruTdgljHVjKMp_D99pkX685xHmrecvf4bXp6Pzvu73BmfbsCJ86-JqAmkHOlfzP_gRXtnrq3E5_9TwOICfL02Le9Z0Kq8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED615SEW3ohCgQyMmCR2HvbAUEErEFXpUKCb5Ti2qITaqin8fuw8ihBCCIlMGXyW9cX-7hyfvwM4Z0yHLIkIstLiyOw3PCT8QCLBpE48EXqpztX1e3G_T0cjNqhBd3kXZjorqf_SvBZCwQWEZUIcdU0MjVEUssg1W3Hi-q6VJQuYO0t1HVasXImd3Q_kuWJkYp64uBhpDSmt8rx-7uyLl6qbkXyj6tz_dLf-a-TbsFlGoE67sNqBmprswlqeCSqzPbi6fmp30LCKZ9UcWUeXOuNljQ8nezExO7Kc7rxOReqYdkqKzCZQ78NjtzO8vkVljQUkje9mSCTEeHntR8rTiiiNpWBeqHWIYxwolVCzoqUfhEr7aaSkEooQwTQmKVWMKp8cQGMynahDcOwBYoRjHabChGVCJCYW1SwJfOHJKExkE7wKUz4rpDR4fgROKbfIcIsMt8hwnxfINOHCYMnLZZX93rxVfaRPG8NYsWEe7AVHf-vtDNYHN13eu-vfH8MGtnV_878vLWgs5m_qBFbl-2KczU_zyfYB0OrNLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVAE-Transformer-based+industrial+short-term+load+forecasting&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Li%2C+Jiawei&rft.au=Wang%2C+Yuanyuan&rft.au=Liu%2C+Yonghuan&rft.au=Liao%2C+Xiaoyu&rft.date=2025-06-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=3043&rft.issue=1&rft.spage=12149&rft_id=info:doi/10.1088%2F1742-6596%2F3043%2F1%2F012149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_3043_1_012149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon