Oscillation of nonlinear third order perturbed functional difference equations
This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating th...
Uloženo v:
| Vydáno v: | Nonautonomous Dynamical Systems Ročník 6; číslo 1; s. 57 - 64 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
De Gruyter Open
01.01.2019
De Gruyter |
| Témata: | |
| ISSN: | 2353-0626, 2353-0626 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation
By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating the main results are included. |
|---|---|
| AbstractList | This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating the main results are included. This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation Δ ( b n Δ ( a n ( Δ x n ) α ) ) + p n f ( x σ ( n ) ) = g ( n , x n , x σ ( n ) , Δ x n ) , n ≥ n 0 . \Delta {\left( {{b_n}\Delta ({a_n}(\Delta {x_n}} \right)^\alpha })) + {p_n}f\left( {{x_{\sigma \left( n \right)}}} \right) = g\left( {n,{x_n},{x_{\sigma (n)}},\Delta {x_n}} \right),\,\,\,n \ge {n_0}. By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating the main results are included. |
| Author | Selvarangam, S. Dinakar, P. Thandapani, E. |
| Author_xml | – sequence: 1 givenname: P. surname: Dinakar fullname: Dinakar, P. email: dinakarraj@gmail.com organization: Department of Mathematics, Presidency College, Chennai - 600 005, India – sequence: 2 givenname: S. surname: Selvarangam fullname: Selvarangam, S. email: selvarangam.9962@gmail.com organization: Department of Mathematics, Presidency College, Chennai - 600 005, India – sequence: 3 givenname: E. surname: Thandapani fullname: Thandapani, E. email: ethandapani@yahoo.co.in organization: Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India |
| BookMark | eNp1kMtqHDEQRUWYQBzb26z7B3qiV-uRXRgS2zDYG3stSi9HQ7vlSN0E_73VMyaEgDdVhbj3gM5ntJnyFBD6QvCWDGT4-lR97SkmuscY8w_ojLKB9VhQsfnn_oQuaz20BJFtMHyGbu-qS-MIc8pTl2PXsGOaApRu_pWK73LxoXTPocxLscF3cZncmoWx8ynGUMLkQhd-L0dCvUAfI4w1XL7tc_Tw88f97rrf313d7L7ve0c5kb0DCVwrHDTjg2TDIJX1ljKtI7bKch2V9Cx6ralUDIB7IVxLKh-l8Myyc3Rz4voMB_Nc0hOUF5MhmeNDLo8GypzcGAzlTFsqJOVRcQsRQFlQKopBxEEF0ljbE8uVXGsJ8S-PYLPKNatcs8o1q9xW4P8VXJqP_58LpPH92rdT7Q-Mc2heH8vy0g5zyEtpQus7RUGaolckv5Sv |
| CitedBy_id | crossref_primary_10_3390_sym11121501 crossref_primary_10_1155_2021_2875613 |
| Cites_doi | 10.1007/s10013-016-0230-y 10.14232/ejqtde.2010.1.67 10.5556/j.tkjm.32.2001.342 10.1016/j.jmaa.2007.02.054 10.1093/oso/9780198535829.001.0001 10.1155/9789775945198 10.1007/s10013-014-0106-y 10.1155/S0161171292000152 10.1155/2014/791631 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1515/msds-2019-0004 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2353-0626 |
| EndPage | 64 |
| ExternalDocumentID | oai_doaj_org_article_2439b26724f84bafaa8ba88f656f58e1 10_1515_msds_2019_0004 10_1515_msds_2019_00046157 |
| GroupedDBID | 5VS AAFWJ ADBBV AFBDD AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV GROUPED_DOAJ KQ8 M~E OK1 QD8 AAYXX CITATION |
| ID | FETCH-LOGICAL-c2417-ca7a4980e9345735578bdb2399f0b8b49f87d3fd992783aa4d66c4578df76d3b3 |
| IEDL.DBID | DOA |
| ISSN | 2353-0626 |
| IngestDate | Tue Oct 14 19:07:10 EDT 2025 Sat Nov 29 03:58:09 EST 2025 Tue Nov 18 22:21:34 EST 2025 Tue Oct 21 12:50:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 Public License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2417-ca7a4980e9345735578bdb2399f0b8b49f87d3fd992783aa4d66c4578df76d3b3 |
| OpenAccessLink | https://doaj.org/article/2439b26724f84bafaa8ba88f656f58e1 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2439b26724f84bafaa8ba88f656f58e1 crossref_primary_10_1515_msds_2019_0004 crossref_citationtrail_10_1515_msds_2019_0004 walterdegruyter_journals_10_1515_msds_2019_00046157 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Nonautonomous Dynamical Systems |
| PublicationYear | 2019 |
| Publisher | De Gruyter Open De Gruyter |
| Publisher_xml | – name: De Gruyter Open – name: De Gruyter |
| References | 2021030112502466307_j_msds-2019-0004_ref_007_w2aab3b7b9b1b6b1ab1ab7Aa 2021030112502466307_j_msds-2019-0004_ref_003_w2aab3b7b9b1b6b1ab1ab3Aa 2021030112502466307_j_msds-2019-0004_ref_013_w2aab3b7b9b1b6b1ab1ac13Aa 2021030112502466307_j_msds-2019-0004_ref_008_w2aab3b7b9b1b6b1ab1ab8Aa 2021030112502466307_j_msds-2019-0004_ref_001_w2aab3b7b9b1b6b1ab1ab1Aa 2021030112502466307_j_msds-2019-0004_ref_014_w2aab3b7b9b1b6b1ab1ac14Aa 2021030112502466307_j_msds-2019-0004_ref_006_w2aab3b7b9b1b6b1ab1ab6Aa 2021030112502466307_j_msds-2019-0004_ref_011_w2aab3b7b9b1b6b1ab1ac11Aa 2021030112502466307_j_msds-2019-0004_ref_002_w2aab3b7b9b1b6b1ab1ab2Aa 2021030112502466307_j_msds-2019-0004_ref_016_w2aab3b7b9b1b6b1ab1ac16Aa 2021030112502466307_j_msds-2019-0004_ref_005_w2aab3b7b9b1b6b1ab1ab5Aa 2021030112502466307_j_msds-2019-0004_ref_015_w2aab3b7b9b1b6b1ab1ac15Aa 2021030112502466307_j_msds-2019-0004_ref_012_w2aab3b7b9b1b6b1ab1ac12Aa 2021030112502466307_j_msds-2019-0004_ref_004_w2aab3b7b9b1b6b1ab1ab4Aa 2021030112502466307_j_msds-2019-0004_ref_010_w2aab3b7b9b1b6b1ab1ac10Aa 2021030112502466307_j_msds-2019-0004_ref_009_w2aab3b7b9b1b6b1ab1ab9Aa |
| References_xml | – ident: 2021030112502466307_j_msds-2019-0004_ref_004_w2aab3b7b9b1b6b1ab1ab4Aa – ident: 2021030112502466307_j_msds-2019-0004_ref_016_w2aab3b7b9b1b6b1ab1ac16Aa – ident: 2021030112502466307_j_msds-2019-0004_ref_001_w2aab3b7b9b1b6b1ab1ab1Aa doi: 10.1007/s10013-016-0230-y – ident: 2021030112502466307_j_msds-2019-0004_ref_011_w2aab3b7b9b1b6b1ab1ac11Aa doi: 10.14232/ejqtde.2010.1.67 – ident: 2021030112502466307_j_msds-2019-0004_ref_013_w2aab3b7b9b1b6b1ab1ac13Aa doi: 10.5556/j.tkjm.32.2001.342 – ident: 2021030112502466307_j_msds-2019-0004_ref_014_w2aab3b7b9b1b6b1ab1ac14Aa – ident: 2021030112502466307_j_msds-2019-0004_ref_009_w2aab3b7b9b1b6b1ab1ab9Aa doi: 10.1016/j.jmaa.2007.02.054 – ident: 2021030112502466307_j_msds-2019-0004_ref_015_w2aab3b7b9b1b6b1ab1ac15Aa – ident: 2021030112502466307_j_msds-2019-0004_ref_007_w2aab3b7b9b1b6b1ab1ab7Aa doi: 10.1093/oso/9780198535829.001.0001 – ident: 2021030112502466307_j_msds-2019-0004_ref_012_w2aab3b7b9b1b6b1ab1ac12Aa – ident: 2021030112502466307_j_msds-2019-0004_ref_010_w2aab3b7b9b1b6b1ab1ac10Aa – ident: 2021030112502466307_j_msds-2019-0004_ref_002_w2aab3b7b9b1b6b1ab1ab2Aa doi: 10.1155/9789775945198 – ident: 2021030112502466307_j_msds-2019-0004_ref_006_w2aab3b7b9b1b6b1ab1ab6Aa – ident: 2021030112502466307_j_msds-2019-0004_ref_003_w2aab3b7b9b1b6b1ab1ab3Aa doi: 10.1007/s10013-014-0106-y – ident: 2021030112502466307_j_msds-2019-0004_ref_008_w2aab3b7b9b1b6b1ab1ab8Aa doi: 10.1155/S0161171292000152 – ident: 2021030112502466307_j_msds-2019-0004_ref_005_w2aab3b7b9b1b6b1ab1ab5Aa doi: 10.1155/2014/791631 |
| SSID | ssj0001700030 |
| Score | 2.0515597 |
| Snippet | This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation
By using... This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation Δ ( b n Δ ( a n (... This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation |
| SourceID | doaj crossref walterdegruyter |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 57 |
| SubjectTerms | 39A10 asymptotic behavior Comparison method oscillation perturbed equation |
| Title | Oscillation of nonlinear third order perturbed functional difference equations |
| URI | https://www.degruyter.com/doi/10.1515/msds-2019-0004 https://doaj.org/article/2439b26724f84bafaa8ba88f656f58e1 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2353-0626 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0001700030 issn: 2353-0626 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2353-0626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001700030 issn: 2353-0626 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA5SPOjBXawbOQieho5NJstRRfFi9aDgbciqlVrrTFW8-Nt9maSlCMWLlzmEN0n48sL3sn0PoSNHpbXhlrhm3GSUUpcJqruZ0a7QhBHFFW2STfBeTzw8yNuZVF_hTliUB47AdbrAmLrLeJd6qER5pYRWQniIQ3whXLPwybmcWUw9R1GY4L5JpRE4u_NS2xpcIjzZyVNWtgkLNWL9y2jlszmgtu6xev8aTw5EG565XEMrKUDEp7Fj62jBDTfQagoWcZqK9Sbq3QB5DeJNNvzq8TBqXqgKj5_6lcWNpiYeuQo4RcOfgcDivh-eJEUxDru3KPVdb6H7y4u786ssJUfIDJAuz0xAUYrcSUILDlEDF9rq8FLV51poKr3glngrZciloRS1jBmwFNZzZokm26gFPXM7CLu8yA2D8iIHM8ugFqFPmKOmIE5q0kbZBKzSJOXwkMBiUIYVBIBbBnDLAG44y6ZtdDy1H0XNjLmWZwH7qVXQum4KwAPK5AHlXx7QRuTXyJVpHtZzmoUoju_-R9N7aCm6VNiS2UetcfXuDtCi-Rj36-qwcUn4Xn9f_ACFMujw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oscillation+of+nonlinear+third+order+perturbed+functional+difference+equations&rft.jtitle=Nonautonomous+Dynamical+Systems&rft.au=Dinakar%2C+P.&rft.au=Selvarangam%2C+S.&rft.au=Thandapani%2C+E.&rft.date=2019-01-01&rft.issn=2353-0626&rft.eissn=2353-0626&rft.volume=6&rft.issue=1&rft.spage=57&rft.epage=64&rft_id=info:doi/10.1515%2Fmsds-2019-0004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_msds_2019_0004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2353-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2353-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2353-0626&client=summon |