Oscillation of nonlinear third order perturbed functional difference equations

This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonautonomous Dynamical Systems Ročník 6; číslo 1; s. 57 - 64
Hlavní autoři: Dinakar, P., Selvarangam, S., Thandapani, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: De Gruyter Open 01.01.2019
De Gruyter
Témata:
ISSN:2353-0626, 2353-0626
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating the main results are included.
AbstractList This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation
This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating the main results are included.
This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation Δ ( b n Δ ( a n ( Δ x n ) α ) ) + p n f ( x σ ( n ) ) = g ( n , x n , x σ ( n ) , Δ x n ) ,       n ≥ n 0 . \Delta {\left( {{b_n}\Delta ({a_n}(\Delta {x_n}} \right)^\alpha })) + {p_n}f\left( {{x_{\sigma \left( n \right)}}} \right) = g\left( {n,{x_n},{x_{\sigma (n)}},\Delta {x_n}} \right),\,\,\,n \ge {n_0}. By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating the main results are included.
Author Selvarangam, S.
Dinakar, P.
Thandapani, E.
Author_xml – sequence: 1
  givenname: P.
  surname: Dinakar
  fullname: Dinakar, P.
  email: dinakarraj@gmail.com
  organization: Department of Mathematics, Presidency College, Chennai - 600 005, India
– sequence: 2
  givenname: S.
  surname: Selvarangam
  fullname: Selvarangam, S.
  email: selvarangam.9962@gmail.com
  organization: Department of Mathematics, Presidency College, Chennai - 600 005, India
– sequence: 3
  givenname: E.
  surname: Thandapani
  fullname: Thandapani, E.
  email: ethandapani@yahoo.co.in
  organization: Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India
BookMark eNp1kMtqHDEQRUWYQBzb26z7B3qiV-uRXRgS2zDYG3stSi9HQ7vlSN0E_73VMyaEgDdVhbj3gM5ntJnyFBD6QvCWDGT4-lR97SkmuscY8w_ojLKB9VhQsfnn_oQuaz20BJFtMHyGbu-qS-MIc8pTl2PXsGOaApRu_pWK73LxoXTPocxLscF3cZncmoWx8ynGUMLkQhd-L0dCvUAfI4w1XL7tc_Tw88f97rrf313d7L7ve0c5kb0DCVwrHDTjg2TDIJX1ljKtI7bKch2V9Cx6ralUDIB7IVxLKh-l8Myyc3Rz4voMB_Nc0hOUF5MhmeNDLo8GypzcGAzlTFsqJOVRcQsRQFlQKopBxEEF0ljbE8uVXGsJ8S-PYLPKNatcs8o1q9xW4P8VXJqP_58LpPH92rdT7Q-Mc2heH8vy0g5zyEtpQus7RUGaolckv5Sv
CitedBy_id crossref_primary_10_3390_sym11121501
crossref_primary_10_1155_2021_2875613
Cites_doi 10.1007/s10013-016-0230-y
10.14232/ejqtde.2010.1.67
10.5556/j.tkjm.32.2001.342
10.1016/j.jmaa.2007.02.054
10.1093/oso/9780198535829.001.0001
10.1155/9789775945198
10.1007/s10013-014-0106-y
10.1155/S0161171292000152
10.1155/2014/791631
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/msds-2019-0004
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2353-0626
EndPage 64
ExternalDocumentID oai_doaj_org_article_2439b26724f84bafaa8ba88f656f58e1
10_1515_msds_2019_0004
10_1515_msds_2019_00046157
GroupedDBID 5VS
AAFWJ
ADBBV
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
GROUPED_DOAJ
KQ8
M~E
OK1
QD8
AAYXX
CITATION
ID FETCH-LOGICAL-c2417-ca7a4980e9345735578bdb2399f0b8b49f87d3fd992783aa4d66c4578df76d3b3
IEDL.DBID DOA
ISSN 2353-0626
IngestDate Tue Oct 14 19:07:10 EDT 2025
Sat Nov 29 03:58:09 EST 2025
Tue Nov 18 22:21:34 EST 2025
Tue Oct 21 12:50:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 Public License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2417-ca7a4980e9345735578bdb2399f0b8b49f87d3fd992783aa4d66c4578df76d3b3
OpenAccessLink https://doaj.org/article/2439b26724f84bafaa8ba88f656f58e1
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_2439b26724f84bafaa8ba88f656f58e1
crossref_primary_10_1515_msds_2019_0004
crossref_citationtrail_10_1515_msds_2019_0004
walterdegruyter_journals_10_1515_msds_2019_00046157
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Nonautonomous Dynamical Systems
PublicationYear 2019
Publisher De Gruyter Open
De Gruyter
Publisher_xml – name: De Gruyter Open
– name: De Gruyter
References 2021030112502466307_j_msds-2019-0004_ref_007_w2aab3b7b9b1b6b1ab1ab7Aa
2021030112502466307_j_msds-2019-0004_ref_003_w2aab3b7b9b1b6b1ab1ab3Aa
2021030112502466307_j_msds-2019-0004_ref_013_w2aab3b7b9b1b6b1ab1ac13Aa
2021030112502466307_j_msds-2019-0004_ref_008_w2aab3b7b9b1b6b1ab1ab8Aa
2021030112502466307_j_msds-2019-0004_ref_001_w2aab3b7b9b1b6b1ab1ab1Aa
2021030112502466307_j_msds-2019-0004_ref_014_w2aab3b7b9b1b6b1ab1ac14Aa
2021030112502466307_j_msds-2019-0004_ref_006_w2aab3b7b9b1b6b1ab1ab6Aa
2021030112502466307_j_msds-2019-0004_ref_011_w2aab3b7b9b1b6b1ab1ac11Aa
2021030112502466307_j_msds-2019-0004_ref_002_w2aab3b7b9b1b6b1ab1ab2Aa
2021030112502466307_j_msds-2019-0004_ref_016_w2aab3b7b9b1b6b1ab1ac16Aa
2021030112502466307_j_msds-2019-0004_ref_005_w2aab3b7b9b1b6b1ab1ab5Aa
2021030112502466307_j_msds-2019-0004_ref_015_w2aab3b7b9b1b6b1ab1ac15Aa
2021030112502466307_j_msds-2019-0004_ref_012_w2aab3b7b9b1b6b1ab1ac12Aa
2021030112502466307_j_msds-2019-0004_ref_004_w2aab3b7b9b1b6b1ab1ab4Aa
2021030112502466307_j_msds-2019-0004_ref_010_w2aab3b7b9b1b6b1ab1ac10Aa
2021030112502466307_j_msds-2019-0004_ref_009_w2aab3b7b9b1b6b1ab1ab9Aa
References_xml – ident: 2021030112502466307_j_msds-2019-0004_ref_004_w2aab3b7b9b1b6b1ab1ab4Aa
– ident: 2021030112502466307_j_msds-2019-0004_ref_016_w2aab3b7b9b1b6b1ab1ac16Aa
– ident: 2021030112502466307_j_msds-2019-0004_ref_001_w2aab3b7b9b1b6b1ab1ab1Aa
  doi: 10.1007/s10013-016-0230-y
– ident: 2021030112502466307_j_msds-2019-0004_ref_011_w2aab3b7b9b1b6b1ab1ac11Aa
  doi: 10.14232/ejqtde.2010.1.67
– ident: 2021030112502466307_j_msds-2019-0004_ref_013_w2aab3b7b9b1b6b1ab1ac13Aa
  doi: 10.5556/j.tkjm.32.2001.342
– ident: 2021030112502466307_j_msds-2019-0004_ref_014_w2aab3b7b9b1b6b1ab1ac14Aa
– ident: 2021030112502466307_j_msds-2019-0004_ref_009_w2aab3b7b9b1b6b1ab1ab9Aa
  doi: 10.1016/j.jmaa.2007.02.054
– ident: 2021030112502466307_j_msds-2019-0004_ref_015_w2aab3b7b9b1b6b1ab1ac15Aa
– ident: 2021030112502466307_j_msds-2019-0004_ref_007_w2aab3b7b9b1b6b1ab1ab7Aa
  doi: 10.1093/oso/9780198535829.001.0001
– ident: 2021030112502466307_j_msds-2019-0004_ref_012_w2aab3b7b9b1b6b1ab1ac12Aa
– ident: 2021030112502466307_j_msds-2019-0004_ref_010_w2aab3b7b9b1b6b1ab1ac10Aa
– ident: 2021030112502466307_j_msds-2019-0004_ref_002_w2aab3b7b9b1b6b1ab1ab2Aa
  doi: 10.1155/9789775945198
– ident: 2021030112502466307_j_msds-2019-0004_ref_006_w2aab3b7b9b1b6b1ab1ab6Aa
– ident: 2021030112502466307_j_msds-2019-0004_ref_003_w2aab3b7b9b1b6b1ab1ab3Aa
  doi: 10.1007/s10013-014-0106-y
– ident: 2021030112502466307_j_msds-2019-0004_ref_008_w2aab3b7b9b1b6b1ab1ab8Aa
  doi: 10.1155/S0161171292000152
– ident: 2021030112502466307_j_msds-2019-0004_ref_005_w2aab3b7b9b1b6b1ab1ab5Aa
  doi: 10.1155/2014/791631
SSID ssj0001700030
Score 2.0515597
Snippet This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation By using...
This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation Δ ( b n Δ ( a n (...
This paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms 39A10
asymptotic behavior
Comparison method
oscillation
perturbed equation
Title Oscillation of nonlinear third order perturbed functional difference equations
URI https://www.degruyter.com/doi/10.1515/msds-2019-0004
https://doaj.org/article/2439b26724f84bafaa8ba88f656f58e1
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2353-0626
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0001700030
  issn: 2353-0626
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2353-0626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001700030
  issn: 2353-0626
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA5SPOjBXawbOQieho5NJstRRfFi9aDgbciqlVrrTFW8-Nt9maSlCMWLlzmEN0n48sL3sn0PoSNHpbXhlrhm3GSUUpcJqruZ0a7QhBHFFW2STfBeTzw8yNuZVF_hTliUB47AdbrAmLrLeJd6qER5pYRWQniIQ3whXLPwybmcWUw9R1GY4L5JpRE4u_NS2xpcIjzZyVNWtgkLNWL9y2jlszmgtu6xev8aTw5EG565XEMrKUDEp7Fj62jBDTfQagoWcZqK9Sbq3QB5DeJNNvzq8TBqXqgKj5_6lcWNpiYeuQo4RcOfgcDivh-eJEUxDru3KPVdb6H7y4u786ssJUfIDJAuz0xAUYrcSUILDlEDF9rq8FLV51poKr3glngrZciloRS1jBmwFNZzZokm26gFPXM7CLu8yA2D8iIHM8ugFqFPmKOmIE5q0kbZBKzSJOXwkMBiUIYVBIBbBnDLAG44y6ZtdDy1H0XNjLmWZwH7qVXQum4KwAPK5AHlXx7QRuTXyJVpHtZzmoUoju_-R9N7aCm6VNiS2UetcfXuDtCi-Rj36-qwcUn4Xn9f_ACFMujw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oscillation+of+nonlinear+third+order+perturbed+functional+difference+equations&rft.jtitle=Nonautonomous+Dynamical+Systems&rft.au=Dinakar%2C+P.&rft.au=Selvarangam%2C+S.&rft.au=Thandapani%2C+E.&rft.date=2019-01-01&rft.issn=2353-0626&rft.eissn=2353-0626&rft.volume=6&rft.issue=1&rft.spage=57&rft.epage=64&rft_id=info:doi/10.1515%2Fmsds-2019-0004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_msds_2019_0004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2353-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2353-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2353-0626&client=summon