Fast detection method for mixed bad data in power system under long short-term memory network

This paper proposes a fast detection method for mixed bad data in power systems based on long short-term memory networks to address the problems of low detection accuracy and poor detection efficiency. This method utilizes the powerful processing capability and memory characteristics of LSTM network...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 3079; číslo 1; s. 12007 - 12011
Hlavní autoři: Qin, Cheng, Tian, Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.08.2025
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a fast detection method for mixed bad data in power systems based on long short-term memory networks to address the problems of low detection accuracy and poor detection efficiency. This method utilizes the powerful processing capability and memory characteristics of LSTM networks for time series data, effectively addressing issues such as data loss, data corruption, synchronization anomalies, and noise impact in complex environments of power systems. By constructing a dual-layer LSTM network architecture, mixed bad data in the power system can be filtered out. By further standardizing the processing and improving the specific detection process, the rapid and effective detection of mixed bad data in the power system has been achieved. Simulation and actual data verification show that this method can significantly improve the data quality of the power system, enhance the accuracy and efficiency of detecting mixed bad data in the power system, and provide solid data support for the safe and stable operation of the power system.
AbstractList This paper proposes a fast detection method for mixed bad data in power systems based on long short-term memory networks to address the problems of low detection accuracy and poor detection efficiency. This method utilizes the powerful processing capability and memory characteristics of LSTM networks for time series data, effectively addressing issues such as data loss, data corruption, synchronization anomalies, and noise impact in complex environments of power systems. By constructing a dual-layer LSTM network architecture, mixed bad data in the power system can be filtered out. By further standardizing the processing and improving the specific detection process, the rapid and effective detection of mixed bad data in the power system has been achieved. Simulation and actual data verification show that this method can significantly improve the data quality of the power system, enhance the accuracy and efficiency of detecting mixed bad data in the power system, and provide solid data support for the safe and stable operation of the power system.
Author Tian, Hao
Qin, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Qin
  fullname: Qin, Cheng
  organization: Kunming Power Supply Bureau of Yunnan Power Grid Co. Ltd. , Kunming, Yunnan, 650000, China
– sequence: 2
  givenname: Hao
  surname: Tian
  fullname: Tian, Hao
  organization: Kunming Power Supply Bureau of Yunnan Power Grid Co. Ltd. , Kunming, Yunnan, 650000, China
BookMark eNqFkFFLwzAQx4NMcJt-BgM-1ya9tkkeZTgVBF_0UULaXl3n2tQkY-7b21KZj-blctz9_ge_BZl1tkNCrjm75UzKmIs0ifJM5TEwoWIeM54wJs7I_DSZnf5SXpCF91vGYHhiTt7XxgdaYcAyNLajLYaNrWhtHW2bb6xoYSpamWBo09HeHtBRf_QBW7rvqqHZ2e6D-o11IQro2oFvrTvSDsPBus9Lcl6bncer37okb-v719Vj9Pzy8LS6e47KJOUigkICZFgKlKpIUSUJSFHkyCEtEgWouKk5cKyxUHUNXEqeyVwZXkNhslLBktxMub2zX3v0QW_t3nXDSQ0JKFAJDJlLIqat0lnvHda6d01r3FFzpkeXerSkR2N6dKm5nlwOJExkY_u_6P-oHzDHeAA
Cites_doi 10.1016/j.knosys.2022.108836
10.1016/j.knosys.2023.111059
10.1016/j.epsr.2023.109740
10.1021/acs.analchem.3c00613
10.1007/s00202-023-01809-3
10.1088/1361-6501/ac37eb
10.1109/TPWRD.2023.3249124
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1088/1742-6596/3079/1/012007
DatabaseName IOPscience
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: IOPscience
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_3079_1_012007
JPCS_3079_1_012007
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEINN
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
N5L
N9A
O3W
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJBAE
PQGLB
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
W28
XSB
~02
AAYXX
AFFHD
CITATION
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2417-3b8335ec7e89b4e922387b6e134b293e91af131efeb9ff318815869a1f3ba5c93
IEDL.DBID PIMPY
ISSN 1742-6588
IngestDate Thu Aug 14 17:26:38 EDT 2025
Sat Nov 29 07:38:46 EST 2025
Wed Aug 20 00:37:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2417-3b8335ec7e89b4e922387b6e134b293e91af131efeb9ff318815869a1f3ba5c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/3239392322?pq-origsite=%requestingapplication%
PQID 3239392322
PQPubID 4998668
PageCount 5
ParticipantIDs crossref_primary_10_1088_1742_6596_3079_1_012007
proquest_journals_3239392322
iop_journals_10_1088_1742_6596_3079_1_012007
PublicationCentury 2000
PublicationDate 20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 20250801
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Droit (JPCS_3079_1_012007bib6) 2023; 95
Fisher (JPCS_3079_1_012007bib7) 2022; 248
Tong (JPCS_3079_1_012007bib5) 2022; 33
Wu (JPCS_3079_1_012007bib3) 2023; 224
Sharma (JPCS_3079_1_012007bib4) 2023; 105
Tyuryukanov (JPCS_3079_1_012007bib1) 2023; 38
Yu (JPCS_3079_1_012007bib2) 2023; 281
References_xml – volume: 248
  start-page: 1
  year: 2022
  ident: JPCS_3079_1_012007bib7
  article-title: BEAUT: An ExplainaBle Deep Learning Model for Agent-Based Populations With Poor Data [J]
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108836
– volume: 281
  start-page: 1
  year: 2023
  ident: JPCS_3079_1_012007bib2
  article-title: Dispatch of highly renewable energy power system considering its utilization via a data-driven Bayesian assisted optimization algorithm [J]
  publication-title: Knowledge-based systems
  doi: 10.1016/j.knosys.2023.111059
– volume: 224
  start-page: 1
  year: 2023
  ident: JPCS_3079_1_012007bib3
  article-title: Identification and correction of abnormal measurement data in power system based on graph convolutional network and gated recurrent unit [J]
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2023.109740
– volume: 95
  start-page: 13431
  year: 2023
  ident: JPCS_3079_1_012007bib6
  article-title: Early Diagnosis: End-to-End CNN–LSTM Models for Mass Spectrometry Data Classification [J]
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.3c00613
– volume: 105
  start-page: 2383
  year: 2023
  ident: JPCS_3079_1_012007bib4
  article-title: Detection of false data injection in smart grid using PCA based unsupervised learning [J]
  publication-title: Electrical engineering
  doi: 10.1007/s00202-023-01809-3
– volume: 33
  start-page: 1
  year: 2022
  ident: JPCS_3079_1_012007bib5
  article-title: Bearing fault diagnosis by combining a deep residual shrinkage network and bidirectional LSTM [J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ac37eb
– volume: 38
  start-page: 2618
  year: 2023
  ident: JPCS_3079_1_012007bib1
  article-title: Controlled Power System Separation Using Generator PMU Data and System Kinetic Energy [J]
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2023.3249124
SSID ssj0033337
Score 2.4021287
Snippet This paper proposes a fast detection method for mixed bad data in power systems based on long short-term memory networks to address the problems of low...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 12007
SubjectTerms Data loss
Synchronism
SummonAdditionalLinks – databaseName: IOPscience
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA26KnjxW1y_yMGjdU3TtMlRxMWDrBfFvUhI0kQX3HZpq-i_Nx8tsoiIYE89dEJ4Td886JsZAE4EVomh2PcMzaOEpknEsjiJJCXKpXiNle-uf5ONRnQ8ZnO1MOWspf4zexsaBQcIW0McHVgNHUcpYenAnk82QANX_-kKypcwJcTZ-m7xQ8fG2F5ZKIp0QZR2Hq-fF5rLUIt2F99o2uee4fp_7HoDrLXKE16EiE2woIstsOIdoKreBo9DUTcw1433ZhUwjJaGVtPC6eRd51CKHDo_KZwUcOZmq8HQBRq6MrQKvpTFE6yfrZqPHNvb-GlZfcAi2Mx3wP3w6u7yOmpnL0TK5nTLO9JVY2mVacpkoplVETSTqUY4kVYhaIaEQRhpoyUzxhIDRYSmTCCDpSCK4V3QK8pC7wEoqESCGKFTkicqZkJjYSlYE5qj2MRZH5x3ePNZaLHB_a9xSrlDjTvUuEONIx5Q64NTizNvP7f698cPuxf4FYNd8zcrb-N4_2-rHYDV2A0B9i7AQ9Brqld9BJbVWzOpq2N_-j4BFJzSjw
  priority: 102
  providerName: IOP Publishing
Title Fast detection method for mixed bad data in power system under long short-term memory network
URI https://iopscience.iop.org/article/10.1088/1742-6596/3079/1/012007
https://www.proquest.com/docview/3239392322
Volume 3079
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOPscience
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB26uw3k0jZfJGm66JBjjCPLH9IptCVLA-nWlIYkhWAkWU4XuvZmvSnNv--MP0gh0F7igw-2dbBHfjO23rwHcKiFDQspGs3Q3AtlHHoqCULPyMhSinfCNur658l0Kq-uVNq1R9cdrbLHxAaoW7Vn4m0jCPt5ZemPuS9IuQtrkyA4Wdx55CFFa62docYARiS8dTyEUXr2Ob3ukVnglrQNkoGHmVf2fC_8COyOqdjHSa987lNTKXnM_pWtBrNq8QSymzw0ef28d_AGXnX1KHvfTqANeOHKTVhreKG23oKbia5XLHerhrFVstZwmmGly-az3y5nRueMWKZsVrIFOa6xVhuaUXPakv2syltW_8Aa36McgOPn1fKBlS35fBsuJqffPn7yOkcGz2KmRzQy1KPlbOKkMqFTWFvIxMSOi9Bg3eAU1wUX3BXOqKJAuJA8krHSvBBGR1aJHRiWVel2gWlpuI4K7eIoD22gtBMagdlFMudBESR7cNw_-WzRCm9kzYK5lBkFK6NgZRSsjGdtsPbgCCOUdS9h_f_LD_o4PY55DMv-v0-_hfWArIAbLuABDFfLe_cOXtpfq1m9HMPow-k0_TqGwRdxifs0-j7uZuMfQVrlzQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21Wyq48FlESwEf4Ea0azsf9gEhBKy66na1hyKVAzK248BKNFk2C6V_it_ITD5UJKT21AM5JvYh8fM8O34zD-C5lT4ulGxqhuZRrNI40pmII6cSTxQfpG-q60-z2UydnOj5Bvzuc2FIVtnHxCZQ55Wnf-RDSbW6cDUixOvl94hco-h0tbfQaGFxGM7PcMtWv5q8w_F9IcT4_fHbg6hzFYg8shXOKEd5RsFnQWkXB438qDKXBi5jh9wXNLcFlzwUwemiQMgrnqhUW15IZxNPxZcw5G_FCPbRALbmk6P5xz72S7yyNgVTRMjtqleU4Tazu6fTIU4rPeRDSlslF9u_-HBzUS3_IYWG6cZ3_rdvdBdud2tq9qadBPdgI5T3YbvRtvr6AXwa23rN8rBuVGcla02zGa7W2eniV8iZszkjpSxblGxJrnGsrW_NKMFuxb5V5RdWf8V9SkQ8hv1Pq9U5K1sB_Q58uJZ3ewiDsirDI2BWOW6TwoY0yWMvtA3SIrmEROVcFCLbhVE_tmbZFg8xzaG_UobgYAgOhuBguGnhsAsvEQOmCyT11c33eyRc9LmAwd7lj5_BzYPjo6mZTmaHj-GWIGvjRtu4D4P16kd4Ajf8z_WiXj3tcM7g83XD5g_mvzJo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5848W3-DYHj9aapo_kKGpRXNY9KHqRkKSJLmh32a6i_96k6SoiIoI99dAJ4Wv6zQed-QZgTxAVG0pqz9AiiGkaByyL4kDSRLkUr4mq3fVbWbtNb29ZZwzyj16YXr-h_gN7642CPYRNQRwNrYaOgjRhaWjPJwtx6Po_D7OwX5hxmHR2JW6SwSW5GTEysVfmGyNdIKWjOq-fF_uSpcbtTr5RdZ1_8vn_2vkCzDUKFB35qEUY0-USTNeVoKpahrtcVENU6GFdo1UiP2IaWW2LnrqvukBSFMjVlaJuifpuxhrybtDItaMN0GOvvEfVg1X1gWN9G__UG7yh0pebr8B1fnp1fBY0MxgCZXO75R_purK0yjRlMtbMqgmayVRjEkurFDTDwmCCtdGSGWMJguKEpkxgQ6RIFCOrMFH2Sr0GSFCJRWKETpMiVhETmghLxTqhBY5MlK3D4Qhz3vdWG7z-RU4pd8hxhxx3yHHMPXLrsG-x5s1nV_3--NboJX7GEGcCZ2VuFG38bbVdmOmc5Lx13r7YhNnIzQWuCwO3YGI4eNbbMKVeht1qsFMfxncqs9fu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+detection+method+for+mixed+bad+data+in+power+system+under+long+short-term+memory+network&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Cheng%2C+Qin&rft.au=Tian%2C+Hao&rft.date=2025-08-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=3079&rft.issue=1&rft.spage=012007&rft_id=info:doi/10.1088%2F1742-6596%2F3079%2F1%2F012007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon