Fast detection method for mixed bad data in power system under long short-term memory network
This paper proposes a fast detection method for mixed bad data in power systems based on long short-term memory networks to address the problems of low detection accuracy and poor detection efficiency. This method utilizes the powerful processing capability and memory characteristics of LSTM network...
Gespeichert in:
| Veröffentlicht in: | Journal of physics. Conference series Jg. 3079; H. 1; S. 12007 - 12011 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bristol
IOP Publishing
01.08.2025
|
| Schlagworte: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper proposes a fast detection method for mixed bad data in power systems based on long short-term memory networks to address the problems of low detection accuracy and poor detection efficiency. This method utilizes the powerful processing capability and memory characteristics of LSTM networks for time series data, effectively addressing issues such as data loss, data corruption, synchronization anomalies, and noise impact in complex environments of power systems. By constructing a dual-layer LSTM network architecture, mixed bad data in the power system can be filtered out. By further standardizing the processing and improving the specific detection process, the rapid and effective detection of mixed bad data in the power system has been achieved. Simulation and actual data verification show that this method can significantly improve the data quality of the power system, enhance the accuracy and efficiency of detecting mixed bad data in the power system, and provide solid data support for the safe and stable operation of the power system. |
|---|---|
| AbstractList | This paper proposes a fast detection method for mixed bad data in power systems based on long short-term memory networks to address the problems of low detection accuracy and poor detection efficiency. This method utilizes the powerful processing capability and memory characteristics of LSTM networks for time series data, effectively addressing issues such as data loss, data corruption, synchronization anomalies, and noise impact in complex environments of power systems. By constructing a dual-layer LSTM network architecture, mixed bad data in the power system can be filtered out. By further standardizing the processing and improving the specific detection process, the rapid and effective detection of mixed bad data in the power system has been achieved. Simulation and actual data verification show that this method can significantly improve the data quality of the power system, enhance the accuracy and efficiency of detecting mixed bad data in the power system, and provide solid data support for the safe and stable operation of the power system. |
| Author | Tian, Hao Qin, Cheng |
| Author_xml | – sequence: 1 givenname: Cheng surname: Qin fullname: Qin, Cheng organization: Kunming Power Supply Bureau of Yunnan Power Grid Co. Ltd. , Kunming, Yunnan, 650000, China – sequence: 2 givenname: Hao surname: Tian fullname: Tian, Hao organization: Kunming Power Supply Bureau of Yunnan Power Grid Co. Ltd. , Kunming, Yunnan, 650000, China |
| BookMark | eNqFkFFLwzAQx4NMcJt-BgM-1ya9tkkeZTgVBF_0UULaXl3n2tQkY-7b21KZj-blctz9_ge_BZl1tkNCrjm75UzKmIs0ifJM5TEwoWIeM54wJs7I_DSZnf5SXpCF91vGYHhiTt7XxgdaYcAyNLajLYaNrWhtHW2bb6xoYSpamWBo09HeHtBRf_QBW7rvqqHZ2e6D-o11IQro2oFvrTvSDsPBus9Lcl6bncer37okb-v719Vj9Pzy8LS6e47KJOUigkICZFgKlKpIUSUJSFHkyCEtEgWouKk5cKyxUHUNXEqeyVwZXkNhslLBktxMub2zX3v0QW_t3nXDSQ0JKFAJDJlLIqat0lnvHda6d01r3FFzpkeXerSkR2N6dKm5nlwOJExkY_u_6P-oHzDHeAA |
| Cites_doi | 10.1016/j.knosys.2022.108836 10.1016/j.knosys.2023.111059 10.1016/j.epsr.2023.109740 10.1021/acs.analchem.3c00613 10.1007/s00202-023-01809-3 10.1088/1361-6501/ac37eb 10.1109/TPWRD.2023.3249124 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1088/1742-6596/3079/1/012007 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_3079_1_012007 JPCS_3079_1_012007 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEINN AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KQ8 LAP N5L N9A O3W OK1 OVT P2P PHGZM PHGZT PIMPY PJBAE PQGLB RIN RNS RO9 ROL SY9 T37 TR2 TSCCA W28 XSB ~02 AAYXX AFFHD CITATION 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2417-3b8335ec7e89b4e922387b6e134b293e91af131efeb9ff318815869a1f3ba5c93 |
| IEDL.DBID | P5Z |
| ISSN | 1742-6588 |
| IngestDate | Thu Aug 14 17:26:38 EDT 2025 Sat Nov 29 07:38:46 EST 2025 Wed Aug 20 00:37:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2417-3b8335ec7e89b4e922387b6e134b293e91af131efeb9ff318815869a1f3ba5c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3239392322?pq-origsite=%requestingapplication% |
| PQID | 3239392322 |
| PQPubID | 4998668 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1088_1742_6596_3079_1_012007 proquest_journals_3239392322 iop_journals_10_1088_1742_6596_3079_1_012007 |
| PublicationCentury | 2000 |
| PublicationDate | 20250801 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 20250801 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2025 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Droit (JPCS_3079_1_012007bib6) 2023; 95 Fisher (JPCS_3079_1_012007bib7) 2022; 248 Tong (JPCS_3079_1_012007bib5) 2022; 33 Wu (JPCS_3079_1_012007bib3) 2023; 224 Sharma (JPCS_3079_1_012007bib4) 2023; 105 Tyuryukanov (JPCS_3079_1_012007bib1) 2023; 38 Yu (JPCS_3079_1_012007bib2) 2023; 281 |
| References_xml | – volume: 248 start-page: 1 year: 2022 ident: JPCS_3079_1_012007bib7 article-title: BEAUT: An ExplainaBle Deep Learning Model for Agent-Based Populations With Poor Data [J] publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.108836 – volume: 281 start-page: 1 year: 2023 ident: JPCS_3079_1_012007bib2 article-title: Dispatch of highly renewable energy power system considering its utilization via a data-driven Bayesian assisted optimization algorithm [J] publication-title: Knowledge-based systems doi: 10.1016/j.knosys.2023.111059 – volume: 224 start-page: 1 year: 2023 ident: JPCS_3079_1_012007bib3 article-title: Identification and correction of abnormal measurement data in power system based on graph convolutional network and gated recurrent unit [J] publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2023.109740 – volume: 95 start-page: 13431 year: 2023 ident: JPCS_3079_1_012007bib6 article-title: Early Diagnosis: End-to-End CNN–LSTM Models for Mass Spectrometry Data Classification [J] publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.3c00613 – volume: 105 start-page: 2383 year: 2023 ident: JPCS_3079_1_012007bib4 article-title: Detection of false data injection in smart grid using PCA based unsupervised learning [J] publication-title: Electrical engineering doi: 10.1007/s00202-023-01809-3 – volume: 33 start-page: 1 year: 2022 ident: JPCS_3079_1_012007bib5 article-title: Bearing fault diagnosis by combining a deep residual shrinkage network and bidirectional LSTM [J] publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ac37eb – volume: 38 start-page: 2618 year: 2023 ident: JPCS_3079_1_012007bib1 article-title: Controlled Power System Separation Using Generator PMU Data and System Kinetic Energy [J] publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2023.3249124 |
| SSID | ssj0033337 |
| Score | 2.402043 |
| Snippet | This paper proposes a fast detection method for mixed bad data in power systems based on long short-term memory networks to address the problems of low... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 12007 |
| SubjectTerms | Data loss Synchronism |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA26KnjxW1xdJQeP1jbNpk2OIi6e1oviXiQ0H9UF7S5tFf33TpoWWUREsKceOiFM0zdv6JsZhE4jkg8jm-iAMWYgQUlokFETQ5bCNUsjA0GXN8Mm0vGYTyZioRZmNm-h_xxufaNg78JWEMdD4NCwFhNJCOdThCR09Z-uoHyFcsZcAnZD7zs0pnClvijSGXHeabx-XmghQi3DLr7BdBN7Rpv_sesttNEyT3zhLbbRki120FqjANXVLnoYZVWNja0bbVaB_WhpDJwWv0zfrcEqM9jpSfG0wHM3Ww37LtDYlaGV-HlWPOLqCdh84NAe7F9m5QcuvMx8D92Nrm4vr4N29kKgIaYD7ihXjWV1arlQQyuARfBUJZbQoQKGYAXJckKJza0SeQ7AwAnjichITlXGtKD7qFfMCnuAMEB7YhKrISxCMqopjxSQUCNSq2kuuOqjqPO3nPsWG7L5Nc65dF6TzmvSeU0S6b3WR2fgZ9l-btXvjw-6F_hlQ13zN6C3cXz4t9WO0HrshgA3KsAB6tXlqz1Gq_qtnlblSXP6PgHLndJp priority: 102 providerName: IOP Publishing |
| Title | Fast detection method for mixed bad data in power system under long short-term memory network |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/3079/1/012007 https://www.proquest.com/docview/3239392322 |
| Volume | 3079 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC4cdWEv6rorPoc-7NEw6elJ0n1aVBz04BhEURckpB_RASeZnYyL_nur8kBhwT2YY5ImIdX56qvuqvoAfvo8G_guNF4QBBYDlFB4qbB9jFKkCSLfotOVldhENBrJmxsVNwtuZZNW2WJiBdS2MLRG3hPUqwvZSL__a_rHI9Uo2l1tJDQ6sERdEki6IQ5-t0gs8Ijqgkh8eCBlm9-FQV9zToU9nOSqx3tUREqasu-8U2dcTP-B6MrvDFc_-8ZrsNIwTnZQT5FvsODydfhSZX6a8jvcDdNyzqybVzlZOaslpRlyWTYZPzvLdGoZ5ZGycc6mpKnG6u7PjMrPZuyxyO9Z-YAs3iOUx_GTYvbC8jq9_AdcDY8vj068RnPBM-jLEW80VWE5Ezmp9MApZA8y0qHjYqCRGTjF04wL7jKnVZYhIEgeyFClPBM6DYwSG7CYF7nbBIaQHtrQGXSHGIQaIX2N5NOqyBmRKam3wG-_dTKtW2sk1Za4lAmZJyHzJGSehCe1ebZgH22SNL9Z-f_bd1vLvI15M8v2x5d34GufxH6rbL9dWJzPntweLJu_83E568LS4fEovuhC51xcd6t5h-fi07P49hVtV9l_ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RhapcWiitSrsFH8qNaON4k9gHVPXBCgRdoQokLpWJH2lXKsl2s7TdP8Vv7EweolIleuJAjkl8cPx5vpl4Zj6ANyHPh6FPbBDHscMAJRFBJlyEUYq0cRo6JF1Zi02k47E8P1cnS3Dd1cJQWmVnE2tD7UpL_8gHgnp1oTcSRW-nPwJSjaLT1U5Co4HFkV_8wpCt2jv8iOu7E0Wj_dMPB0GrKhBYZCvcUYbqjLxNvVRm6BXyo0xN4rkYGuQ-r3iWc8F97o3Kc4S85LFMVMZzYbLYUvMlNPnLQ4EmpgfL7_fHJ5872y_wSpsSTJxuLGWXUYZhZntPJQPcVmrAB1S2Siq2f_Hhg0k5_YcUaqYbPblv32gNHrc-NXvXbIJ1WPLFU3hY57baagO-jLJqzpyf11lnBWtEsxl66-xy8ts7ZjLHKFOWTQo2JdU41vS3ZlRgN2Pfy-Irq75hnBIQj-H4y3K2YEWTQP8Mzu5kbs-hV5SFfwEMSStxibdI-BhmWyFDg-61U6m3IlfSbELYra2eNs1DdH3oL6UmOGiCgyY4aK4bOGzCLmJAt4ak-v_r_Q4JN2NuYPDy9sfb8Ojg9NOxPj4cH72C1Yikjevcxj705rMr_xpW7M_5pJpttThncHHXsPkDPYcyGQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xKBUXHqWovIoPPTYkXm8S-4iACES1cACVS2XFL7oSJNFmW8G_ZxxnqRCqKqTmlENmZH1xZj4r38wAfEmoGyY201GapgYPKBmLSmYGeErhOs0Tg0mXd8Mm8tGI39yIyzkonmth6qYP_Qd4GxoFBwh7QRyPkUOjr1RkMe5PEdPY138medwYNw-Lvl2J76F_wb7PIjLDKw-Fkd6Q85nO6-_OXmSpeVzJq1Dd5Z9i9X-tfA1WegZKDoPVOszZ6gMsdUpQ3W7Aj6Jsp8TYaafRqkgYMU2Q25L78YM1RJWGeF0pGVek8TPWSOgGTXw52oTc1dUtaX8iq4981Ef7-3rySKogN_8I18XJ1dFp1M9giDTmdow_yldlWZ1bLtTQCmQTPFeZpWyokClYQUtHGbXOKuEcBghOU56JkjqmylQLtgkLVV3ZT0AwxGcmsxrTIx5KNeOJQjJqRG41c4KrLUhmmMsmtNqQ3S9yzqVHTnrkpEdOUhmQ24KviLXsP7v234_vzl7iHxvmm8AhzR0Mtt_mbR_eXx4X8tvZ6HwHlgd-LnAnDNyFhenkl92Dd_r3dNxOPneb8QnfetfI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+detection+method+for+mixed+bad+data+in+power+system+under+long+short-term+memory+network&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Cheng%2C+Qin&rft.au=Tian%2C+Hao&rft.date=2025-08-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=3079&rft.issue=1&rft.spage=012007&rft_id=info:doi/10.1088%2F1742-6596%2F3079%2F1%2F012007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |