Multispectral image processing algorithms for enhanced vision systems in the Arctic

The issues of enhanced vision multispectral systems application for robotic complexes control in the Arctic are considered. The existing contrast enhancement methods are observed. Probability characteristics of images being subject to contrast enhancement parameters are estimated. Based on these cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science Jg. 302; H. 1; S. 12063 - 12070
Hauptverfasser: Kirillov, S N, Pokrovskij, P S, Baukov, A A, Skonnikov, P N
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IOP Publishing 01.07.2019
ISSN:1755-1307, 1755-1315
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The issues of enhanced vision multispectral systems application for robotic complexes control in the Arctic are considered. The existing contrast enhancement methods are observed. Probability characteristics of images being subject to contrast enhancement parameters are estimated. Based on these characteristics, the authors concluded that image areas requiring the greatest contrast enhancement are the areas with low saturation and magnitude gradients, at certain brightness values. Image quality improvement method is proposed. It performs processing only in the areas where it is necessary to enhance the contrast, practically without affecting the most homogeneous or structured image parts. The processed image saturation remains due to the processing of both luminance channel and saturation channel. The algorithm proposed also provides contrast enhancement of shaded image areas. The calculated values of various objective image quality indices indicate that the contrast enhancement algorithm proposed provides better results than known approaches. In addition, different spectral range image fusion algorithm ensuring visibility in the presence of interfering factors is proposed. It differs from known methods by adaptive weight adjustment in different areas of image. The example confirming the effectiveness of the fusion method proposed is shown. For its comparison with known methods, the values of fusion objective quality indices are calculated. The fusion algorithm proposed is shown to surpass known methods by various quality assessments. The conclusion about the expediency of using the algorithms developed in technical vision systems of robotic complexes in the Arctic is made.
AbstractList The issues of enhanced vision multispectral systems application for robotic complexes control in the Arctic are considered. The existing contrast enhancement methods are observed. Probability characteristics of images being subject to contrast enhancement parameters are estimated. Based on these characteristics, the authors concluded that image areas requiring the greatest contrast enhancement are the areas with low saturation and magnitude gradients, at certain brightness values. Image quality improvement method is proposed. It performs processing only in the areas where it is necessary to enhance the contrast, practically without affecting the most homogeneous or structured image parts. The processed image saturation remains due to the processing of both luminance channel and saturation channel. The algorithm proposed also provides contrast enhancement of shaded image areas. The calculated values of various objective image quality indices indicate that the contrast enhancement algorithm proposed provides better results than known approaches. In addition, different spectral range image fusion algorithm ensuring visibility in the presence of interfering factors is proposed. It differs from known methods by adaptive weight adjustment in different areas of image. The example confirming the effectiveness of the fusion method proposed is shown. For its comparison with known methods, the values of fusion objective quality indices are calculated. The fusion algorithm proposed is shown to surpass known methods by various quality assessments. The conclusion about the expediency of using the algorithms developed in technical vision systems of robotic complexes in the Arctic is made.
Author Skonnikov, P N
Baukov, A A
Kirillov, S N
Pokrovskij, P S
Author_xml – sequence: 1
  givenname: S N
  surname: Kirillov
  fullname: Kirillov, S N
  email: kirillov.lab@mail.ru
  organization: Ryazan State Radio Engineering University , Russia
– sequence: 2
  givenname: P S
  surname: Pokrovskij
  fullname: Pokrovskij, P S
  email: paulps@list.ru
  organization: Ryazan State Radio Engineering University , Russia
– sequence: 3
  givenname: A A
  surname: Baukov
  fullname: Baukov, A A
  email: baukov.andrej@yandex.ru
  organization: Ryazan State Radio Engineering University , Russia
– sequence: 4
  givenname: P N
  surname: Skonnikov
  fullname: Skonnikov, P N
  email: skonnikovpn@yandex.ru
  organization: Ryazan State Radio Engineering University , Russia
BookMark eNqFkM1qwzAQhEVJoUnaVyg69uJaKzmyfQwh_YGUHtKehSRLiYIjGckp5O3rkBIoFHrahZ0Zdr4JGvngDUL3QB6BVFUO5WyWAYNZzgjNISdACWdXaHw5jC47KW_QJKUdIbwsWD1G67dD27vUGd1H2WK3lxuDuxi0Scn5DZbtJkTXb_cJ2xCx8VvptWnwl0sueJyOqTfDzXncbw2eR907fYuurWyTufuZU_T5tPxYvGSr9-fXxXyVaVoAy0oFippacWUpFLKumAbSKGp5zUzDGVWylpJawnRlCssVANVGAWMNGCYVmyJ-ztUxpBSNFV0cCsSjACJOaMSptTgREAMaAeKMZjA-nI0udGIXDtEPb4rlcv1LJrrGDlL6h_Sf_G-mpXYW
Cites_doi 10.1049/el:20000267
10.1109/TIP.2003.819861
10.18287/2412-6179-2017-41-6-957-962
10.1016/j.inffus.2006.09.001
10.1016/B978-0-12-336156-1.50061-6
10.18287/2412-6179-2016-40-2-266-274
10.1007/s00138-012-0416-6
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1755-1315/302/1/012063
DatabaseName Institute of Physics Open Access Journals (Activated by CARLI)
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: IOPscience
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
DocumentTitleAlternate Multispectral image processing algorithms for enhanced vision systems in the Arctic
EISSN 1755-1315
ExternalDocumentID 10_1088_1755_1315_302_1_012063
EES_302_1_012063
GroupedDBID 1JI
2WC
4.4
5B3
5GY
5VS
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATCPS
ATQHT
AVWKF
AZFZN
BENPR
BHPHI
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
EDWGO
EQZZN
HCIFZ
IJHAN
IOP
IZVLO
KNG
KQ8
N5L
O3W
OK1
PATMY
PIMPY
PJBAE
PYCSY
RIN
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
AEUYN
AFFHD
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c2413-7b1b2e9b6bf214a983c10db2f693ed632ba9aa2f03c8e4f6b112ceb133d1e3ab3
IEDL.DBID O3W
ISSN 1755-1307
IngestDate Sat Nov 29 03:52:52 EST 2025
Thu Jan 07 13:52:08 EST 2021
Wed Aug 21 03:33:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2413-7b1b2e9b6bf214a983c10db2f693ed632ba9aa2f03c8e4f6b112ceb133d1e3ab3
OpenAccessLink https://iopscience.iop.org/article/10.1088/1755-1315/302/1/012063
PageCount 8
ParticipantIDs crossref_primary_10_1088_1755_1315_302_1_012063
iop_journals_10_1088_1755_1315_302_1_012063
PublicationCentury 2000
PublicationDate 20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 20190701
  day: 01
PublicationDecade 2010
PublicationTitle IOP conference series. Earth and environmental science
PublicationTitleAlternate IOP Conf. Ser.: Earth Environ. Sci
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Fisenko (EES_302_1_012063bib3) 2012; 3
Jia (EES_302_1_012063bib4) 2012; 23
Drynkin (EES_302_1_012063bib13) 2012; 9
Kholopov (EES_302_1_012063bib1) 2016; 40
Insarov (EES_302_1_012063bib7) 2014; 3
Bondarenko (EES_302_1_012063bib8) 2016; 1
Asatryan (EES_302_1_012063bib6) 2017; 41
Xydeas (EES_302_1_012063bib10) 2000; 36
Yang (EES_302_1_012063bib14) 2008; 9
Wang (EES_302_1_012063bib9) 2004; 13
Haghighat (EES_302_1_012063bib11) 2014
Zuiderveld (EES_302_1_012063bib2) 1994; 4
Gonzalez (EES_302_1_012063bib5) 2012
EES_302_1_012063bib12
References_xml – volume: 36
  start-page: 308
  year: 2000
  ident: EES_302_1_012063bib10
  article-title: Objective image fusion performance measure
  publication-title: Electronics letters
  doi: 10.1049/el:20000267
– volume: 3
  start-page: 294
  year: 2012
  ident: EES_302_1_012063bib3
  article-title: Research and development of improved underwater images methods
  publication-title: X International Conf. “Applied Optics - 2012” transactions
– volume: 1
  start-page: 64
  year: 2016
  ident: EES_302_1_012063bib8
  article-title: Evaluation of the informativeness of the combined images in multispectral vision systems
  publication-title: Software systems and computational methods
– volume: 13
  start-page: 600
  year: 2004
  ident: EES_302_1_012063bib9
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE transactions on image processing
  doi: 10.1109/TIP.2003.819861
– start-page: 1104
  year: 2012
  ident: EES_302_1_012063bib5
– volume: 41
  start-page: 957
  year: 2017
  ident: EES_302_1_012063bib6
  article-title: Image blurriness degree evaluation by the gradient field analysis
  publication-title: Computer optics
  doi: 10.18287/2412-6179-2017-41-6-957-962
– volume: 9
  start-page: 156
  year: 2008
  ident: EES_302_1_012063bib14
  article-title: A novel similarity based quality metric for image fusion
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2006.09.001
– volume: 4
  start-page: 474
  year: 1994
  ident: EES_302_1_012063bib2
  article-title: Contrast limited adaptive histogram equalization
  publication-title: Graphics gems
  doi: 10.1016/B978-0-12-336156-1.50061-6
– volume: 40
  start-page: 266
  year: 2016
  ident: EES_302_1_012063bib1
  article-title: Color image generation algorithm from monochrome visible and long-wave infrared video sensors in the YCbCr color space implementation
  publication-title: Computer optics
  doi: 10.18287/2412-6179-2016-40-2-266-274
– ident: EES_302_1_012063bib12
– volume: 3
  start-page: 1
  year: 2014
  ident: EES_302_1_012063bib7
  article-title: Problems of constructing technical vision systems using fusion of information channels of various spectral ranges
  publication-title: Information Technologies
– start-page: 1
  year: 2014
  ident: EES_302_1_012063bib11
  article-title: A Fast-FMI: non-reference image fusion metric
– volume: 23
  start-page: 1059
  year: 2012
  ident: EES_302_1_012063bib4
  article-title: A two-step approach to see-through bad weather for surveillance video quality enhancement
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-012-0416-6
– volume: 9
  start-page: 33
  year: 2012
  ident: EES_302_1_012063bib13
  article-title: Formation of a combined image in a two-zone onboard aerospace system
  publication-title: Mechanics, control and computer science
SSID ssj0067439
Score 2.0918071
Snippet The issues of enhanced vision multispectral systems application for robotic complexes control in the Arctic are considered. The existing contrast enhancement...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 12063
Title Multispectral image processing algorithms for enhanced vision systems in the Arctic
URI https://iopscience.iop.org/article/10.1088/1755-1315/302/1/012063
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOPscience
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: O3W
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: PATMY
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: BENPR
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: PIMPY
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-6Kfjitzg_RgTfpLZp1jZ5FNlU0DmYH_MpJE3qBq4b2xT8770mHbgHEcG3Qi_X8Mv17iD3u0PolGqi0ohJTyUp8xraGE9KRTwtIZgX7OvATlF4uk3abdbr8U5ZTWi5MKNx6frP4dE1CnYQlgVxzIeAF3mEksinQegTv6B_xnQZVSmL4sLU7-nz3BkXJfbcciLtmiCZk4R_1LMQn5ZhD9_CTWvjHza6idbLXBNfuAVbaMnk22j1ys7y_dxBXUu-tVTLCYgNhuBa8NgRByCgYfn2OpoMZv3hFENmi03et9UC2NHRsesBPcWDHEMSCV8p2Fa76LHVfLi89soZC15a3Kh5iSIqNFzFKgtJQ3JGUxJoFWYxp0bHNFSSSxlmAU2ZaWSxgvwsBf9O4ZANlYruoUo-ys0-wqEOMw0GobjmjSQ2nFBFQK_hQSxNpGrInyMrxq6VhrBX4IyJAipRQCUAKkGEg6qGzgBbUf5V01-lTxakm83uwnsx1tnBnzQeojXIj7irzj1Cldnk3RyjlfQDDmdSt4ZWR9XOzV3n5QtvkM9G
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5848W3WJ8RvMm6m033kaNoq6JUwectJJusLei2tFXw3zubbMUeRARvgZ1MwpfszEDmmwE4YJqqLEqlp5Is9eraGE9KRT0t0ZmX7OvAdlF4uEparfTpid9MQOOLC9PtVab_CIeuULCDsEqIS310eJFHGY18FoQ-9Uv6Z8z8ns4nYTpiESs7OFyzx5FBLtPsueVF2nlBMiIK_6hrzEdN4j6-uZzm4j9tdgkWqpiTHLtJyzBhihWYPbM9fT9W4daScC3lso9inVc0MaTnCATo2Ih8ee72O8P264BghEtM0bZZA8TR0omrBT0gnYJgMImrlKyrNbhvNu5Ozr2q14KXlS9rXqKoCg1XscpDWpc8ZRkNtArzmDOjYxYqyaUM84BlqannscI4LUM7z_CwDZOKrcNU0S3MBpBQh7nGi6G45vUkNpwyRVGv4UEsTaRq4I_QFT1XUkPYp_A0FSVcooRLIFyCCgdXDQ4RX1H9XYNfpffHpBuN27HvAsHf_JPGPZi7OW2Kq4vW5RbMY8jEXcLuNkwN-29mB2aydzyn_q69d5-oVdLz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispectral+image+processing+algorithms+for+enhanced+vision+systems+in+the+Arctic&rft.jtitle=IOP+conference+series.+Earth+and+environmental+science&rft.au=Kirillov%2C+S+N&rft.au=Pokrovskij%2C+P+S&rft.au=Baukov%2C+A+A&rft.au=Skonnikov%2C+P+N&rft.date=2019-07-01&rft.issn=1755-1307&rft.eissn=1755-1315&rft.volume=302&rft.issue=1&rft.spage=12063&rft_id=info:doi/10.1088%2F1755-1315%2F302%2F1%2F012063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1755_1315_302_1_012063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1307&client=summon