On the stable approximate solution of the ill-posed boundary value problem for the Laplace equation with homogeneous conditions of the second kind on the edges at inaccurate data on the approximated boundary

In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-defined boundary in a cylindrical domain with homogeneous boundary conditions of the second type on the side faces. The value of the function and its normal derivative (Cauchy conditions) is known approx...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete and continuous models and applied computational science Ročník 33; číslo 1; s. 57 - 73
Hlavní autoři: Laneev, Evgeniy B., Klimishin, Alexander V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Peoples’ Friendship University of Russia (RUDN University) 15.06.2025
Témata:
ISSN:2658-4670, 2658-7149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-defined boundary in a cylindrical domain with homogeneous boundary conditions of the second type on the side faces. The value of the function and its normal derivative (Cauchy conditions) is known approximately on an approximated surface of arbitrary shape bounding the cylinder. In this case, the Cauchy problem for the Laplace equation has the property of instability with respect to the error in the Cauchy data, that is, it is ill-posed. On the basis of an idea about the source function of the original problem, the exact solution is represented as a sum of two functions, one of which depends explicitly on the Cauchy conditions, and the second one can be obtained as a solution of the Fredholm integral equation of the first kind in the form of Fourier series on the eigenfunctions of the second boundary value problem for the Laplace equation. To obtain an approximate stable solution of the integral equation, the Tikhonov regularization method is applied when the solution is obtained as an extremal of the Tikhonov functional. For an approximated surface, we consider the calculation of the normal to this surface and its convergence to the exact value depending on the error with which the original surface is given. The convergence of the obtained approximate solution to the exact solution is proved when the regularization parameter is compared with the errors in the data both on the inexactly specified boundary and on the value of the original function on this boundary. A numerical experiment is carried out to demonstrate the effectiveness of the proposed approach for a special case, for a flat boundary and a specific initial heat source (a set of sharpened sources).
AbstractList In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-defined boundary in a cylindrical domain with homogeneous boundary conditions of the second type on the side faces. The value of the function and its normal derivative (Cauchy conditions) is known approximately on an approximated surface of arbitrary shape bounding the cylinder. In this case, the Cauchy problem for the Laplace equation has the property of instability with respect to the error in the Cauchy data, that is, it is ill-posed. On the basis of an idea about the source function of the original problem, the exact solution is represented as a sum of two functions, one of which depends explicitly on the Cauchy conditions, and the second one can be obtained as a solution of the Fredholm integral equation of the first kind in the form of Fourier series on the eigenfunctions of the second boundary value problem for the Laplace equation. To obtain an approximate stable solution of the integral equation, the Tikhonov regularization method is applied when the solution is obtained as an extremal of the Tikhonov functional. For an approximated surface, we consider the calculation of the normal to this surface and its convergence to the exact value depending on the error with which the original surface is given. The convergence of the obtained approximate solution to the exact solution is proved when the regularization parameter is compared with the errors in the data both on the inexactly specified boundary and on the value of the original function on this boundary. A numerical experiment is carried out to demonstrate the effectiveness of the proposed approach for a special case, for a flat boundary and a specific initial heat source (a set of sharpened sources).
Author Laneev, Evgeniy B.
Klimishin, Alexander V.
Author_xml – sequence: 1
  givenname: Evgeniy B.
  orcidid: 0000-0002-4255-9393
  surname: Laneev
  fullname: Laneev, Evgeniy B.
  organization: RUDN University
– sequence: 2
  givenname: Alexander V.
  surname: Klimishin
  fullname: Klimishin, Alexander V.
  organization: RUDN University
BookMark eNpNkcFu1DAURSNUJErpP1jdG-w4tmN2VVWg0kjdwNp6sZ9n3GbiYCdAv5JfIsm0wMa27n3v-Er3bXU2pAGr6oqz93UtlPhQK9nSRmlGa1ZLKgTlVGqqxavqfPM0b8zZ83ude1NdlvLAGKtbLSRT59Xv-4FMByRlgq5HAuOY0694hGmRUj9PMQ0khW0k9j0dU0FPujQPHvIT-QH9jGRZWXaPJKS8De5g7MEhwe8zbICfcTqQQzqmPQ6Y5kJcGnxcrfICL7hq5DEuRzpFQr_HQmAicQDn5rxm8jDBi_9f1n-R3lWvA_QFL5_vi-rbp9uvN1_o7v7z3c31jrq64YIK2bpuoXKGaASoVi-q4S4wdA5boYJCp7CDjnFde4MBWKtNaEUnfQhKXFR3J65P8GDHvMTITzZBtJuQ8t5CnqLr0ZoARmNouBesCb41y2dCmbrpGEqpwsL6eGK5nErJGP7yOLNb03Zt0K4N2rVpK4TlVmqrhfgDu1qkUg
Cites_doi 10.1134/S1019331606010060
10.22363/2658-4670-2022-30-3-205-216
10.25728/assa.2021.21.1.1055
10.1007/978-3-030-42176-2_14
10.1134/S1547477108030059
10.20310/2686-9667-2024-29-146-164-175
10.22363/2658-4670-
10.2298/YJOR211015026B
10.20310/2686-9667-
10.1016/0041-5553(73)90002-5
10.1016/0041-5553(65)90150-3
10.22363/2658-
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22363/2658-4670-2025-33-1-57-73
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2658-7149
EndPage 73
ExternalDocumentID oai_doaj_org_article_9fa97ef41d304fd8987436924b0e556f
10_22363_2658_4670_2025_33_1_57_73
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
VCL
VIT
ID FETCH-LOGICAL-c2413-358cbacc10ee93a68741391cf0ecce836f6ec6ebab0172d9efa0879f83b5dff63
IEDL.DBID DOA
ISSN 2658-4670
IngestDate Fri Oct 03 12:45:03 EDT 2025
Wed Oct 29 21:21:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2413-358cbacc10ee93a68741391cf0ecce836f6ec6ebab0172d9efa0879f83b5dff63
ORCID 0000-0002-4255-9393
OpenAccessLink https://doaj.org/article/9fa97ef41d304fd8987436924b0e556f
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9fa97ef41d304fd8987436924b0e556f
crossref_primary_10_22363_2658_4670_2025_33_1_57_73
PublicationCentury 2000
PublicationDate 2025-06-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Discrete and continuous models and applied computational science
PublicationYear 2025
Publisher Peoples’ Friendship University of Russia (RUDN University)
Publisher_xml – name: Peoples’ Friendship University of Russia (RUDN University)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1134/S1019331606010060
– ident: ref17
  doi: 10.22363/2658-4670-2022-30-3-205-216
– ident: ref3
– ident: ref5
– ident: ref6
– ident: ref7
  doi: 10.25728/assa.2021.21.1.1055
– ident: ref13
  doi: 10.1007/978-3-030-42176-2_14
– ident: ref16
  doi: 10.1134/S1547477108030059
– ident: ref9
  doi: 10.20310/2686-9667-2024-29-146-164-175
– ident: ref20
– ident: ref19
  doi: 10.22363/2658-4670-
– ident: ref8
  doi: 10.2298/YJOR211015026B
– ident: ref15
  doi: 10.20310/2686-9667-
– ident: ref4
  doi: 10.1016/0041-5553(73)90002-5
– ident: ref2
  doi: 10.1016/0041-5553(65)90150-3
– ident: ref10
  doi: 10.22363/2658-
– ident: ref18
– ident: ref11
– ident: ref12
– ident: ref14
SSID ssj0002873506
ssib050730783
Score 2.2947524
Snippet In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-defined boundary in a cylindrical domain with homogeneous...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 57
SubjectTerms cauchy problem for the laplace equation
ill-posed problem
integral equation of the first kind
tikhonov regularization method
Title On the stable approximate solution of the ill-posed boundary value problem for the Laplace equation with homogeneous conditions of the second kind on the edges at inaccurate data on the approximated boundary
URI https://doaj.org/article/9fa97ef41d304fd8987436924b0e556f
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2658-7149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002873506
  issn: 2658-4670
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2658-7149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050730783
  issn: 2658-4670
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcUMtDlD40B65Wkzh-HWnVikNVOIDUmxXHY7GwJGWzi9pf2b_E2MmWcOLC1XGsUeaLZz579A1j74wvGltpxelnqngtUXGLpeWtCHWBaCoRQ242oa-vzc2N_TRr9ZVqwkZ54PHDndrYWI2xLgMR7xgMceRaKGINvkApVUy7b6HtjEwRkmQC7vZ-6ls-QtJC5kabFYVcTrvDpEBK0VGJ08dBAk0luRBErKTmWvwVrWai_jn6XO6x51PaCO9Hc_fZE-xesGczMcGX7OFjB5TNAaV7fomQxcLvFpSQ0tCEL-hjnrJYLvltP2AAn7sqre4hiX4jTO1lgDLZPPGqyTVbgD9HRXBIx7bwtf_RE-6w3wxAdDqMVV_bxYdEsQN8J7IP_WhSOrMboFnDomvadpPUKSCVpm6fz2z9Y9Ir9uXy4vP5Bz61a-BtupzjQprW0yol-diKRpGjKL0s21gQTNAIFRW2Cn3jE-8MFmNTGG2jEV6GGJV4zXa6vsM3DAISUoKtTbC-tqayaBTlUZK2m-BRxwMmtm5xt6MqhyM2k53pkjNdcqZLznRCuNJJ7bQ4YGfJg49vJGXtPEB4cxPe3L_w9vZ_LHLInmagpR5I8ojtrFcbPGa77a_1YlidZCj_BoWg9s0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+stable+approximate+solution+of+the+ill-posed+boundary+value+problem+for+the+Laplace+equation+with+homogeneous+conditions+of+the+second+kind+on+the+edges+at+inaccurate+data+on+the+approximated+boundary&rft.jtitle=Discrete+and+continuous+models+and+applied+computational+science&rft.au=Laneev%2C+Evgeniy+B.&rft.au=Klimishin%2C+Alexander+V.&rft.date=2025-06-15&rft.issn=2658-4670&rft.eissn=2658-7149&rft.volume=33&rft.issue=1&rft.spage=57&rft.epage=73&rft_id=info:doi/10.22363%2F2658-4670-2025-33-1-57-73&rft.externalDBID=n%2Fa&rft.externalDocID=10_22363_2658_4670_2025_33_1_57_73
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-4670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-4670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-4670&client=summon