On the stable approximate solution of the ill-posed boundary value problem for the Laplace equation with homogeneous conditions of the second kind on the edges at inaccurate data on the approximated boundary
In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-defined boundary in a cylindrical domain with homogeneous boundary conditions of the second type on the side faces. The value of the function and its normal derivative (Cauchy conditions) is known approx...
Uloženo v:
| Vydáno v: | Discrete and continuous models and applied computational science Ročník 33; číslo 1; s. 57 - 73 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Peoples’ Friendship University of Russia (RUDN University)
15.06.2025
|
| Témata: | |
| ISSN: | 2658-4670, 2658-7149 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-defined boundary in a cylindrical domain with homogeneous boundary conditions of the second type on the side faces. The value of the function and its normal derivative (Cauchy conditions) is known approximately on an approximated surface of arbitrary shape bounding the cylinder. In this case, the Cauchy problem for the Laplace equation has the property of instability with respect to the error in the Cauchy data, that is, it is ill-posed. On the basis of an idea about the source function of the original problem, the exact solution is represented as a sum of two functions, one of which depends explicitly on the Cauchy conditions, and the second one can be obtained as a solution of the Fredholm integral equation of the first kind in the form of Fourier series on the eigenfunctions of the second boundary value problem for the Laplace equation. To obtain an approximate stable solution of the integral equation, the Tikhonov regularization method is applied when the solution is obtained as an extremal of the Tikhonov functional. For an approximated surface, we consider the calculation of the normal to this surface and its convergence to the exact value depending on the error with which the original surface is given. The convergence of the obtained approximate solution to the exact solution is proved when the regularization parameter is compared with the errors in the data both on the inexactly specified boundary and on the value of the original function on this boundary. A numerical experiment is carried out to demonstrate the effectiveness of the proposed approach for a special case, for a flat boundary and a specific initial heat source (a set of sharpened sources). |
|---|---|
| AbstractList | In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-defined boundary in a cylindrical domain with homogeneous boundary conditions of the second type on the side faces. The value of the function and its normal derivative (Cauchy conditions) is known approximately on an approximated surface of arbitrary shape bounding the cylinder. In this case, the Cauchy problem for the Laplace equation has the property of instability with respect to the error in the Cauchy data, that is, it is ill-posed. On the basis of an idea about the source function of the original problem, the exact solution is represented as a sum of two functions, one of which depends explicitly on the Cauchy conditions, and the second one can be obtained as a solution of the Fredholm integral equation of the first kind in the form of Fourier series on the eigenfunctions of the second boundary value problem for the Laplace equation. To obtain an approximate stable solution of the integral equation, the Tikhonov regularization method is applied when the solution is obtained as an extremal of the Tikhonov functional. For an approximated surface, we consider the calculation of the normal to this surface and its convergence to the exact value depending on the error with which the original surface is given. The convergence of the obtained approximate solution to the exact solution is proved when the regularization parameter is compared with the errors in the data both on the inexactly specified boundary and on the value of the original function on this boundary. A numerical experiment is carried out to demonstrate the effectiveness of the proposed approach for a special case, for a flat boundary and a specific initial heat source (a set of sharpened sources). |
| Author | Laneev, Evgeniy B. Klimishin, Alexander V. |
| Author_xml | – sequence: 1 givenname: Evgeniy B. orcidid: 0000-0002-4255-9393 surname: Laneev fullname: Laneev, Evgeniy B. organization: RUDN University – sequence: 2 givenname: Alexander V. surname: Klimishin fullname: Klimishin, Alexander V. organization: RUDN University |
| BookMark | eNpNkcFu1DAURSNUJErpP1jdG-w4tmN2VVWg0kjdwNp6sZ9n3GbiYCdAv5JfIsm0wMa27n3v-Er3bXU2pAGr6oqz93UtlPhQK9nSRmlGa1ZLKgTlVGqqxavqfPM0b8zZ83ude1NdlvLAGKtbLSRT59Xv-4FMByRlgq5HAuOY0694hGmRUj9PMQ0khW0k9j0dU0FPujQPHvIT-QH9jGRZWXaPJKS8De5g7MEhwe8zbICfcTqQQzqmPQ6Y5kJcGnxcrfICL7hq5DEuRzpFQr_HQmAicQDn5rxm8jDBi_9f1n-R3lWvA_QFL5_vi-rbp9uvN1_o7v7z3c31jrq64YIK2bpuoXKGaASoVi-q4S4wdA5boYJCp7CDjnFde4MBWKtNaEUnfQhKXFR3J65P8GDHvMTITzZBtJuQ8t5CnqLr0ZoARmNouBesCb41y2dCmbrpGEqpwsL6eGK5nErJGP7yOLNb03Zt0K4N2rVpK4TlVmqrhfgDu1qkUg |
| Cites_doi | 10.1134/S1019331606010060 10.22363/2658-4670-2022-30-3-205-216 10.25728/assa.2021.21.1.1055 10.1007/978-3-030-42176-2_14 10.1134/S1547477108030059 10.20310/2686-9667-2024-29-146-164-175 10.22363/2658-4670- 10.2298/YJOR211015026B 10.20310/2686-9667- 10.1016/0041-5553(73)90002-5 10.1016/0041-5553(65)90150-3 10.22363/2658- |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.22363/2658-4670-2025-33-1-57-73 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2658-7149 |
| EndPage | 73 |
| ExternalDocumentID | oai_doaj_org_article_9fa97ef41d304fd8987436924b0e556f 10_22363_2658_4670_2025_33_1_57_73 |
| GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ VCL VIT |
| ID | FETCH-LOGICAL-c2413-358cbacc10ee93a68741391cf0ecce836f6ec6ebab0172d9efa0879f83b5dff63 |
| IEDL.DBID | DOA |
| ISSN | 2658-4670 |
| IngestDate | Fri Oct 03 12:45:03 EDT 2025 Wed Oct 29 21:21:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2413-358cbacc10ee93a68741391cf0ecce836f6ec6ebab0172d9efa0879f83b5dff63 |
| ORCID | 0000-0002-4255-9393 |
| OpenAccessLink | https://doaj.org/article/9fa97ef41d304fd8987436924b0e556f |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9fa97ef41d304fd8987436924b0e556f crossref_primary_10_22363_2658_4670_2025_33_1_57_73 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-15 |
| PublicationDateYYYYMMDD | 2025-06-15 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete and continuous models and applied computational science |
| PublicationYear | 2025 |
| Publisher | Peoples’ Friendship University of Russia (RUDN University) |
| Publisher_xml | – name: Peoples’ Friendship University of Russia (RUDN University) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref1 doi: 10.1134/S1019331606010060 – ident: ref17 doi: 10.22363/2658-4670-2022-30-3-205-216 – ident: ref3 – ident: ref5 – ident: ref6 – ident: ref7 doi: 10.25728/assa.2021.21.1.1055 – ident: ref13 doi: 10.1007/978-3-030-42176-2_14 – ident: ref16 doi: 10.1134/S1547477108030059 – ident: ref9 doi: 10.20310/2686-9667-2024-29-146-164-175 – ident: ref20 – ident: ref19 doi: 10.22363/2658-4670- – ident: ref8 doi: 10.2298/YJOR211015026B – ident: ref15 doi: 10.20310/2686-9667- – ident: ref4 doi: 10.1016/0041-5553(73)90002-5 – ident: ref2 doi: 10.1016/0041-5553(65)90150-3 – ident: ref10 doi: 10.22363/2658- – ident: ref18 – ident: ref11 – ident: ref12 – ident: ref14 |
| SSID | ssj0002873506 ssib050730783 |
| Score | 2.2947524 |
| Snippet | In this paper, we consider the ill-posed continuation problem for harmonic functions from an ill-defined boundary in a cylindrical domain with homogeneous... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 57 |
| SubjectTerms | cauchy problem for the laplace equation ill-posed problem integral equation of the first kind tikhonov regularization method |
| Title | On the stable approximate solution of the ill-posed boundary value problem for the Laplace equation with homogeneous conditions of the second kind on the edges at inaccurate data on the approximated boundary |
| URI | https://doaj.org/article/9fa97ef41d304fd8987436924b0e556f |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2658-7149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002873506 issn: 2658-4670 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2658-7149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050730783 issn: 2658-4670 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOqHyJ0oLmwNVqEsdfR1q14oAKB5B6s2zHFgtLUja7CH4lf4kZJ1vCiQvXSWKNMk-eefboDWOvmirbqEhPuw2et9FHHird8DZH00ovY9bTsAl9dWWur-37xagv6gmb5IGnH3dqs7c65bbukHjnziBHboVC1hCqJKXKtPtW2i7IFCJJEnD391OfyxGSFrIM2mww5XLcHWYFUsyOSpzeGhE0jeRCILGSmmvxV7ZaiPqX7HN5yB7MZSO8ntx9yO6k_hG7vxATfMx-vesBqznAci-sExSx8B8rLEjRNOMLhlxeWa3X_GYYUwehTFXa_AQS_U4wj5cBrGTLi2996dmC9G1SBAc6toVPw9cBcZeG3QhIp7up62u_-EgUu4MvSPZhmFyiM7sR_BZWvY9xR-oUQK2p--cLX_-49IR9vLz4cP6Gz-MaeKTLOS6kiQFXqauUrPAKA4XlZR1zhTBJRqisUlQp-EC8s7Mp-8pom40IsstZiafsoB_69IyhC6IxtZcqtkgfjbddih4tuc1NsFkfMbEPi7uZVDkcspkSTEfBdBRMR8F0QrjaSe20OGJnFMHbL0hZuxgQb27Gm_sX3p7_j0WO2b0CNJqBJE_YwXazSy_Y3fh9uxo3LwuUfwNVUveM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+stable+approximate+solution+of+the+ill-posed+boundary+value+problem+for+the+Laplace+equation+with+homogeneous+conditions+of+the+second+kind+on+the+edges+at+inaccurate+data+on+the+approximated+boundary&rft.jtitle=Discrete+and+continuous+models+and+applied+computational+science&rft.au=Evgeniy+B.+Laneev&rft.au=Alexander+V.+Klimishin&rft.date=2025-06-15&rft.pub=Peoples%E2%80%99+Friendship+University+of+Russia+%28RUDN+University%29&rft.issn=2658-4670&rft.eissn=2658-7149&rft.volume=33&rft.issue=1&rft.spage=57&rft.epage=73&rft_id=info:doi/10.22363%2F2658-4670-2025-33-1-57-73&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9fa97ef41d304fd8987436924b0e556f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-4670&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-4670&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-4670&client=summon |