ESTIMATING BIOCHEMICAL PARAMETERS OF TEA ( CAMELLIA SINENSIS (L.)) USING HYPERSPECTRAL TECHNIQUES

Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International archives of the photogrammetry, remote sensing and spatial information sciences. Jg. XXXIX-B8; S. 237 - 241
Hauptverfasser: Bian, M., Skidmore, A. K., Schlerf, M., Liu, Y., Wang, T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Copernicus Publications 28.07.2012
ISSN:2194-9034, 1682-1750, 2194-9034
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of tea quality at canopy scale. Experiments were carried out for tea plants growing in the field and greenhouse. Partial least squares regression (PLSR), which has proven to be the one of the most successful empirical approach, was performed to establish the relationship between reflectance and biochemical concentration across six tea varieties in the field. Moreover, a novel integrated approach involving successive projections algorithms as band selection method and neural networks was developed and applied to detect the concentration of total tea polyphenols for one tea variety, in order to explore and model complex nonlinearity relationships between independent (wavebands) and dependent (biochemicals) variables. The good prediction accuracies (r2 > 0.8 and relative RMSEP < 10 %) achieved for tea plants using both linear (partial lease squares regress) and nonlinear (artificial neural networks) modelling approaches in this study demonstrates the feasibility of using airborne and spaceborne sensors to cover wide areas of tea plantation for in situ monitoring of tea quality cheaply and rapidly.
AbstractList Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of tea quality at canopy scale. Experiments were carried out for tea plants growing in the field and greenhouse. Partial least squares regression (PLSR), which has proven to be the one of the most successful empirical approach, was performed to establish the relationship between reflectance and biochemical concentration across six tea varieties in the field. Moreover, a novel integrated approach involving successive projections algorithms as band selection method and neural networks was developed and applied to detect the concentration of total tea polyphenols for one tea variety, in order to explore and model complex nonlinearity relationships between independent (wavebands) and dependent (biochemicals) variables. The good prediction accuracies (r2 > 0.8 and relative RMSEP < 10 %) achieved for tea plants using both linear (partial lease squares regress) and nonlinear (artificial neural networks) modelling approaches in this study demonstrates the feasibility of using airborne and spaceborne sensors to cover wide areas of tea plantation for in situ monitoring of tea quality cheaply and rapidly.
Author Schlerf, M.
Liu, Y.
Bian, M.
Skidmore, A. K.
Wang, T.
Author_xml – sequence: 1
  givenname: M.
  surname: Bian
  fullname: Bian, M.
– sequence: 2
  givenname: A. K.
  surname: Skidmore
  fullname: Skidmore, A. K.
– sequence: 3
  givenname: M.
  surname: Schlerf
  fullname: Schlerf, M.
– sequence: 4
  givenname: Y.
  surname: Liu
  fullname: Liu, Y.
– sequence: 5
  givenname: T.
  surname: Wang
  fullname: Wang, T.
BookMark eNqNkd9P2zAQgC3EpAHjf_Ab8BBmO3acPE1pZKil9AdNKpUn6-raLKg0lVMh8d_PhU3a9sTTnU53393pO0enu37nELqi5FbQgn_vhn0YINif3asbktVqpVfJKE9YKhNGKDtBZyy2JQVJ-elf-Vd0OQzPhBDKs0wQcYZANa2elK2e3uORnlVjNdFVWeN5uSgnqlWLBs_ucKtKfI2rWKlrXeJGT9W00Q2-rm9vbvCyOU6PH-exe66qdhHnW1WNp_phqZpv6IuH7eAuf8cLtLxTbTVO6tn9cVViGacssZKKPJfrjHpOQIBzPMt9an3qeSrznHlBOBHgwTJP1jLlG-vYxkL8i0KRpxdIf3A3PTybfeheILyZHjrzXujDk4Fw6OzWmcwSEsmw5inncuOAcCmygslCekEpjSz1wbKhH4bgvLHdAQ5dvzsE6LaGEnPUYP7RYN41mFFuogZz1BA5P_7j_Lnrs4Rf3YmQRA
CitedBy_id crossref_primary_10_3390_rs16183389
crossref_primary_10_1371_journal_pone_0210084
crossref_primary_10_3390_agronomy15071507
crossref_primary_10_1016_j_ijleo_2017_10_020
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.5194/isprsarchives-XXXIX-B8-237-2012
DatabaseName CrossRef
DOAJ
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9034
EndPage 241
ExternalDocumentID oai_doaj_org_article_6c003cfab43447dea0475692797f5111
10_5194_isprsarchives_XXXIX_B8_237_2012
GroupedDBID AAFWJ
AAYXX
ACIWK
ADBBV
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
H13
OK1
TUS
ID FETCH-LOGICAL-c2412-c715887b61f40a5aee468f3cf3f437882f50405afac2f0b734dce2dca9031a983
IEDL.DBID DOA
ISSN 2194-9034
1682-1750
IngestDate Fri Oct 03 12:53:14 EDT 2025
Tue Nov 18 22:42:26 EST 2025
Sat Nov 29 03:02:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2412-c715887b61f40a5aee468f3cf3f437882f50405afac2f0b734dce2dca9031a983
OpenAccessLink https://doaj.org/article/6c003cfab43447dea0475692797f5111
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_6c003cfab43447dea0475692797f5111
crossref_citationtrail_10_5194_isprsarchives_XXXIX_B8_237_2012
crossref_primary_10_5194_isprsarchives_XXXIX_B8_237_2012
PublicationCentury 2000
PublicationDate 2012-07-28
PublicationDateYYYYMMDD 2012-07-28
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-28
  day: 28
PublicationDecade 2010
PublicationTitle International archives of the photogrammetry, remote sensing and spatial information sciences.
PublicationYear 2012
Publisher Copernicus Publications
Publisher_xml – name: Copernicus Publications
SSID ssj0001466505
Score 1.8605084
Snippet Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 237
Title ESTIMATING BIOCHEMICAL PARAMETERS OF TEA ( CAMELLIA SINENSIS (L.)) USING HYPERSPECTRAL TECHNIQUES
URI https://doaj.org/article/6c003cfab43447dea0475692797f5111
Volume XXXIX-B8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iInoQP_GbHAT1UG3TtGkuQnfpugWtq12lnmKaNrAgq2x3_f1O2irrSQ9eSgmdEF5eMjMhfYPQCbclZ7xwLc4cZVFXwZsNj0KSXCnl-br-y_XphiVJkGV8MFfqy9wJa-SBG-AufQW8U1rm1GjTFaW0KfN8ThhnGoKFOvGBqGcumapPV6gPoYe5v-j4EEKCj7SX0SnsEBCw0MtR9T6pZKvsamVZFmdWBwjjMiCNQ364qDkl_9rl9NbRWhsr4rAZ4wZaKMebaPVpVM2a1moLvUTpML4Nh3FyjTvx3ZfAAR6ED-FtBKFqiu96eBiF-KwLDSZzx6bQRpLGKT67uTg_x6bwxjXuPw_g40HUNTWUwaDbT-L7xyjdRo-9aNjtW23RBEuBMyaWYo4HG0fuO5ra0pNlSf1AA4KupkY7nmgP1q0ntVRE2zlzaaFKUijJYXlLHrg7aHH8Ni53EZaODAKaE9eXHnTi5VSXmhVawzRq2Bb30NUXTkK1iuKmsMWrgMzCAC1-AC1qoEUnEAC0MEDvoeC7g_dGXOPvph0zMd9mRiW7bgDuiJY74jfu7P9HJwdoxQzInPeS4BAtTiez8ggtqY_pqJoc17T8BAgf3cI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ESTIMATING+BIOCHEMICAL+PARAMETERS+OF+TEA+%28CAMELLIA+SINENSIS+%28L.%29%29+USING+HYPERSPECTRAL+TECHNIQUES&rft.jtitle=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.au=M.+Bian&rft.au=A.+K.+Skidmore&rft.au=M.+Schlerf&rft.au=Y.+Liu&rft.date=2012-07-28&rft.pub=Copernicus+Publications&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XXXIX-B8&rft.spage=237&rft.epage=241&rft_id=info:doi/10.5194%2Fisprsarchives-XXXIX-B8-237-2012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6c003cfab43447dea0475692797f5111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon