ESTIMATING BIOCHEMICAL PARAMETERS OF TEA ( CAMELLIA SINENSIS (L.)) USING HYPERSPECTRAL TECHNIQUES
Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of...
Gespeichert in:
| Veröffentlicht in: | International archives of the photogrammetry, remote sensing and spatial information sciences. Jg. XXXIX-B8; S. 237 - 241 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Copernicus Publications
28.07.2012
|
| ISSN: | 2194-9034, 1682-1750, 2194-9034 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of tea quality at canopy scale. Experiments were carried out for tea plants growing in the field and greenhouse. Partial least squares regression (PLSR), which has proven to be the one of the most successful empirical approach, was performed to establish the relationship between reflectance and biochemical concentration across six tea varieties in the field. Moreover, a novel integrated approach involving successive projections algorithms as band selection method and neural networks was developed and applied to detect the concentration of total tea polyphenols for one tea variety, in order to explore and model complex nonlinearity relationships between independent (wavebands) and dependent (biochemicals) variables. The good prediction accuracies (r2 > 0.8 and relative RMSEP < 10 %) achieved for tea plants using both linear (partial lease squares regress) and nonlinear (artificial neural networks) modelling approaches in this study demonstrates the feasibility of using airborne and spaceborne sensors to cover wide areas of tea plantation for in situ monitoring of tea quality cheaply and rapidly. |
|---|---|
| AbstractList | Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of tea quality at canopy scale. Experiments were carried out for tea plants growing in the field and greenhouse. Partial least squares regression (PLSR), which has proven to be the one of the most successful empirical approach, was performed to establish the relationship between reflectance and biochemical concentration across six tea varieties in the field. Moreover, a novel integrated approach involving successive projections algorithms as band selection method and neural networks was developed and applied to detect the concentration of total tea polyphenols for one tea variety, in order to explore and model complex nonlinearity relationships between independent (wavebands) and dependent (biochemicals) variables. The good prediction accuracies (r2 > 0.8 and relative RMSEP < 10 %) achieved for tea plants using both linear (partial lease squares regress) and nonlinear (artificial neural networks) modelling approaches in this study demonstrates the feasibility of using airborne and spaceborne sensors to cover wide areas of tea plantation for in situ monitoring of tea quality cheaply and rapidly. |
| Author | Schlerf, M. Liu, Y. Bian, M. Skidmore, A. K. Wang, T. |
| Author_xml | – sequence: 1 givenname: M. surname: Bian fullname: Bian, M. – sequence: 2 givenname: A. K. surname: Skidmore fullname: Skidmore, A. K. – sequence: 3 givenname: M. surname: Schlerf fullname: Schlerf, M. – sequence: 4 givenname: Y. surname: Liu fullname: Liu, Y. – sequence: 5 givenname: T. surname: Wang fullname: Wang, T. |
| BookMark | eNqNkd9P2zAQgC3EpAHjf_Ab8BBmO3acPE1pZKil9AdNKpUn6-raLKg0lVMh8d_PhU3a9sTTnU53393pO0enu37nELqi5FbQgn_vhn0YINif3asbktVqpVfJKE9YKhNGKDtBZyy2JQVJ-elf-Vd0OQzPhBDKs0wQcYZANa2elK2e3uORnlVjNdFVWeN5uSgnqlWLBs_ucKtKfI2rWKlrXeJGT9W00Q2-rm9vbvCyOU6PH-exe66qdhHnW1WNp_phqZpv6IuH7eAuf8cLtLxTbTVO6tn9cVViGacssZKKPJfrjHpOQIBzPMt9an3qeSrznHlBOBHgwTJP1jLlG-vYxkL8i0KRpxdIf3A3PTybfeheILyZHjrzXujDk4Fw6OzWmcwSEsmw5inncuOAcCmygslCekEpjSz1wbKhH4bgvLHdAQ5dvzsE6LaGEnPUYP7RYN41mFFuogZz1BA5P_7j_Lnrs4Rf3YmQRA |
| CitedBy_id | crossref_primary_10_3390_rs16183389 crossref_primary_10_1371_journal_pone_0210084 crossref_primary_10_3390_agronomy15071507 crossref_primary_10_1016_j_ijleo_2017_10_020 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.5194/isprsarchives-XXXIX-B8-237-2012 |
| DatabaseName | CrossRef DOAJ |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts |
| EISSN | 2194-9034 |
| EndPage | 241 |
| ExternalDocumentID | oai_doaj_org_article_6c003cfab43447dea0475692797f5111 10_5194_isprsarchives_XXXIX_B8_237_2012 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADBBV AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ H13 OK1 TUS |
| ID | FETCH-LOGICAL-c2412-c715887b61f40a5aee468f3cf3f437882f50405afac2f0b734dce2dca9031a983 |
| IEDL.DBID | DOA |
| ISSN | 2194-9034 1682-1750 |
| IngestDate | Fri Oct 03 12:53:14 EDT 2025 Tue Nov 18 22:42:26 EST 2025 Sat Nov 29 03:02:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/3.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2412-c715887b61f40a5aee468f3cf3f437882f50405afac2f0b734dce2dca9031a983 |
| OpenAccessLink | https://doaj.org/article/6c003cfab43447dea0475692797f5111 |
| PageCount | 5 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6c003cfab43447dea0475692797f5111 crossref_citationtrail_10_5194_isprsarchives_XXXIX_B8_237_2012 crossref_primary_10_5194_isprsarchives_XXXIX_B8_237_2012 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-07-28 |
| PublicationDateYYYYMMDD | 2012-07-28 |
| PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationTitle | International archives of the photogrammetry, remote sensing and spatial information sciences. |
| PublicationYear | 2012 |
| Publisher | Copernicus Publications |
| Publisher_xml | – name: Copernicus Publications |
| SSID | ssj0001466505 |
| Score | 1.8605084 |
| Snippet | Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 237 |
| Title | ESTIMATING BIOCHEMICAL PARAMETERS OF TEA ( CAMELLIA SINENSIS (L.)) USING HYPERSPECTRAL TECHNIQUES |
| URI | https://doaj.org/article/6c003cfab43447dea0475692797f5111 |
| Volume | XXXIX-B8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iInoQP_GbHAT1UG3TtGkuQnfpugWtq12lnmKaNrAgq2x3_f1O2irrSQ9eSgmdEF5eMjMhfYPQCbclZ7xwLc4cZVFXwZsNj0KSXCnl-br-y_XphiVJkGV8MFfqy9wJa-SBG-AufQW8U1rm1GjTFaW0KfN8ThhnGoKFOvGBqGcumapPV6gPoYe5v-j4EEKCj7SX0SnsEBCw0MtR9T6pZKvsamVZFmdWBwjjMiCNQ364qDkl_9rl9NbRWhsr4rAZ4wZaKMebaPVpVM2a1moLvUTpML4Nh3FyjTvx3ZfAAR6ED-FtBKFqiu96eBiF-KwLDSZzx6bQRpLGKT67uTg_x6bwxjXuPw_g40HUNTWUwaDbT-L7xyjdRo-9aNjtW23RBEuBMyaWYo4HG0fuO5ra0pNlSf1AA4KupkY7nmgP1q0ntVRE2zlzaaFKUijJYXlLHrg7aHH8Ni53EZaODAKaE9eXHnTi5VSXmhVawzRq2Bb30NUXTkK1iuKmsMWrgMzCAC1-AC1qoEUnEAC0MEDvoeC7g_dGXOPvph0zMd9mRiW7bgDuiJY74jfu7P9HJwdoxQzInPeS4BAtTiez8ggtqY_pqJoc17T8BAgf3cI |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ESTIMATING+BIOCHEMICAL+PARAMETERS+OF+TEA+%28CAMELLIA+SINENSIS+%28L.%29%29+USING+HYPERSPECTRAL+TECHNIQUES&rft.jtitle=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.au=M.+Bian&rft.au=A.+K.+Skidmore&rft.au=M.+Schlerf&rft.au=Y.+Liu&rft.date=2012-07-28&rft.pub=Copernicus+Publications&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XXXIX-B8&rft.spage=237&rft.epage=241&rft_id=info:doi/10.5194%2Fisprsarchives-XXXIX-B8-237-2012&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6c003cfab43447dea0475692797f5111 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon |