Artificial Intelligence With Neural Network Algorithms in Pediatric Astrocytoma Diagnosis: A Systematic Review

Background: Astrocytoma is a common pediatric brain tumor that poses a significant health burden. Recent advancements in artificial intelligence (AI), particularly neural network algorithms, have been studied for their precision and efficiency in medical diagnostics via effectively analyzing imaging...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Innovacionnaâ medicina Kubani (Online) Ročník 10; číslo 1; s. 93 - 100
Hlavní autori: Farmawati, Floresya K., Nurwakhid, Della W.A., Pradhea, Tifani A., Fitriasa, Rayyan, Arrahmi, Hutami H., Ilyas, Muhana F., Nur, Fadhilah T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Scientific Research Institute, Ochapovsky Regional Clinical Hospital no. 1 26.02.2025
Predmet:
ISSN:2541-9897, 2541-9897
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background: Astrocytoma is a common pediatric brain tumor that poses a significant health burden. Recent advancements in artificial intelligence (AI), particularly neural network algorithms, have been studied for their precision and efficiency in medical diagnostics via effectively analyzing imaging data to identify patterns and anomalies. Objective: To systematically review AI-based diagnostic tools with neural network algorithms’ methodologies, sensitivities, specificities, and potential clinical integration for pediatric astrocytoma, providing a consolidated perspective on their overall performance and impact on clinical decision-making. Methods: As per PRISMA 2020 guidelines, we conducted a comprehensive search in PubMed, Scopus, and ScienceDirect on February 5, 2024. The search strategy was guided by a PECO question focusing on pediatric astrocytoma diagnosis using AI algorithms vs computed tomography or magnetic resonance imaging (MRI). Keywords were terms related to AI and neural network algorithms. We included studies analyzing the diagnostic accuracy of AI-based methods in cases of pediatric astrocytoma (World Health Organization grades 1-3), with no restrictions on a publication year or country. We excluded papers written in languages other than English or Bahasa Indonesia and nonhuman studies. Data was assessed using the Effective Public Health Practice Project tool. Results: Of 454 articles screened, 6 met inclusion criteria. These studies varied in design, location, and sample size, ranging from 10 to 135 subjects. The AI methods showed high sensitivity and specificity, often surpassing traditional radiological techniques. Notably, neural network algorithms using 3-dimensional MRI demonstrated improved accuracy compared with 2-dimensional MRI (96% vs 77%). The AI models exhibited performance levels comparable to or exceeding that of expert radiologists, with metrics such as tumor classification accuracy of 92% and high values of the area under the receiver operating characteristic curve. Conclusions: AI with neural network algorithms shows significant promise in enhancing accuracy of pediatric astrocytoma diagnosis. The studies reviewed indicate that these advanced methods can achieve superior sensitivity and specificity compared with conventional diagnostic techniques. Integrating AI into clinical practice could substantially improve diagnostic precision and patient outcomes.
AbstractList Background: Astrocytoma is a common pediatric brain tumor that poses a significant health burden. Recent advancements in artificial intelligence (AI), particularly neural network algorithms, have been studied for their precision and efficiency in medical diagnostics via effectively analyzing imaging data to identify patterns and anomalies.Objective: To systematically review AI-based diagnostic tools with neural network algorithms’ methodologies, sensitivities, specificities, and potential clinical integration for pediatric astrocytoma, providing a consolidated perspective on their overall performance and impact on clinical decision-making.Methods: As per PRISMA 2020 guidelines, we conducted a comprehensive search in PubMed, Scopus, and ScienceDirect on February 5, 2024. The search strategy was guided by a PECO question focusing on pediatric astrocytoma diagnosis using AI algorithms vs computed tomography or magnetic resonance imaging (MRI). Keywords were terms related to AI and neural network algorithms. We included studies analyzing the diagnostic accuracy of AI-based methods in cases of pediatric astrocytoma (World Health Organization grades 1-3), with no restrictions on a publication year or country. We excluded papers written in languages other than English or Bahasa Indonesia and nonhuman studies. Data was assessed using the Effective Public Health Practice Project tool.Results: Of 454 articles screened, 6 met inclusion criteria. These studies varied in design, location, and sample size, ranging from 10 to 135 subjects. The AI methods showed high sensitivity and specificity, often surpassing traditional radiological techniques. Notably, neural network algorithms using 3-dimensional MRI demonstrated improved accuracy compared with 2-dimensional MRI (96% vs 77%). The AI models exhibited performance levels comparable to or exceeding that of expert radiologists, with metrics such as tumor classification accuracy of 92% and high values of the area under the receiver operating characteristic curve.Conclusions: AI with neural network algorithms shows significant promise in enhancing accuracy of pediatric astrocytoma diagnosis. The studies reviewed indicate that these advanced methods can achieve superior sensitivity and specificity compared with conventional diagnostic techniques. Integrating AI into clinical practice could substantially improve diagnostic precision and patient outcomes.
Background: Astrocytoma is a common pediatric brain tumor that poses a significant health burden. Recent advancements in artificial intelligence (AI), particularly neural network algorithms, have been studied for their precision and efficiency in medical diagnostics via effectively analyzing imaging data to identify patterns and anomalies. Objective: To systematically review AI-based diagnostic tools with neural network algorithms’ methodologies, sensitivities, specificities, and potential clinical integration for pediatric astrocytoma, providing a consolidated perspective on their overall performance and impact on clinical decision-making. Methods: As per PRISMA 2020 guidelines, we conducted a comprehensive search in PubMed, Scopus, and ScienceDirect on February 5, 2024. The search strategy was guided by a PECO question focusing on pediatric astrocytoma diagnosis using AI algorithms vs computed tomography or magnetic resonance imaging (MRI). Keywords were terms related to AI and neural network algorithms. We included studies analyzing the diagnostic accuracy of AI-based methods in cases of pediatric astrocytoma (World Health Organization grades 1-3), with no restrictions on a publication year or country. We excluded papers written in languages other than English or Bahasa Indonesia and nonhuman studies. Data was assessed using the Effective Public Health Practice Project tool. Results: Of 454 articles screened, 6 met inclusion criteria. These studies varied in design, location, and sample size, ranging from 10 to 135 subjects. The AI methods showed high sensitivity and specificity, often surpassing traditional radiological techniques. Notably, neural network algorithms using 3-dimensional MRI demonstrated improved accuracy compared with 2-dimensional MRI (96% vs 77%). The AI models exhibited performance levels comparable to or exceeding that of expert radiologists, with metrics such as tumor classification accuracy of 92% and high values of the area under the receiver operating characteristic curve. Conclusions: AI with neural network algorithms shows significant promise in enhancing accuracy of pediatric astrocytoma diagnosis. The studies reviewed indicate that these advanced methods can achieve superior sensitivity and specificity compared with conventional diagnostic techniques. Integrating AI into clinical practice could substantially improve diagnostic precision and patient outcomes.
Author Pradhea, Tifani A.
Nurwakhid, Della W.A.
Fitriasa, Rayyan
Farmawati, Floresya K.
Nur, Fadhilah T.
Ilyas, Muhana F.
Arrahmi, Hutami H.
Author_xml – sequence: 1
  givenname: Floresya K.
  orcidid: 0009-0001-6182-5319
  surname: Farmawati
  fullname: Farmawati, Floresya K.
  organization: Sebelas Maret University
– sequence: 2
  givenname: Della W.A.
  orcidid: 0009-0000-4564-131X
  surname: Nurwakhid
  fullname: Nurwakhid, Della W.A.
  organization: Brawijaya University
– sequence: 3
  givenname: Tifani A.
  orcidid: 0009-0009-0223-826X
  surname: Pradhea
  fullname: Pradhea, Tifani A.
  organization: Tanjungpura University
– sequence: 4
  givenname: Rayyan
  orcidid: 0009-0001-5856-8585
  surname: Fitriasa
  fullname: Fitriasa, Rayyan
  organization: YARSI University
– sequence: 5
  givenname: Hutami H.
  orcidid: 0009-0003-0354-349X
  surname: Arrahmi
  fullname: Arrahmi, Hutami H.
  organization: Trisakti University
– sequence: 6
  givenname: Muhana F.
  orcidid: 0000-0002-0176-9773
  surname: Ilyas
  fullname: Ilyas, Muhana F.
  organization: Sebelas Maret University
– sequence: 7
  givenname: Fadhilah T.
  orcidid: 0009-0008-6184-4318
  surname: Nur
  fullname: Nur, Fadhilah T.
  organization: Sebelas Maret University
BookMark eNpNUdlKBDEQDKLg-Q8Bn0dzzaVPg-eCqHjgY-hNetbo7ESS6LJ_b1ZlkX6o7uqmoLp2yeboRyTkkLMjWSrGj0WpeNE2bV0IJsqCsyKPMiPbIDvr5ea_fpscxPjGGBMt543kO2TsQnK9Mw4GOhkTDoOb4WiQvrj0Sm_xM-TFLaaFD--0G2Y-ZH4eqRvpPVoHKThDu5iCN8vk50DPHcxGH108oR19XMaEc0j55gG_HC72yVYPQ8SDP9wjz5cXT2fXxc3d1eSsuymMUNmHnULdMsMQjGEWoK6Q1dxAb4UVTd_y3hpVQi5eoawVTkG1FXLR41RN20rukcmvrvXwpj-Cm0NYag9O_xA-zDRk42ZAXctaNrZUAKZRTdOCqCpuJON1XzVWYtY6_dUywccYsF_rcaZ_ktCrB-vVg_UqiRWfR5mRyW9EbYAC
Cites_doi 10.1186/s12909-023-04698-z
10.4018/979-8-3693-1082-3.ch007
10.3390/diagnostics14121265
10.3174/ajnr.A6704
10.1111/j.1524-475X.2004.04006.x
10.1038/s41598-024-57970-7
10.20892/j.issn.2095-3941.2022.0418
10.1016/j.nicl.2020.102172
10.1002/nbm.3353
10.1016/j.neucom.2020.04.157
10.3171/jns.1997.86.5.0755
10.3174/ajnr.A6621
10.1016/j.trecan.2019.02.002
10.1109/ICARCV.2014.7064414
10.3390/diagnostics13040688
10.3390/curroncol30030203
10.1200/JCO.2014.59.9217
10.1038/s41698-024-00575-0
10.1136/bmj.n71
10.1016/j.crad.2019.02.005
10.1002/nbm.3099
10.1093/neuonc/noac161
10.3174/ajnr.A3784
10.1016/j.patcog.2018.05.014
10.32607/20758251-2019-11-2-17-27
10.52783/jes.3220
10.1016/j.jocn.2020.04.080
10.1002/mrm.26837
10.3390/make6010033
10.1016/j.imu.2021.100596
10.1159/000076571
10.1016/j.cmpbup.2024.100146
10.3390/diagnostics13183007
10.1007/s12065-020-00540-3
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.35401/2541-9897-2025-10-1-93-100
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2541-9897
EndPage 100
ExternalDocumentID oai_doaj_org_article_73738d54aac84889a2661c3017f68d3e
10_35401_2541_9897_2025_10_1_93_100
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2410-dba790c0eacc0daa76e071cafd2d28f91fdc45a5a516e374eba496e12feb4b963
IEDL.DBID DOA
ISSN 2541-9897
IngestDate Fri Oct 03 12:48:38 EDT 2025
Sat Nov 29 08:10:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2410-dba790c0eacc0daa76e071cafd2d28f91fdc45a5a516e374eba496e12feb4b963
ORCID 0009-0001-6182-5319
0009-0009-0223-826X
0009-0003-0354-349X
0009-0008-6184-4318
0009-0000-4564-131X
0000-0002-0176-9773
0009-0001-5856-8585
OpenAccessLink https://doaj.org/article/73738d54aac84889a2661c3017f68d3e
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_73738d54aac84889a2661c3017f68d3e
crossref_primary_10_35401_2541_9897_2025_10_1_93_100
PublicationCentury 2000
PublicationDate 2025-02-26
PublicationDateYYYYMMDD 2025-02-26
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-26
  day: 26
PublicationDecade 2020
PublicationTitle Innovacionnaâ medicina Kubani (Online)
PublicationYear 2025
Publisher Scientific Research Institute, Ochapovsky Regional Clinical Hospital no. 1
Publisher_xml – name: Scientific Research Institute, Ochapovsky Regional Clinical Hospital no. 1
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1186/s12909-023-04698-z
– ident: ref14
  doi: 10.4018/979-8-3693-1082-3.ch007
– ident: ref8
  doi: 10.3390/diagnostics14121265
– ident: ref26
  doi: 10.3174/ajnr.A6704
– ident: ref25
  doi: 10.1111/j.1524-475X.2004.04006.x
– ident: ref33
  doi: 10.1038/s41598-024-57970-7
– ident: ref4
  doi: 10.20892/j.issn.2095-3941.2022.0418
– ident: ref23
  doi: 10.1016/j.nicl.2020.102172
– ident: ref22
  doi: 10.1002/nbm.3353
– ident: ref18
  doi: 10.1016/j.neucom.2020.04.157
– ident: ref20
  doi: 10.3171/jns.1997.86.5.0755
– ident: ref31
  doi: 10.3174/ajnr.A6621
– ident: ref10
  doi: 10.1016/j.trecan.2019.02.002
– ident: ref17
  doi: 10.1109/ICARCV.2014.7064414
– ident: ref6
  doi: 10.3390/diagnostics13040688
– ident: ref35
  doi: 10.3390/curroncol30030203
– ident: ref5
  doi: 10.1200/JCO.2014.59.9217
– ident: ref34
  doi: 10.1038/s41698-024-00575-0
– ident: ref2
– ident: ref24
  doi: 10.1136/bmj.n71
– ident: ref13
  doi: 10.1016/j.crad.2019.02.005
– ident: ref27
  doi: 10.1002/nbm.3099
– ident: ref3
  doi: 10.1093/neuonc/noac161
– ident: ref28
  doi: 10.3174/ajnr.A3784
– ident: ref9
  doi: 10.1016/j.patcog.2018.05.014
– ident: ref1
  doi: 10.32607/20758251-2019-11-2-17-27
– ident: ref16
  doi: 10.52783/jes.3220
– ident: ref29
  doi: 10.1016/j.jocn.2020.04.080
– ident: ref30
  doi: 10.1002/mrm.26837
– ident: ref15
  doi: 10.3390/make6010033
– ident: ref11
  doi: 10.1016/j.imu.2021.100596
– ident: ref21
  doi: 10.1159/000076571
– ident: ref12
  doi: 10.1016/j.cmpbup.2024.100146
– ident: ref32
  doi: 10.3390/diagnostics13183007
– ident: ref19
  doi: 10.1007/s12065-020-00540-3
SSID ssj0002911831
Score 2.2840505
SecondaryResourceType review_article
Snippet Background: Astrocytoma is a common pediatric brain tumor that poses a significant health burden. Recent advancements in artificial intelligence (AI),...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 93
SubjectTerms artificial intelligence
astrocytoma
diagnosis
neural networks
pediatrics
Title Artificial Intelligence With Neural Network Algorithms in Pediatric Astrocytoma Diagnosis: A Systematic Review
URI https://doaj.org/article/73738d54aac84889a2661c3017f68d3e
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2541-9897
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002911831
  issn: 2541-9897
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yyOJFfOL6IqDXsn2kTeKtPhY9uAgq7q2kebgLble2VfDfO9PWpZ68SE9NaCnfTDLzkek3hJzLSINdHffCHLgJM9p5Io8lcJ4kCiE9hxxe1c0m-HgsJhP50Gn1hTVhjTxwA9yQo_SOiZlSWoCzSYURRYNbcpcIE1ncfX0uO2QK9-AQ1rCIgj45Q1oKWUkwBCYUeFJI-Cxs4YpFCZ7Euiz_V0jqKPfXIWa0RTbb3JCmzTdtkzVb7JD-fXv6vUsKnGkUH-hdR0qTvsyqKUWZDZgYN3XdNH17XQDxn85LOivoqiMHTcsKYtZXtZgret3U2c3KC5rSx5WmM20ODPbI8-jm6erWa_sleBrisO-ZXHHpax_2Uu0bpXhiIYHQypnQhMLJwBnNYgVXkNiIM5srJhMbhM7mLIeVuE96xaKwB4QKznMGRtOJDpgGDghpATdAZ2PpK23cgLAfyLL3RhYjAzpRI50h0hkinSHSOA63EaojD8glwrt6BLWt6wGweNZaPPvL4of_8ZIjslG7Af6cnhyTXrX8sCdkXX9Ws3J5WjvTN6Mbyng
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+With+Neural+Network+Algorithms+in+Pediatric+Astrocytoma+Diagnosis%3A+A+Systematic+Review&rft.jtitle=Innovacionna%C3%A2+medicina+Kubani+%28Online%29&rft.au=Floresya+K.+Farmawati&rft.au=Della+W.A.+Nurwakhid&rft.au=Tifani+A.+Pradhea&rft.au=Rayyan+Fitriasa&rft.date=2025-02-26&rft.pub=Scientific+Research+Institute%2C+Ochapovsky+Regional+Clinical+Hospital+no.+1&rft.eissn=2541-9897&rft.volume=10&rft.issue=1&rft.spage=93&rft.epage=100&rft_id=info:doi/10.35401%2F2541-9897-2025-10-1-93-100&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_73738d54aac84889a2661c3017f68d3e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2541-9897&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2541-9897&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2541-9897&client=summon