On the Application of Mosaic-Skeleton Approximations of Matrices in Electrodynamics Problems with Impedance Boundary Conditions

A boundary value problem for Maxwell’s equations in the frequency domain with impedance boundary conditions is considered. The problem is reduced to solving a system of two boundary integral equations containing weakly and strongly singular integrals. For the numerical solution of a system of integr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Lobachevskii journal of mathematics Ročník 44; číslo 9; s. 4062 - 4069
Hlavní autoři: Setukha, A. V., Stavtsev, S. L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.09.2023
Témata:
ISSN:1995-0802, 1818-9962
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A boundary value problem for Maxwell’s equations in the frequency domain with impedance boundary conditions is considered. The problem is reduced to solving a system of two boundary integral equations containing weakly and strongly singular integrals. For the numerical solution of a system of integral equations, the paper presents a numerical solution method based on piecewise constant approximation and collocation methods. Thus, the original problem is reduced to solving a system of linear algebraic equations with a dense matrix. To effectively solve a system of linear equations, the method of mosaic-skeleton approximations of matrices is used. The specifics of applying the method of mosaic-skeleton approximations in this problem are analyzed.
AbstractList A boundary value problem for Maxwell’s equations in the frequency domain with impedance boundary conditions is considered. The problem is reduced to solving a system of two boundary integral equations containing weakly and strongly singular integrals. For the numerical solution of a system of integral equations, the paper presents a numerical solution method based on piecewise constant approximation and collocation methods. Thus, the original problem is reduced to solving a system of linear algebraic equations with a dense matrix. To effectively solve a system of linear equations, the method of mosaic-skeleton approximations of matrices is used. The specifics of applying the method of mosaic-skeleton approximations in this problem are analyzed.
Author Setukha, A. V.
Stavtsev, S. L.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Setukha
  fullname: Setukha, A. V.
  email: setuhaav@rambler.ru
  organization: Moscow State University, Marchuk Institute of Numerical Mathematics, Russian Academy of Science
– sequence: 2
  givenname: S. L.
  surname: Stavtsev
  fullname: Stavtsev, S. L.
  email: sstass2000@mail.ru
  organization: Marchuk Institute of Numerical Mathematics, Russian Academy of Science
BookMark eNp9kE1OwzAQhS1UJNrCAdj5AgH_pGm8LFWBSkVFKkjsIseeUJfEjuxUkBVXx23ZIbGa0bzvjWbeCA2ss4DQNSU3lPL0dkOFmJCcMMaJIDx_O0NDmtM8ESJjg9hHOTnoF2gUwo5EMMuyIfpeW9xtAc_atjZKdsZZ7Cr85II0Ktl8QA1dHEXZuy_THIFwJGTnjYKAjcWLGlTnne6tbIwK-Nm7soYm4E_TbfGyaUFLqwDfub3V0vd47qw2x1WX6LySdYCr3zpGr_eLl_ljslo_LOezVaJYSrpEk1RkwIEwogmTkrJ8qicZY7LUuiS6VLQERiXXqaZcyGk1YTmDDPIpr5gAPkb0tFd5F4KHqmh9fMf3BSXFIcHiT4LRw06eEFn7Dr7Yub238cx_TD_D0ne7
Cites_doi 10.1139/p62-067
10.1016/j.jcp.2018.07.013
10.1049/SBEW045E
10.1134/S1995080219110064
10.1134/S0012266120090062
10.1515/rnam-2017-0035
10.1134/S0012266114090110
10.1007/s006070070031
10.1134/S1995080218040029
10.1137/1.9781611973167
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023
DBID AAYXX
CITATION
DOI 10.1134/S199508022309038X
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 4069
ExternalDocumentID 10_1134_S199508022309038X
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~9
-~C
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
OVT
ID FETCH-LOGICAL-c240t-d0496e3e020d02aa1287d5622abddb0dbc1be21a3d4d139a7f5282e6e873f29e3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001156509800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1995-0802
IngestDate Sat Nov 29 05:39:40 EST 2025
Fri Feb 21 02:41:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords integral equations
impedance boundary condition
fast matrix algorithms
Maxwell’s equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-d0496e3e020d02aa1287d5622abddb0dbc1be21a3d4d139a7f5282e6e873f29e3
PageCount 8
ParticipantIDs crossref_primary_10_1134_S199508022309038X
springer_journals_10_1134_S199508022309038X
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2023
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References SeniorT. B. A.A note on impedance boundary conditionsCanad. J. Phys.19624066366510.1139/p62-067
SetukhaA.FetisovS.The method of relocation of boundary condition for the problem of electromagnetic wave scattering by perfectly conducting thin objectsJ. Comput. Phys.2018373631647385416110.1016/j.jcp.2018.07.0131416.65549
HoppeD. J.Rahmat-SamiiY.Impedance Boundary Conditions in Electromagnetics1995Washington DCTaylor and Francis
VolakisJ. L.SertelK.Integral Equation Methods for Electromagnetic2012Raleigh, NCSciTech10.1049/SBEW045E
ZakharovE. V.RyzhakovG. V.SetukhaA. V.Numerical solution of 3D problems of electromagnetic wave diffraction on a system of ideally conducting surfaces by the method of hypersingular integral equationsDiffer. Equat.20145012401251337186710.1134/S00122661140901101308.78011
SetukhaA.BezobrazovaE.The method of hypersingularintegral equations in the problem of electromagnetic wave diffraction by a dielectric body with a partial perfectly conducting coatingRuss. J. Numer. Anal. Math. Model.20173237138010.1515/rnam-2017-00351375.78038
ColtonD.KressR.Integral Equation Methods in Scattering Theory2013PhiladelphiaSIAM10.1137/1.97816119731671291.35003
TyrtyshnikovE.Incomplete cross approximation in the mosaic-skeleton methodComputing200064367380178346810.1007/s0060700700310964.65048
LeontovichM. A.Investigations on Radiowave Propagation, Part II1948MoscowAkad. Nauk
ZakharovE. V.SetukhaA. V.Method of boundary integral equations in the problem of diffraction of a monochromatic electromagnetic wave by a system of perfectly conducting and piecewise homogeneous dielectric objectsDiffer. Equat.20205611531166416524310.1134/S00122661200900621451.78024
AparinovA.SetukhaA.StavtsevS.Parallel implementation for some applications of integral equations methodLobachevskii J. Math.201839477485381194110.1134/S19950802180400291483.65211
GibsonW.The Method of Moments in Electromagnetics2008Boca RatonChapman and Hall/CRC1175.78002
AparinovA. A.SetukhaA. V.StavtsevS. L.Low rank methods of approximations in an electromagnetic problemLobachevskii J. Math.20194017711780404362210.1134/S19950802191100641434.65052
A. Setukha (7430_CR5) 2018; 373
E. Tyrtyshnikov (7430_CR6) 2000; 64
A. Setukha (7430_CR12) 2017; 32
A. A. Aparinov (7430_CR13) 2019; 40
M. A. Leontovich (7430_CR1) 1948
W. Gibson (7430_CR9) 2008
E. V. Zakharov (7430_CR4) 2020; 56
D. Colton (7430_CR11) 2013
J. L. Volakis (7430_CR8) 2012
E. V. Zakharov (7430_CR10) 2014; 50
A. Aparinov (7430_CR7) 2018; 39
D. J. Hoppe (7430_CR3) 1995
T. B. A. Senior (7430_CR2) 1962; 40
References_xml – reference: SeniorT. B. A.A note on impedance boundary conditionsCanad. J. Phys.19624066366510.1139/p62-067
– reference: AparinovA. A.SetukhaA. V.StavtsevS. L.Low rank methods of approximations in an electromagnetic problemLobachevskii J. Math.20194017711780404362210.1134/S19950802191100641434.65052
– reference: ZakharovE. V.SetukhaA. V.Method of boundary integral equations in the problem of diffraction of a monochromatic electromagnetic wave by a system of perfectly conducting and piecewise homogeneous dielectric objectsDiffer. Equat.20205611531166416524310.1134/S00122661200900621451.78024
– reference: SetukhaA.FetisovS.The method of relocation of boundary condition for the problem of electromagnetic wave scattering by perfectly conducting thin objectsJ. Comput. Phys.2018373631647385416110.1016/j.jcp.2018.07.0131416.65549
– reference: TyrtyshnikovE.Incomplete cross approximation in the mosaic-skeleton methodComputing200064367380178346810.1007/s0060700700310964.65048
– reference: SetukhaA.BezobrazovaE.The method of hypersingularintegral equations in the problem of electromagnetic wave diffraction by a dielectric body with a partial perfectly conducting coatingRuss. J. Numer. Anal. Math. Model.20173237138010.1515/rnam-2017-00351375.78038
– reference: AparinovA.SetukhaA.StavtsevS.Parallel implementation for some applications of integral equations methodLobachevskii J. Math.201839477485381194110.1134/S19950802180400291483.65211
– reference: VolakisJ. L.SertelK.Integral Equation Methods for Electromagnetic2012Raleigh, NCSciTech10.1049/SBEW045E
– reference: GibsonW.The Method of Moments in Electromagnetics2008Boca RatonChapman and Hall/CRC1175.78002
– reference: ZakharovE. V.RyzhakovG. V.SetukhaA. V.Numerical solution of 3D problems of electromagnetic wave diffraction on a system of ideally conducting surfaces by the method of hypersingular integral equationsDiffer. Equat.20145012401251337186710.1134/S00122661140901101308.78011
– reference: ColtonD.KressR.Integral Equation Methods in Scattering Theory2013PhiladelphiaSIAM10.1137/1.97816119731671291.35003
– reference: LeontovichM. A.Investigations on Radiowave Propagation, Part II1948MoscowAkad. Nauk
– reference: HoppeD. J.Rahmat-SamiiY.Impedance Boundary Conditions in Electromagnetics1995Washington DCTaylor and Francis
– volume: 40
  start-page: 663
  year: 1962
  ident: 7430_CR2
  publication-title: Canad. J. Phys.
  doi: 10.1139/p62-067
– volume: 373
  start-page: 631
  year: 2018
  ident: 7430_CR5
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.07.013
– volume-title: Integral Equation Methods for Electromagnetic
  year: 2012
  ident: 7430_CR8
  doi: 10.1049/SBEW045E
– volume: 40
  start-page: 1771
  year: 2019
  ident: 7430_CR13
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080219110064
– volume: 56
  start-page: 1153
  year: 2020
  ident: 7430_CR4
  publication-title: Differ. Equat.
  doi: 10.1134/S0012266120090062
– volume: 32
  start-page: 371
  year: 2017
  ident: 7430_CR12
  publication-title: Russ. J. Numer. Anal. Math. Model.
  doi: 10.1515/rnam-2017-0035
– volume: 50
  start-page: 1240
  year: 2014
  ident: 7430_CR10
  publication-title: Differ. Equat.
  doi: 10.1134/S0012266114090110
– volume-title: The Method of Moments in Electromagnetics
  year: 2008
  ident: 7430_CR9
– volume-title: Investigations on Radiowave Propagation, Part II
  year: 1948
  ident: 7430_CR1
– volume-title: Impedance Boundary Conditions in Electromagnetics
  year: 1995
  ident: 7430_CR3
– volume: 64
  start-page: 367
  year: 2000
  ident: 7430_CR6
  publication-title: Computing
  doi: 10.1007/s006070070031
– volume: 39
  start-page: 477
  year: 2018
  ident: 7430_CR7
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080218040029
– volume-title: Integral Equation Methods in Scattering Theory
  year: 2013
  ident: 7430_CR11
  doi: 10.1137/1.9781611973167
SSID ssj0022666
Score 2.2632778
Snippet A boundary value problem for Maxwell’s equations in the frequency domain with impedance boundary conditions is considered. The problem is reduced to solving a...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 4062
SubjectTerms Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Title On the Application of Mosaic-Skeleton Approximations of Matrices in Electrodynamics Problems with Impedance Boundary Conditions
URI https://link.springer.com/article/10.1134/S199508022309038X
Volume 44
WOSCitedRecordID wos001156509800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1818-9962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022666
  issn: 1995-0802
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7G-2IMnJZhmN016rKWiYGuhWnoLm-wGgpBItoqe_OvO7iaVoh70GDIsYTPJfN_O4wM489NUchm2nLjthg4TPHA41UWONOBSg_zQVFVO7oLhMJxOO6Oqj1vV1e51StL8qa3uCLsc62Zi0xlK9dlCOF2GFV8Pm9EUfTyZsyyMOKalyLQeh65XpTJ_XGIxGC1mQk2Aud7816NtwUaFJ0nXOsA2LMl8B9YH82Gsahc-7nOCl6T7lasmRUoGheJZ4oyfMPAgANS3y-Its62MyliY8f1SkSwnfSuXI6yAvSIjK0SjiD7IJbcIvoX2H3JlZJrKd9IrdDJcL7UHj9f9h96NU-kuOAnG95kjkDW0JZWIJIXrcY4hLBCIkzweCxG7Ik5asfRanAomEEDyIPWRuMm2DAOaeh1J96GRF7k8ACI1BeZJkKAZ66QC0WbKYua7Anllwv0mnNcvIHq24zUiQ0soi77tahMu6u2Pqi9N_W59-CfrI1jTQvK2euwYGrPyRZ7AavI6y1R5ajzsE3d6zGE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1ife_CkBNPspkmPtbS02NZCa-ktbLIbCEIi2Sp68q-7j6RS1IMeQ4YlbCaZ79t5fABXbhxzyv2aFdZt3yKMehbFqsgRe5QrkO_rqspp3xsO_dmsMSr6uEVZ7V6mJPWf2uiOkNuxaibWnaFYnS34s1VYI0plR1H08XTBsmTE0S1FuvXYt50ilfnjEsvBaDkTqgNMZ-dfj7YL2wWeRE3jAHuwwtN92BoshrGKA_h4SJG8RM2vXDXKYjTIBE0ia_wkA48EgOp2nr0lppVRaAs9vp8LlKSobeRymBGwF2hkhGgEUge5qCfBN1P-g-60TFP-jlqZSoarpQ7hsdOetLpWobtgRTK-zy0mWUOdYy6RJLMdSmUI85jESQ4NGQttFka1kDs1ihlhEkBSL3YlceN17ns4dhocH0ElzVJ-DIgrCkwjL5JmpBEziTZjEhLXZpJXRtStwnX5AoJnM14j0LQEk-Dbrlbhptz-oPjSxO_WJ3-yvoSN7mTQD_q94f0pbCpReVNJdgaVef7Cz2E9ep0nIr_Q3vYJFfnPRQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBJKeuadO0e59xwuM3hdOytpE0CRWhHU0Wf_Ovm0k6G-iA-lh5CaU4435dz-QC4cDlnhPl1K2zYvoUp8SyCVJEj8ghTIN_XVZWTvjcc-tNpc1TonIqy2r1MSZqeBjWlKclrM8oLDRJcG6vGYt0litQ9gz9dBitYEhlV0_UwnswZl4w-ur1ItyH7tlOkNX9cYjEwLWZFdbDpbv37M7fBZoEzYcs4xg5YYsku2BjMh7SKPfBxn0D5CFtfOWyYcjhIBYkja_wsA5IEhup1lr7FpsVRaAs91p8JGCewY2R0qBG2F3BkBGoEVBe8sCdBOVV-Ba-1fFP2DtupSpKrpfbBU7fz2L61Cj0GK5JxP7eoZBMNhphEmNR2CJGhzaMSPzkkpDS0aRjVQ-bUCaKYSmBJPO5KQscazPcQd5oMHYBKkibsEECmqDGJvEia4SanEoVyHGLXppJvRsStgstyM4KZGbsRaLqCcPDtr1bBVbkVQXECxe_WR3-yPgdro5tu0O8N747ButKaNwVmJ6CSZy_sFKxGr3kssjPteJ-D79gp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Application+of+Mosaic-Skeleton+Approximations+of+Matrices+in+Electrodynamics+Problems+with+Impedance+Boundary+Conditions&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Setukha%2C+A.+V.&rft.au=Stavtsev%2C+S.+L.&rft.date=2023-09-01&rft.pub=Pleiades+Publishing&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=44&rft.issue=9&rft.spage=4062&rft.epage=4069&rft_id=info:doi/10.1134%2FS199508022309038X&rft.externalDocID=10_1134_S199508022309038X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon