When to use Integer Programming Software to solve large multi-demand multidimensional knapsack problems: a guide for operations research practitioners
An important generalization of the classic 0-1 knapsack problem is the multi-demand multidimensional knapsack problem (MDMKP). In addition to being theoretically difficult to solve (it is NP-hard), it can be in practice difficult to solve because of its conflicting knapsack and demand constraints. S...
Saved in:
| Published in: | Engineering optimization Vol. 54; no. 5; pp. 894 - 906 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
04.05.2022
|
| Subjects: | |
| ISSN: | 0305-215X, 1029-0273 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | An important generalization of the classic 0-1 knapsack problem is the multi-demand multidimensional knapsack problem (MDMKP). In addition to being theoretically difficult to solve (it is NP-hard), it can be in practice difficult to solve because of its conflicting knapsack and demand constraints. Since there are significant large-scale applications of the MDMKP, approximate solution approaches are commonly used to solve these problems. However, using 1620 MDMKPs discussed in the literature, this article demonstrates which types of large MDMKPs can be solved efficiently by operations research practitioners using general purpose integer programming software on a standard personal computer within 0.1% of optimum. Statistical analyses are used to determine which problem parameters significantly impact solution time. Finally, based on these 1620 MDMKP instances, a classification tree is generated. This tree can be used to guide practitioners in solving MDMKPs that arise in business and industry. |
|---|---|
| AbstractList | An important generalization of the classic 0-1 knapsack problem is the multi-demand multidimensional knapsack problem (MDMKP). In addition to being theoretically difficult to solve (it is NP-hard), it can be in practice difficult to solve because of its conflicting knapsack and demand constraints. Since there are significant large-scale applications of the MDMKP, approximate solution approaches are commonly used to solve these problems. However, using 1620 MDMKPs discussed in the literature, this article demonstrates which types of large MDMKPs can be solved efficiently by operations research practitioners using general purpose integer programming software on a standard personal computer within 0.1% of optimum. Statistical analyses are used to determine which problem parameters significantly impact solution time. Finally, based on these 1620 MDMKP instances, a classification tree is generated. This tree can be used to guide practitioners in solving MDMKPs that arise in business and industry. |
| Author | Lu, Yun Vasko, Francis J. Emerick, Brooks Song, Myung Soon |
| Author_xml | – sequence: 1 givenname: Myung Soon orcidid: 0000-0001-7988-2242 surname: Song fullname: Song, Myung Soon organization: Department of Mathematics, Kutztown University – sequence: 2 givenname: Brooks orcidid: 0000-0003-0469-7258 surname: Emerick fullname: Emerick, Brooks organization: Department of Mathematics, Kutztown University – sequence: 3 givenname: Yun orcidid: 0000-0003-2296-425X surname: Lu fullname: Lu, Yun organization: Department of Mathematics, Kutztown University – sequence: 4 givenname: Francis J. orcidid: 0000-0001-8975-0999 surname: Vasko fullname: Vasko, Francis J. email: vasko@kutztown.edu organization: Department of Mathematics, Kutztown University |
| BookMark | eNqFkNtO3DAQhq0KJJbDIyD5BbL1Idkk7Q0ItQUJqUiA4C6atSfBxbFXYy-IF-nzdsPSGy7gajSj7_81-vbZTogBGTuWYi5FI74KLSolq_u5EkrOZat1u6i-sJkUqi2EqvUOm01MMUF7bD-lP0JILUQzY3_vHjDwHPk6Ib8IGQckfkVxIBhHFwZ-Hfv8DIQTk6J_Qu6BBuTj2mdXWBwh2O1i3YghuRjA88cAqwTmka8oLj2O6RsHPqydRd5H4nGFBHmDJk6YEMg8bEgw2U1HpHTIdnvwCY_e5gG7_fnj5uy8uPz96-Ls9LIwqhS5WFZYomysKiusS90Ya0A19aJvtTFaICytaqFdLMrGNEKWdWNt1dctYIVQmqU-YN-3vYZiSoR9Z1x-_SwTON9J0U2Ku_-Ku0lx96Z4k67epVfkRqCXT3Mn25wLGxsjPEfytsvw4iP1BMG41OmPK_4Bs6aaSQ |
| CitedBy_id | crossref_primary_10_3390_app15042059 crossref_primary_10_1016_j_cor_2023_106477 crossref_primary_10_1111_itor_13144 crossref_primary_10_1016_j_cor_2024_106747 crossref_primary_10_3390_math10173183 |
| Cites_doi | 10.1002/1520-6750(200102)48:1<18::AID-NAV2>3.0.CO;2-7 10.1080/0305215X.2019.1658748 10.1007/978-1-4614-7138-7 10.1016/j.cor.2005.07.007 10.1007/978-0-387-71921-4_1 10.1007/s10732-008-9100-4 10.1287/ijoc.1030.0050 10.1023/A:1009642405419 10.4236/ajor.2018.85023 10.17265/2159-5313/2016.09.003 10.1016/j.ejor.2018.10.001 10.2307/3001913 |
| ContentType | Journal Article |
| Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
| Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/0305215X.2021.1933965 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-0273 |
| EndPage | 906 |
| ExternalDocumentID | 10_1080_0305215X_2021_1933965 1933965 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c240t-b5e4e18d245e7438cdca2876f93cc30eabd29a96648c801478dd5f79ae5ea4cb3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000667038700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-215X |
| IngestDate | Sat Nov 29 06:22:50 EST 2025 Tue Nov 18 22:23:04 EST 2025 Mon Oct 20 23:47:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c240t-b5e4e18d245e7438cdca2876f93cc30eabd29a96648c801478dd5f79ae5ea4cb3 |
| ORCID | 0000-0003-0469-7258 0000-0001-8975-0999 0000-0001-7988-2242 0000-0003-2296-425X |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1080_0305215X_2021_1933965 crossref_citationtrail_10_1080_0305215X_2021_1933965 informaworld_taylorfrancis_310_1080_0305215X_2021_1933965 |
| PublicationCentury | 2000 |
| PublicationDate | 05/04/2022 2022-05-04 |
| PublicationDateYYYYMMDD | 2022-05-04 |
| PublicationDate_xml | – month: 05 year: 2022 text: 05/04/2022 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering optimization |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0010 CIT0001 CIT0012 Kutner M. (CIT0011) 2013 Cappanera P. (CIT0005) 2004; 13 Balachandar S. R. (CIT0002) 2011; 1 CIT0003 CIT0014 CIT0013 CIT0016 CIT0004 CIT0007 CIT0006 CIT0009 MATLAB (CIT0015) 2020 CIT0008 |
| References_xml | – volume-title: Statistics and Machine Learning Toolbox User’s Guide, R2020a year: 2020 ident: CIT0015 – ident: CIT0004 doi: 10.1002/1520-6750(200102)48:1<18::AID-NAV2>3.0.CO;2-7 – volume: 1 start-page: 593 issue: 2 year: 2011 ident: CIT0002 publication-title: International Journal of Mathematical Sciences and Applications – ident: CIT0014 doi: 10.1080/0305215X.2019.1658748 – ident: CIT0010 doi: 10.1007/978-1-4614-7138-7 – ident: CIT0001 doi: 10.1016/j.cor.2005.07.007 – ident: CIT0009 doi: 10.1007/978-0-387-71921-4_1 – volume-title: Applied Linear Statistical Models year: 2013 ident: CIT0011 – ident: CIT0008 doi: 10.1007/s10732-008-9100-4 – ident: CIT0006 doi: 10.1287/ijoc.1030.0050 – ident: CIT0007 doi: 10.1023/A:1009642405419 – ident: CIT0012 doi: 10.4236/ajor.2018.85023 – ident: CIT0003 doi: 10.17265/2159-5313/2016.09.003 – ident: CIT0013 doi: 10.1016/j.ejor.2018.10.001 – volume: 13 start-page: 3 year: 2004 ident: CIT0005 publication-title: Discrete Applied Mathematics – ident: CIT0016 doi: 10.2307/3001913 |
| SSID | ssj0013008 |
| Score | 2.3374596 |
| Snippet | An important generalization of the classic 0-1 knapsack problem is the multi-demand multidimensional knapsack problem (MDMKP). In addition to being... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 894 |
| SubjectTerms | classification trees Combinatorial optimization integer programming software machine learning regression models |
| Title | When to use Integer Programming Software to solve large multi-demand multidimensional knapsack problems: a guide for operations research practitioners |
| URI | https://www.tandfonline.com/doi/abs/10.1080/0305215X.2021.1933965 |
| Volume | 54 |
| WOSCitedRecordID | wos000667038700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1029-0273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013008 issn: 0305-215X databaseCode: TFW dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6K8dANrSpM4acKGEBVTVYkiukWOfS5VX1GTln_C7-WcuNAOwABjJJ-TOGffnfP5-xi75p6MtE_VSYxu7PBQcEegipyUgmOYiiAItS7FJprtdtTrxR2LJswtrNLU0LoiiijXajO5RZovEXE3xkcpUvWouvPcOmUgfhyaY-YU-s3U7LZevv4jNEpNOmPhGJPlGZ7velmLTmvcpStRp7X3D8-7z3Ztygl3lY8csA2cHLKdFSLCI_ZOa_IEiinMcwSzSdjHGXQq6NaYWsATrdZvYoamDXnrAmFkIORQ4hEdhWN6uOpCGbmAiuoDhhOR5UIOwcrW5LcgoD8fKAR6ZZhmWPlfDpZz6BWyFf6k_Jg9tx6694-OVWxwJGUGhZMGyNGNlMcDpNQkkkoKKslCHftS-g0UqfJiQRUWj6ShrWlGSgW6GQsMUHCZ-idsc0I3OGUgdOppFfpuqiUPKImjXK8pGlz51KUnwxrjyy-VSEtnblQ1Rom7ZD21w56YYU_ssNdY_dMsq_g8fjOIV90gKcqNFF2pniT-j7Znf7A9Z9ueOWlhsJX8gm0Wszlesi25KAb57Kr08g9UkfyT |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELWAVmp7oPRLpVCYA9fQTWxn494QYkUFrJC6qHuLHHtMEbCsNln6T_i9nUmyNBxKD-UYyeM4zotnxhm_J8SOSlwWJGUnBmMTqdSqyKLPooKcY1pYrdMQarGJ_nCYjcemexaGyyo5hw4NUUS9VvPHzZvRi5K4LwxSclVjSu-SeJdCEGlSvSyeaSM1o3w0-PHnT0KvVqVjk4htFqd4_tbNA__0gL2043cGr59ixGtitY06Ya-ByRuxhJO34lWHi_CduKNleQLVDcxLBN4nPMcZnDbVW9fUAr7Tgv3LzpDbEGBvEa64ihzqksTI4zWNrrnwrBjQsH3A5cROS-suoVWuKb-ChfP5hUegZ4abKTYQLKGlHfoJ0w6FUvlenA0ORvuHUSvaEDkKDqqo0KgwznyiNFJ0kjnvLGVlaTDSOdlDW_jEWEqyVOaYuaafea9D31jUaJUr5AexMqEbfBRgQ5EEn8q4CE5piuMo3OvbnvKSukxcui7U4lXlrmU0Z2GNqzxeEJ-2057ztOfttK-L3XuzaUPp8S8D08VBXtV7KaERPsnlo7af_sN2W7w4HJ0c58ffhkcb4mXCBy-41FJtipVqNsfP4rm7rS7K2VYN-d9KugDM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYhODAjijrHLgGmsRJE24IqECgqhIgeosce1wQ0EZNCn_C9zJOXCgH4ADHSB7HcSaeN87zG8b2uScj7VN2EqMbOzwU3BGoIiel4BimIghCrctiE41WK-p04rZlE-aWVmlyaF0JRZRrtfm4M6VHjLhD46MUqTqU3XnuASEQPw6DSTZN0JkbVtdN8-7zR0K9LEpnTBxjMzrE8103X8LTF_HSsbDTXPyHAS-xBYs54bhykmU2gb0VNj-mRLjK3mhR7kHRh2GOYHYJuziAdsXdeqYWcE3L9asYoGlD7vqC8GQ45FASEh2FzzS46kKZegGV1gc89kSWC_kItm5NfgQCusMHhUCPDP0MKwfMwYoO3UM2JqCUr7Hb5tnNybljSzY4kqBB4aQBcnQj5fEACZtEUklBOVmoY19Kv44iVV4sKMXikTS6NY1IqUA3YoEBCi5Tf51N9egGGwyETj2tQt9NteQBoTgCew1R58qnLj0Z1hgfvalEWj1zU1bjKXFHsqd22hMz7Ymd9ho7-DDLKkGP3wzicTdIinInRVdlTxL_R9vNP9jusdn2aTO5umhdbrE5z5y6MDxLvs2misEQd9iMfCke8sFu6fDvR43_bw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+to+use+Integer+Programming+Software+to+solve+large+multi-demand+multidimensional+knapsack+problems%3A+a+guide+for+operations+research+practitioners&rft.jtitle=Engineering+optimization&rft.au=Song%2C+Myung+Soon&rft.au=Emerick%2C+Brooks&rft.au=Lu%2C+Yun&rft.au=Vasko%2C+Francis+J.&rft.date=2022-05-04&rft.pub=Taylor+%26+Francis&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=54&rft.issue=5&rft.spage=894&rft.epage=906&rft_id=info:doi/10.1080%2F0305215X.2021.1933965&rft.externalDocID=1933965 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon |