When to use Integer Programming Software to solve large multi-demand multidimensional knapsack problems: a guide for operations research practitioners

An important generalization of the classic 0-1 knapsack problem is the multi-demand multidimensional knapsack problem (MDMKP). In addition to being theoretically difficult to solve (it is NP-hard), it can be in practice difficult to solve because of its conflicting knapsack and demand constraints. S...

Full description

Saved in:
Bibliographic Details
Published in:Engineering optimization Vol. 54; no. 5; pp. 894 - 906
Main Authors: Song, Myung Soon, Emerick, Brooks, Lu, Yun, Vasko, Francis J.
Format: Journal Article
Language:English
Published: Taylor & Francis 04.05.2022
Subjects:
ISSN:0305-215X, 1029-0273
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An important generalization of the classic 0-1 knapsack problem is the multi-demand multidimensional knapsack problem (MDMKP). In addition to being theoretically difficult to solve (it is NP-hard), it can be in practice difficult to solve because of its conflicting knapsack and demand constraints. Since there are significant large-scale applications of the MDMKP, approximate solution approaches are commonly used to solve these problems. However, using 1620 MDMKPs discussed in the literature, this article demonstrates which types of large MDMKPs can be solved efficiently by operations research practitioners using general purpose integer programming software on a standard personal computer within 0.1% of optimum. Statistical analyses are used to determine which problem parameters significantly impact solution time. Finally, based on these 1620 MDMKP instances, a classification tree is generated. This tree can be used to guide practitioners in solving MDMKPs that arise in business and industry.
AbstractList An important generalization of the classic 0-1 knapsack problem is the multi-demand multidimensional knapsack problem (MDMKP). In addition to being theoretically difficult to solve (it is NP-hard), it can be in practice difficult to solve because of its conflicting knapsack and demand constraints. Since there are significant large-scale applications of the MDMKP, approximate solution approaches are commonly used to solve these problems. However, using 1620 MDMKPs discussed in the literature, this article demonstrates which types of large MDMKPs can be solved efficiently by operations research practitioners using general purpose integer programming software on a standard personal computer within 0.1% of optimum. Statistical analyses are used to determine which problem parameters significantly impact solution time. Finally, based on these 1620 MDMKP instances, a classification tree is generated. This tree can be used to guide practitioners in solving MDMKPs that arise in business and industry.
Author Lu, Yun
Vasko, Francis J.
Emerick, Brooks
Song, Myung Soon
Author_xml – sequence: 1
  givenname: Myung Soon
  orcidid: 0000-0001-7988-2242
  surname: Song
  fullname: Song, Myung Soon
  organization: Department of Mathematics, Kutztown University
– sequence: 2
  givenname: Brooks
  orcidid: 0000-0003-0469-7258
  surname: Emerick
  fullname: Emerick, Brooks
  organization: Department of Mathematics, Kutztown University
– sequence: 3
  givenname: Yun
  orcidid: 0000-0003-2296-425X
  surname: Lu
  fullname: Lu, Yun
  organization: Department of Mathematics, Kutztown University
– sequence: 4
  givenname: Francis J.
  orcidid: 0000-0001-8975-0999
  surname: Vasko
  fullname: Vasko, Francis J.
  email: vasko@kutztown.edu
  organization: Department of Mathematics, Kutztown University
BookMark eNqFkNtO3DAQhq0KJJbDIyD5BbL1Idkk7Q0ItQUJqUiA4C6atSfBxbFXYy-IF-nzdsPSGy7gajSj7_81-vbZTogBGTuWYi5FI74KLSolq_u5EkrOZat1u6i-sJkUqi2EqvUOm01MMUF7bD-lP0JILUQzY3_vHjDwHPk6Ib8IGQckfkVxIBhHFwZ-Hfv8DIQTk6J_Qu6BBuTj2mdXWBwh2O1i3YghuRjA88cAqwTmka8oLj2O6RsHPqydRd5H4nGFBHmDJk6YEMg8bEgw2U1HpHTIdnvwCY_e5gG7_fnj5uy8uPz96-Ls9LIwqhS5WFZYomysKiusS90Ya0A19aJvtTFaICytaqFdLMrGNEKWdWNt1dctYIVQmqU-YN-3vYZiSoR9Z1x-_SwTON9J0U2Ku_-Ku0lx96Z4k67epVfkRqCXT3Mn25wLGxsjPEfytsvw4iP1BMG41OmPK_4Bs6aaSQ
CitedBy_id crossref_primary_10_3390_app15042059
crossref_primary_10_1016_j_cor_2023_106477
crossref_primary_10_1111_itor_13144
crossref_primary_10_1016_j_cor_2024_106747
crossref_primary_10_3390_math10173183
Cites_doi 10.1002/1520-6750(200102)48:1<18::AID-NAV2>3.0.CO;2-7
10.1080/0305215X.2019.1658748
10.1007/978-1-4614-7138-7
10.1016/j.cor.2005.07.007
10.1007/978-0-387-71921-4_1
10.1007/s10732-008-9100-4
10.1287/ijoc.1030.0050
10.1023/A:1009642405419
10.4236/ajor.2018.85023
10.17265/2159-5313/2016.09.003
10.1016/j.ejor.2018.10.001
10.2307/3001913
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
DBID AAYXX
CITATION
DOI 10.1080/0305215X.2021.1933965
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 906
ExternalDocumentID 10_1080_0305215X_2021_1933965
1933965
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c240t-b5e4e18d245e7438cdca2876f93cc30eabd29a96648c801478dd5f79ae5ea4cb3
IEDL.DBID TFW
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000667038700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-215X
IngestDate Sat Nov 29 06:22:50 EST 2025
Tue Nov 18 22:23:04 EST 2025
Mon Oct 20 23:47:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-b5e4e18d245e7438cdca2876f93cc30eabd29a96648c801478dd5f79ae5ea4cb3
ORCID 0000-0003-0469-7258
0000-0001-8975-0999
0000-0001-7988-2242
0000-0003-2296-425X
PageCount 13
ParticipantIDs crossref_primary_10_1080_0305215X_2021_1933965
crossref_citationtrail_10_1080_0305215X_2021_1933965
informaworld_taylorfrancis_310_1080_0305215X_2021_1933965
PublicationCentury 2000
PublicationDate 05/04/2022
2022-05-04
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 05
  year: 2022
  text: 05/04/2022
  day: 04
PublicationDecade 2020
PublicationTitle Engineering optimization
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0010
CIT0001
CIT0012
Kutner M. (CIT0011) 2013
Cappanera P. (CIT0005) 2004; 13
Balachandar S. R. (CIT0002) 2011; 1
CIT0003
CIT0014
CIT0013
CIT0016
CIT0004
CIT0007
CIT0006
CIT0009
MATLAB (CIT0015) 2020
CIT0008
References_xml – volume-title: Statistics and Machine Learning Toolbox User’s Guide, R2020a
  year: 2020
  ident: CIT0015
– ident: CIT0004
  doi: 10.1002/1520-6750(200102)48:1<18::AID-NAV2>3.0.CO;2-7
– volume: 1
  start-page: 593
  issue: 2
  year: 2011
  ident: CIT0002
  publication-title: International Journal of Mathematical Sciences and Applications
– ident: CIT0014
  doi: 10.1080/0305215X.2019.1658748
– ident: CIT0010
  doi: 10.1007/978-1-4614-7138-7
– ident: CIT0001
  doi: 10.1016/j.cor.2005.07.007
– ident: CIT0009
  doi: 10.1007/978-0-387-71921-4_1
– volume-title: Applied Linear Statistical Models
  year: 2013
  ident: CIT0011
– ident: CIT0008
  doi: 10.1007/s10732-008-9100-4
– ident: CIT0006
  doi: 10.1287/ijoc.1030.0050
– ident: CIT0007
  doi: 10.1023/A:1009642405419
– ident: CIT0012
  doi: 10.4236/ajor.2018.85023
– ident: CIT0003
  doi: 10.17265/2159-5313/2016.09.003
– ident: CIT0013
  doi: 10.1016/j.ejor.2018.10.001
– volume: 13
  start-page: 3
  year: 2004
  ident: CIT0005
  publication-title: Discrete Applied Mathematics
– ident: CIT0016
  doi: 10.2307/3001913
SSID ssj0013008
Score 2.3374596
Snippet An important generalization of the classic 0-1 knapsack problem is the multi-demand multidimensional knapsack problem (MDMKP). In addition to being...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 894
SubjectTerms classification trees
Combinatorial optimization
integer programming software
machine learning
regression models
Title When to use Integer Programming Software to solve large multi-demand multidimensional knapsack problems: a guide for operations research practitioners
URI https://www.tandfonline.com/doi/abs/10.1080/0305215X.2021.1933965
Volume 54
WOSCitedRecordID wos000667038700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: TFW
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6K8dANrSpM4acKGEBVTVYkiukWOfS5VX1GTln_C7-WcuNAOwABjJJ-TOGffnfP5-xi75p6MtE_VSYxu7PBQcEegipyUgmOYiiAItS7FJprtdtTrxR2LJswtrNLU0LoiiijXajO5RZovEXE3xkcpUvWouvPcOmUgfhyaY-YU-s3U7LZevv4jNEpNOmPhGJPlGZ7velmLTmvcpStRp7X3D8-7z3Ztygl3lY8csA2cHLKdFSLCI_ZOa_IEiinMcwSzSdjHGXQq6NaYWsATrdZvYoamDXnrAmFkIORQ4hEdhWN6uOpCGbmAiuoDhhOR5UIOwcrW5LcgoD8fKAR6ZZhmWPlfDpZz6BWyFf6k_Jg9tx6694-OVWxwJGUGhZMGyNGNlMcDpNQkkkoKKslCHftS-g0UqfJiQRUWj6ShrWlGSgW6GQsMUHCZ-idsc0I3OGUgdOppFfpuqiUPKImjXK8pGlz51KUnwxrjyy-VSEtnblQ1Rom7ZD21w56YYU_ssNdY_dMsq_g8fjOIV90gKcqNFF2pniT-j7Znf7A9Z9ueOWlhsJX8gm0Wszlesi25KAb57Kr08g9UkfyT
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELWAVmp7oPRLpVCYA9fQTWxn494QYkUFrJC6qHuLHHtMEbCsNln6T_i9nUmyNBxKD-UYyeM4zotnxhm_J8SOSlwWJGUnBmMTqdSqyKLPooKcY1pYrdMQarGJ_nCYjcemexaGyyo5hw4NUUS9VvPHzZvRi5K4LwxSclVjSu-SeJdCEGlSvSyeaSM1o3w0-PHnT0KvVqVjk4htFqd4_tbNA__0gL2043cGr59ixGtitY06Ya-ByRuxhJO34lWHi_CduKNleQLVDcxLBN4nPMcZnDbVW9fUAr7Tgv3LzpDbEGBvEa64ihzqksTI4zWNrrnwrBjQsH3A5cROS-suoVWuKb-ChfP5hUegZ4abKTYQLKGlHfoJ0w6FUvlenA0ORvuHUSvaEDkKDqqo0KgwznyiNFJ0kjnvLGVlaTDSOdlDW_jEWEqyVOaYuaafea9D31jUaJUr5AexMqEbfBRgQ5EEn8q4CE5piuMo3OvbnvKSukxcui7U4lXlrmU0Z2GNqzxeEJ-2057ztOfttK-L3XuzaUPp8S8D08VBXtV7KaERPsnlo7af_sN2W7w4HJ0c58ffhkcb4mXCBy-41FJtipVqNsfP4rm7rS7K2VYN-d9KugDM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYhODAjijrHLgGmsRJE24IqECgqhIgeosce1wQ0EZNCn_C9zJOXCgH4ADHSB7HcSaeN87zG8b2uScj7VN2EqMbOzwU3BGoIiel4BimIghCrctiE41WK-p04rZlE-aWVmlyaF0JRZRrtfm4M6VHjLhD46MUqTqU3XnuASEQPw6DSTZN0JkbVtdN8-7zR0K9LEpnTBxjMzrE8103X8LTF_HSsbDTXPyHAS-xBYs54bhykmU2gb0VNj-mRLjK3mhR7kHRh2GOYHYJuziAdsXdeqYWcE3L9asYoGlD7vqC8GQ45FASEh2FzzS46kKZegGV1gc89kSWC_kItm5NfgQCusMHhUCPDP0MKwfMwYoO3UM2JqCUr7Hb5tnNybljSzY4kqBB4aQBcnQj5fEACZtEUklBOVmoY19Kv44iVV4sKMXikTS6NY1IqUA3YoEBCi5Tf51N9egGGwyETj2tQt9NteQBoTgCew1R58qnLj0Z1hgfvalEWj1zU1bjKXFHsqd22hMz7Ymd9ho7-DDLKkGP3wzicTdIinInRVdlTxL_R9vNP9jusdn2aTO5umhdbrE5z5y6MDxLvs2misEQd9iMfCke8sFu6fDvR43_bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+to+use+Integer+Programming+Software+to+solve+large+multi-demand+multidimensional+knapsack+problems%3A+a+guide+for+operations+research+practitioners&rft.jtitle=Engineering+optimization&rft.au=Song%2C+Myung+Soon&rft.au=Emerick%2C+Brooks&rft.au=Lu%2C+Yun&rft.au=Vasko%2C+Francis+J.&rft.date=2022-05-04&rft.pub=Taylor+%26+Francis&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=54&rft.issue=5&rft.spage=894&rft.epage=906&rft_id=info:doi/10.1080%2F0305215X.2021.1933965&rft.externalDocID=1933965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon