Properties of subgradient projection iteration when applying to linear imaging system

In this paper, the subgradient projection iteration is used to find an approximation solution of a weighted least-squares problem with respect to linear imaging system. Instead of an exact or approximate line search in each iteration, the step length in this paper is fixed by the weighted least-squa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 13; číslo 6; s. 1285 - 1297
Hlavní autor: Wang, Caifang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the subgradient projection iteration is used to find an approximation solution of a weighted least-squares problem with respect to linear imaging system. Instead of an exact or approximate line search in each iteration, the step length in this paper is fixed by the weighted least-square function and the current iteration. Using weighted singular value decomposition, we estimate the bounds of step length. Consequently, we provide the decreasing property and the sufficient condition for convergence of the iterative algorithm. Furthermore, we perform a numerical experiment on a two dimensional image reconstruction problem to confirm the validity of this subgradient projection iteration.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-018-1321-3