Inverse boundary-value problems of cauchy type for harmonic functions
We apply two methods for solving the inverse boundary-value problem (the so-called problem (A)) in the Cauchy statement for an analytic function and an unknown curve Γ. We obtain criteria for Γ to be the unit circle. We apply the proposed methods for solving a modified Hadamard example and generaliz...
Uložené v:
| Vydané v: | Russian mathematics Ročník 56; číslo 12; s. 71 - 75 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
Allerton Press, Inc
01.12.2012
|
| Predmet: | |
| ISSN: | 1066-369X, 1934-810X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We apply two methods for solving the inverse boundary-value problem (the so-called problem (A)) in the Cauchy statement for an analytic function and an unknown curve Γ. We obtain criteria for Γ to be the unit circle. We apply the proposed methods for solving a modified Hadamard example and generalize the obtained results for the case of doubly connected domains. |
|---|---|
| ISSN: | 1066-369X 1934-810X |
| DOI: | 10.3103/S1066369X12120080 |