Task offloading and resource allocation in NOMA-VEC: A multi-agent deep graph reinforcement learning algorithm

Vehicular edge computing (VEC) is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle (IoV). Non-orthogonal multiple access (NOMA) has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost. It...

Full description

Saved in:
Bibliographic Details
Published in:China communications Vol. 21; no. 8; pp. 79 - 88
Main Authors: Yonghui, Hu, Zuodong, Jin, Peng, Qi, Dan, Tao
Format: Journal Article
Language:English
Published: China Institute of Communications 01.08.2024
School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China
Subjects:
ISSN:1673-5447
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vehicular edge computing (VEC) is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle (IoV). Non-orthogonal multiple access (NOMA) has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost. It is an encouraging progress combining VEC and NOMA. In this paper, we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system. To solve the optimization problem, we propose a multiagent deep graph reinforcement learning algorithm. The algorithm extracts the topological features and relationship information between agents from the system state as observations, outputs task offloading decision and resource allocation simultaneously with local policy network, which is updated by a local learner. Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80% improvement compared with the benchmark algorithms in system service utility.
AbstractList Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple ac-cess(NOMA)has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost.It is an encouraging progress combining VEC and NOMA.In this paper,we jointly optimize task offloading decision and resource allocation to maxi-mize the service utility of the NOMA-VEC system.To solve the optimization problem,we propose a multi-agent deep graph reinforcement learning algorithm.The algorithm extracts the topological features and re-lationship information between agents from the sys-tem state as observations,outputs task offloading de-cision and resource allocation simultaneously with local policy network,which is updated by a local learner.Simulation results demonstrate that the pro-posed method achieves a 1.52%~5.80%improvement compared with the benchmark algorithms in system service utility.
Vehicular edge computing (VEC) is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle (IoV). Non-orthogonal multiple access (NOMA) has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost. It is an encouraging progress combining VEC and NOMA. In this paper, we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system. To solve the optimization problem, we propose a multiagent deep graph reinforcement learning algorithm. The algorithm extracts the topological features and relationship information between agents from the system state as observations, outputs task offloading decision and resource allocation simultaneously with local policy network, which is updated by a local learner. Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80% improvement compared with the benchmark algorithms in system service utility.
Author Dan, Tao
Yonghui, Hu
Peng, Qi
Zuodong, Jin
AuthorAffiliation School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China
AuthorAffiliation_xml – name: School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China
Author_xml – sequence: 1
  givenname: Hu
  surname: Yonghui
  fullname: Yonghui, Hu
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Jin
  surname: Zuodong
  fullname: Zuodong, Jin
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 3
  givenname: Qi
  surname: Peng
  fullname: Peng, Qi
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 4
  givenname: Tao
  surname: Dan
  fullname: Dan, Tao
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
BookMark eNqNkD1PwzAQhj0UiVL6Dxi8MKY4duIkDEhVVL5UYAFW65qcgyG1KycVH78et2FATHixpbvnvfNzREbWWSSExmzGRREXZ7dlOdMw44wnEWM83r9YPiLjWGYiSpMkOyTTrntl4eRSCsnHxD5C90ad1q2D2tiGgq2px85tfYUU2tZV0BtnqbH0_uFuHj0vynM6p-tt25sIGrQ9rRE3tPGweQmksdoFdL0rtAje7kPbxnnTv6yPyYGGtsPpzz0hT5eLx_I6Wj5c3ZTzZVSFlfsoyVgqdSZFWqcAOmGrgrM61YzVOQpdJyvADGpZCKY1T1YyrzCWHCuerwqNKCbkdMh9B6vBNuo1fMiGieqr6T8GMYxloS8f-irvus6jVhtv1uA_VczUXqsKWpUGtWPUTqsa6IBe_EEr0-9d9R5M-5-AkyHAIOKvuTJjsRDiG8FkjVY
CODEN CCHOBE
CitedBy_id crossref_primary_10_1016_j_vehcom_2025_100950
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.23919/JCC.fa.2024-0021.202408
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 88
ExternalDocumentID zgtx202408007
10_23919_JCC_fa_2024_0021_202408
10670133
Genre orig-research
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
2B.
4A8
93N
PSX
RIG
ID FETCH-LOGICAL-c240t-47056f7635d5aaf40b920d5f00d8e3fd4bae7ad6930ff24b68ce162ec28b9fee3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367252600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1673-5447
IngestDate Thu May 29 03:54:26 EDT 2025
Sat Nov 29 06:38:58 EST 2025
Tue Nov 18 21:46:45 EST 2025
Wed Aug 27 02:01:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords graph convolutional net-work
task offloading
edge computing
reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-47056f7635d5aaf40b920d5f00d8e3fd4bae7ad6930ff24b68ce162ec28b9fee3
PageCount 10
ParticipantIDs crossref_primary_10_23919_JCC_fa_2024_0021_202408
wanfang_journals_zgtx202408007
crossref_citationtrail_10_23919_JCC_fa_2024_0021_202408
ieee_primary_10670133
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2024
Publisher China Institute of Communications
School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China
Publisher_xml – name: China Institute of Communications
– name: School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China
SSID ssj0000866362
Score 2.3054523
Snippet Vehicular edge computing (VEC) is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle...
Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms Costs
edge computing
Feature extraction
graph convolutional network
Interference
NOMA
Optimization
reinforcement learning
Resource management
Servers
task offloading
Title Task offloading and resource allocation in NOMA-VEC: A multi-agent deep graph reinforcement learning algorithm
URI https://ieeexplore.ieee.org/document/10670133
https://d.wanfangdata.com.cn/periodical/zgtx202408007
Volume 21
WOSCitedRecordID wos001367252600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1673-5447
  databaseCode: RIE
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0000866362
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYGmgSX_YJpZaPygashcRw72a2qitCkdTvAxM1y7OeuWklQGxDir5-fHVAvk8bNhzwr8mfLz-_H9xFywmWjlMk5k7VxTMiiYQ1Iz5wLvnZRApSZjWITaj6vrq_rn0OzeuyFAYBYfAanOIy5fNfZOwyVnSHdWXBZih2yo5RMzVrPAZXgm8siCojmUmHCX6hUucOLOq_Pvk2npx6JhrhgeLHFEYpKbl1HUV8ldu-03rSLrYvm_O0Lf_EdeTN4lHSStsB78graD2TvqeF4c0DaS7P5QzvvV10smKemdXQ9hO0pJt5T2I4uWzr_8X3Cfs2mX-mExlpDZrD3ijqAWxrJrYNlJFu1Ma5IB9WJMOlq0a2X_e-bQ3J1PrucXrBBZoHZsAI9Eyo4QR6J6VxpjBdZU_PMlT7LXAWFd6IxoIxDzUTvuWhkZSGXHCyvmtoDFB_Jbtu18IlQyGpfZY0rMy9FeHSbMsc0I3fO8jCtGBH1tNraDhzkKIWx0uEtEnHSASftjUZ0NOKkE04jkj9b3iYejv-wOUSAtr5P2IzIeEBYDwd2ox8X_UOyCk7T0T8MP5P9tH-w_u8L2e3Xd3BMXtv7frlZj-N2_AtIvtrP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQWovlEcRC7T4wNWt4zhOwm21atVCu3BYUG-WY4-3K5ak2k0rxK_Hj7TaC1K5-ZCxIn-2PJ7H9wF85LIpS51xKmttqZB5QxuUjlrrfe28QCyYiWIT5XRaXV7W34Zm9dgLg4ix-AwPwzDm8m1nbkKo7CjQnXmXJX8MTwohOEvtWvchFe-dyzxKiGayDCl_UabaHZ7XWX30eTI5dIFqiAsarrY4CrKSGxdSVFiJ_Tut0-1846o52f3Pn3wOzwafkozTJngBj7B9Cdt3LcfrV9DO9Pon6ZxbdrFknujWktUQuCch9Z4Cd2TRkunXizH9cTz5RMYkVhtSHbqviEW8JpHe2ltGulUTI4tk0J3wky7n3WrRX_3ag-8nx7PJKR2EFqjxK9BTUXo3yAVqOlto7QRras5s4RizFebOikZjqW1QTXSOi0ZWBjPJ0fCqqR1i_hq22q7FN0CQ1a5ijS2Yk8I_u3WRhUQjt9ZwP60YQXm32soMLORBDGOp_Gsk4qQ8TsppFdBRASeVcBpBdm95nZg4HmCzFwDa-D5hM4KDAWE1HNm1-jPvfycr7za9_YfhB9g-nV2cq_Oz6Zd3sJP2UqgGfA9b_eoG9-Gpue0X69VB3Jp_AdPM3hY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+offloading+and+resource+allocation+in+NOMA-VEC%3A+A+multi-agent+deep+graph+reinforcement+learning+algorithm&rft.jtitle=China+communications&rft.au=Yonghui%2C+Hu&rft.au=Zuodong%2C+Jin&rft.au=Peng%2C+Qi&rft.au=Dan%2C+Tao&rft.date=2024-08-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=21&rft.issue=8&rft.spage=79&rft.epage=88&rft_id=info:doi/10.23919%2FJCC.fa.2024-0021.202408&rft.externalDocID=10670133
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg