Dynamic matchings in left vertex weighted convex bipartite graphs

A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph G = ( X , Y , E ) in which the neighbors of each x ∈ X form an interval in Y where Y is linearly ordered, and each x ∈ X has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of combinatorial optimization Ročník 32; číslo 1; s. 25 - 50
Hlavní autori: Zu, Quan, Zhang, Miaomiao, Yu, Bin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2016
Predmet:
ISSN:1382-6905, 1573-2886
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph G = ( X , Y , E ) in which the neighbors of each x ∈ X form an interval in Y where Y is linearly ordered, and each x ∈ X has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a dynamic LWCBG. The graph is subject to the updates of vertex and edge insertions and deletions. Our dynamic algorithms maintain the update operations in O ( log 2 | V | ) amortized time per update, obtain the matching status of a vertex (whether it is matched) in constant worst-case time, and find the pair of a matched vertex (with which it is matched) in worst-case O ( k ) time, where k is not greater than the cardinality of the maximum weight matching. That achieves the same time bound as the best known solution for the problem of the unweighted version.
AbstractList A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph G = ( X , Y , E ) in which the neighbors of each x ∈ X form an interval in Y where Y is linearly ordered, and each x ∈ X has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a dynamic LWCBG. The graph is subject to the updates of vertex and edge insertions and deletions. Our dynamic algorithms maintain the update operations in O ( log 2 | V | ) amortized time per update, obtain the matching status of a vertex (whether it is matched) in constant worst-case time, and find the pair of a matched vertex (with which it is matched) in worst-case O ( k ) time, where k is not greater than the cardinality of the maximum weight matching. That achieves the same time bound as the best known solution for the problem of the unweighted version.
Author Zu, Quan
Yu, Bin
Zhang, Miaomiao
Author_xml – sequence: 1
  givenname: Quan
  surname: Zu
  fullname: Zu, Quan
  email: 7quanzu@tongji.edu.cn
  organization: School of Software Engineering, Tongji University
– sequence: 2
  givenname: Miaomiao
  surname: Zhang
  fullname: Zhang, Miaomiao
  organization: School of Software Engineering, Tongji University
– sequence: 3
  givenname: Bin
  surname: Yu
  fullname: Yu, Bin
  organization: School of Software Engineering, Tongji University
BookMark eNp9kM1qAyEURqWk0CTtA3TnC9jq6MzoMqS_EOimXYvjXCeGxAlq0-Tta0jXXd3vwnculzNDkzAGQOie0QdGafuYGJWtJJTVRElFyfEKTVndclJJ2UxK5rIijaL1DZqltKGUliymaPF0CmbnLd6ZbNc-DAn7gLfgMj5AzHDEP-CHdYYe2zEcyt75vYnZZ8BDNPt1ukXXzmwT3P3NOfp6ef5cvpHVx-v7crEithI0EwbAwfWua6V1VpmuVk1rDIeqE7LqG-ukco2gjAtRd9BSZYSR3PSO97azwOeIXe7aOKYUwel99DsTT5pRfXagLw50caDPDvSxMNWFSaUbBoh6M37HUN78B_oF_4tjsA
Cites_doi 10.1007/978-3-642-45030-3_49
10.1007/978-3-642-29700-7_12
10.1016/0898-1221(96)00079-X
10.1007/978-3-540-74456-6_37
10.1016/0743-7315(84)90004-2
10.1007/978-3-319-08016-1_30
10.1016/0022-0000(85)90014-5
10.1007/3-540-13345-3_42
10.1073/pnas.43.9.842
10.1007/BF00264533
10.1002/nav.3800140304
10.1007/978-3-540-70575-8_19
10.1145/321879.321884
10.1016/S0021-9800(68)80039-0
10.1287/ijoc.1070.0232
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Copyright_xml – notice: Springer Science+Business Media New York 2015
DBID AAYXX
CITATION
DOI 10.1007/s10878-015-9890-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 50
ExternalDocumentID 10_1007_s10878_015_9890_x
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c240t-1ee3efdfb78cfc9ab5967aa3e2b482d6cf89f64013445be709a4a83adf3dcbce3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379033200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Sat Nov 29 04:54:19 EST 2025
Fri Feb 21 02:33:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dynamic matching
BST
Alternating path
Implicit representation
Matroid
Weighted convex bipartite graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-1ee3efdfb78cfc9ab5967aa3e2b482d6cf89f64013445be709a4a83adf3dcbce3
PageCount 26
ParticipantIDs crossref_primary_10_1007_s10878_015_9890_x
springer_journals_10_1007_s10878_015_9890_x
PublicationCentury 2000
PublicationDate 20160700
2016-7-00
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 7
  year: 2016
  text: 20160700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2016
Publisher Springer US
Publisher_xml – name: Springer US
References BergeCTwo theorems in graph theoryProc Nat Acad Sci USA19574398428449481110.1073/pnas.43.9.8420086.16202
Zu Q, Zhang M, Yu B (2014) Dynamic matchings in left weighted convex bipartite graphs. In: Chen J, Hopcroft JE, Wang J (eds) FAW-AAIM 2014, Springer, LNCS, vol 8497, pp 330–342
GabowHNTarjanREA linear-time algorithm for a special case of disjoint set unionJ Comput Syst Sci198530220922180182310.1016/0022-0000(85)90014-50572.68058
LipskiWJrPreparataFPEfficient algorithms for finding maximum matchings in convex bipartite graphs and related problemsActa Inf19811532934663241810.1007/BF002645330445.68052
Song Y, Liu T, Xu K (2012) Independent domination on tree convex bipartite graphs. In: Snoeyink J, Lu P, Su K, Wang L (eds) FAW-AAIM 2012, Springer, Heidelberg, LNCS, vol 7285, pp 129–138
AhoAVHopcroftJEUllmanJDThe design and analysis of computer algorithms1974BostonAddison-Wesley0326.68005
Brodal GS, Georgiadis L, Hansen KA, Katriel I (2007) Dynamic matchings in convex bipartite graphs. In: Kucera L, Kucera A (eds) MFCS 2007, Springer, Heidelberg, LNCS, vol 4708, pp 406–417
Plaxton CG (2008) Fast scheduling of weighted unit jobs with release times and deadlines. In: Aceto L, Damgård I, Goldberg LA, Halldórsson MM, Ingólfsdóttir A, Walukiewicz I (eds) ICALP 2008, Springer, Heidelberg, LNCS, vol 5125, pp 222–233
SteinerGYeomansJSA linear time algorithm for maximum matchings in convex, bipartite graphsComput Math Appl199631129196141870710.1016/0898-1221(96)00079-X0851.68090
GaleDOptimal assignments in an ordered set: an application of matroid theoryJ Comb Theory19684217618022703910.1016/S0021-9800(68)80039-00197.00803
Plaxton CG (2013) Vertex-weighted matching in two-directional orthogonal ray graphs. In: Cai L, Cheng SW, Lam TW (eds) ISAAC 2013, Springer, Heidelberg, LNCS, vol 8283, pp 524–534
KatrielIMatchings in node-weighted convex bipartite graphsINFORMS J Comput2008202205211241305010.1287/ijoc.1070.02321243.05200
DekelESahniSA parallel matching algorithm for convex bipartite graphs and applications to schedulingJ Parallel Distrib Comput19841218520510.1016/0743-7315(84)90004-2
TarjanREEfficiency of a good but not linear set union algorithmJ ACM197522221522545899610.1145/321879.3218840307.68029
Spencer TH, Mayr EW (1984) Node weighted matching. In: Paredaens J (ed) ICALP 1984, Springer, Heidelberg, LNCS, vol 172, pp 454–464
GloverFMaximum matching in a convex bipartite graphNaval Res Logist Q196714331331610.1002/nav.38001403040183.24501
C Berge (9890_CR2) 1957; 43
D Gale (9890_CR6) 1968; 4
G Steiner (9890_CR14) 1996; 31
I Katriel (9890_CR8) 2008; 20
F Glover (9890_CR7) 1967; 14
RE Tarjan (9890_CR15) 1975; 22
9890_CR3
W Lipski Jr (9890_CR9) 1981; 15
AV Aho (9890_CR1) 1974
9890_CR10
HN Gabow (9890_CR5) 1985; 30
9890_CR16
9890_CR11
9890_CR12
9890_CR13
E Dekel (9890_CR4) 1984; 1
References_xml – reference: Plaxton CG (2013) Vertex-weighted matching in two-directional orthogonal ray graphs. In: Cai L, Cheng SW, Lam TW (eds) ISAAC 2013, Springer, Heidelberg, LNCS, vol 8283, pp 524–534
– reference: TarjanREEfficiency of a good but not linear set union algorithmJ ACM197522221522545899610.1145/321879.3218840307.68029
– reference: Zu Q, Zhang M, Yu B (2014) Dynamic matchings in left weighted convex bipartite graphs. In: Chen J, Hopcroft JE, Wang J (eds) FAW-AAIM 2014, Springer, LNCS, vol 8497, pp 330–342
– reference: Brodal GS, Georgiadis L, Hansen KA, Katriel I (2007) Dynamic matchings in convex bipartite graphs. In: Kucera L, Kucera A (eds) MFCS 2007, Springer, Heidelberg, LNCS, vol 4708, pp 406–417
– reference: LipskiWJrPreparataFPEfficient algorithms for finding maximum matchings in convex bipartite graphs and related problemsActa Inf19811532934663241810.1007/BF002645330445.68052
– reference: Plaxton CG (2008) Fast scheduling of weighted unit jobs with release times and deadlines. In: Aceto L, Damgård I, Goldberg LA, Halldórsson MM, Ingólfsdóttir A, Walukiewicz I (eds) ICALP 2008, Springer, Heidelberg, LNCS, vol 5125, pp 222–233
– reference: KatrielIMatchings in node-weighted convex bipartite graphsINFORMS J Comput2008202205211241305010.1287/ijoc.1070.02321243.05200
– reference: GabowHNTarjanREA linear-time algorithm for a special case of disjoint set unionJ Comput Syst Sci198530220922180182310.1016/0022-0000(85)90014-50572.68058
– reference: GaleDOptimal assignments in an ordered set: an application of matroid theoryJ Comb Theory19684217618022703910.1016/S0021-9800(68)80039-00197.00803
– reference: Song Y, Liu T, Xu K (2012) Independent domination on tree convex bipartite graphs. In: Snoeyink J, Lu P, Su K, Wang L (eds) FAW-AAIM 2012, Springer, Heidelberg, LNCS, vol 7285, pp 129–138
– reference: Spencer TH, Mayr EW (1984) Node weighted matching. In: Paredaens J (ed) ICALP 1984, Springer, Heidelberg, LNCS, vol 172, pp 454–464
– reference: BergeCTwo theorems in graph theoryProc Nat Acad Sci USA19574398428449481110.1073/pnas.43.9.8420086.16202
– reference: GloverFMaximum matching in a convex bipartite graphNaval Res Logist Q196714331331610.1002/nav.38001403040183.24501
– reference: DekelESahniSA parallel matching algorithm for convex bipartite graphs and applications to schedulingJ Parallel Distrib Comput19841218520510.1016/0743-7315(84)90004-2
– reference: AhoAVHopcroftJEUllmanJDThe design and analysis of computer algorithms1974BostonAddison-Wesley0326.68005
– reference: SteinerGYeomansJSA linear time algorithm for maximum matchings in convex, bipartite graphsComput Math Appl199631129196141870710.1016/0898-1221(96)00079-X0851.68090
– ident: 9890_CR11
  doi: 10.1007/978-3-642-45030-3_49
– ident: 9890_CR12
  doi: 10.1007/978-3-642-29700-7_12
– volume: 31
  start-page: 91
  issue: 12
  year: 1996
  ident: 9890_CR14
  publication-title: Comput Math Appl
  doi: 10.1016/0898-1221(96)00079-X
– ident: 9890_CR3
  doi: 10.1007/978-3-540-74456-6_37
– volume: 1
  start-page: 185
  issue: 2
  year: 1984
  ident: 9890_CR4
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/0743-7315(84)90004-2
– ident: 9890_CR16
  doi: 10.1007/978-3-319-08016-1_30
– volume: 30
  start-page: 209
  issue: 2
  year: 1985
  ident: 9890_CR5
  publication-title: J Comput Syst Sci
  doi: 10.1016/0022-0000(85)90014-5
– ident: 9890_CR13
  doi: 10.1007/3-540-13345-3_42
– volume: 43
  start-page: 842
  issue: 9
  year: 1957
  ident: 9890_CR2
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.43.9.842
– volume: 15
  start-page: 329
  year: 1981
  ident: 9890_CR9
  publication-title: Acta Inf
  doi: 10.1007/BF00264533
– volume: 14
  start-page: 313
  issue: 3
  year: 1967
  ident: 9890_CR7
  publication-title: Naval Res Logist Q
  doi: 10.1002/nav.3800140304
– ident: 9890_CR10
  doi: 10.1007/978-3-540-70575-8_19
– volume: 22
  start-page: 215
  issue: 2
  year: 1975
  ident: 9890_CR15
  publication-title: J ACM
  doi: 10.1145/321879.321884
– volume-title: The design and analysis of computer algorithms
  year: 1974
  ident: 9890_CR1
– volume: 4
  start-page: 176
  issue: 2
  year: 1968
  ident: 9890_CR6
  publication-title: J Comb Theory
  doi: 10.1016/S0021-9800(68)80039-0
– volume: 20
  start-page: 205
  issue: 2
  year: 2008
  ident: 9890_CR8
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.1070.0232
SSID ssj0009054
Score 2.0502617
Snippet A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph G = ( X , Y , E ) in which the neighbors of each x ∈ X form an interval in Y where Y...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 25
SubjectTerms Combinatorics
Convex and Discrete Geometry
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
Title Dynamic matchings in left vertex weighted convex bipartite graphs
URI https://link.springer.com/article/10.1007/s10878-015-9890-x
Volume 32
WOSCitedRecordID wos000379033200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SPejBt1hf5OBJCdRNdjc5FrV40CI-Sm9LnlCQbemu2p_vJLtrW9CDHndJluVjkpnJTL4PoXNqmdGRccRvwIQxzWBJWUsimUZGO3Aw4cBtcJ_2-3w4FI_1Pe6i6XZvSpJhp1647MY9G-xVTAQXHQKB4yp4O-71Gp6eB3Om3U5cKdlC6AipX9yUMn_6xLIzWq6EBgfT2_rXr22jzTqexN3KAHbQis130cYCyyA8PXxTsxZ7qHtTadBjeBH6KAs8yvGbdSX20sx2hj_Daak1OHSkz7AaTbx9lRYHdutiH732bl-u70ito0A0-OuSAPbUOuNUyrXTQqpYJKmU1EaK8cgk2nHhEp9oMRYrm3aEZJJTaRw1WmlLD1ArH-f2EGHphFMQ4jFjYG5MVcwTn5TRCNKehOk2umgAzSYVXUY2J0b2KGWAUuZRymZtdNnAmdUrp_h99NGfRh-jdQhtkqqx9gS1yum7PUVr-qMcFdOzYDFfgeO-aQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBfXBuzivefBJCcwmbZPHoY6J2xCdY28lVxiMOtaq-_kmaes20Ad9bElK-TjJd07OyXcAuMSaKBkog9wGjAiRxC4prVHA40BJYwnGH7gNOnGvR4dD9lTe486qavcqJel36oXLbtSpwd6EiFHWQNZxXCWWsJxg_vPLYK602wiLTrbWdbShX1ilMn_6xDIZLWdCPcG0tv_1aztgq_QnYbMwgF2wotM9sLmgMmifut_SrNk-aN4VPeihfeHrKDM4SuFYmxy61sx6Bj_9aalW0Fekz6AYTZx95Rp6devsALy27vu3bVT2UUDS8nWOLPZYG2VETKWRjIuQRTHnWAeC0EBF0lBmIhdoERIKHTcYJ5xirgxWUkiND0EtfUv1EYDcMCOsi0eUsnNDLEIauaAMBzbsiYisg6sK0GRSyGUkc2Fkh1JiUUocSsmsDq4rOJNy5WS_jz7-0-gLsN7udztJ56H3eAI2rJsTFUW2p6CWT9_1GViTH_kom5576_kCedPBTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5ERfTgW6zPPXhSltbsJtk9FmtRrKWglt7CPqEgsTRR-_PdTRrbgh7EY8ImhNnZzDc7334DcEEM1SrQFvsfMKZUUbekjMGBiAOtrAswxYZbvxN3u2ww4L1pn9OsYrtXJcnyTINXaUrz-kjb-tzBN-aVYa9DzBlvYAciV6jn0ft0_ak_U91thGVXWwcjXRoYVmXNn16xGJgWq6JFsGlv_fszt2FzijNRs3SMHVgy6S5szKkPuqvHb8nWbA-arbI3PXI3Cn5lhoYpejU2R75ls5mgz2IX1WhUMNUnSA5H3u9ygwrV62wfXtq3zzd3eNpfASsXx3Ps5oQYq62MmbKKCxnyKBaCmEBSFuhIWcZt5BMwSkNp4gYXVDAitCVaSWXIASynb6k5BCQst9JBP6q1ezYkMmSRT9ZI4NKhiKoaXFbGTUaljEYyE0z2VkqclRJvpWRSg6vKtMl0RWW_jz760-hzWOu12knnvvtwDOsO_UQl9_YElvPxuzmFVfWRD7PxWeFIX1TKyjE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+matchings+in+left+vertex+weighted+convex+bipartite+graphs&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Zu%2C+Quan&rft.au=Zhang%2C+Miaomiao&rft.au=Yu%2C+Bin&rft.date=2016-07-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=32&rft.issue=1&rft.spage=25&rft.epage=50&rft_id=info:doi/10.1007%2Fs10878-015-9890-x&rft.externalDocID=10_1007_s10878_015_9890_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon