Dynamic matchings in left vertex weighted convex bipartite graphs
A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph G = ( X , Y , E ) in which the neighbors of each x ∈ X form an interval in Y where Y is linearly ordered, and each x ∈ X has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a...
Uložené v:
| Vydané v: | Journal of combinatorial optimization Ročník 32; číslo 1; s. 25 - 50 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2016
|
| Predmet: | |
| ISSN: | 1382-6905, 1573-2886 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph
G
=
(
X
,
Y
,
E
)
in which the neighbors of each
x
∈
X
form an interval in
Y
where
Y
is linearly ordered, and each
x
∈
X
has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a dynamic LWCBG. The graph is subject to the updates of vertex and edge insertions and deletions. Our dynamic algorithms maintain the update operations in
O
(
log
2
|
V
|
)
amortized time per update, obtain the matching status of a vertex (whether it is matched) in constant worst-case time, and find the pair of a matched vertex (with which it is matched) in worst-case
O
(
k
)
time, where
k
is not greater than the cardinality of the maximum weight matching. That achieves the same time bound as the best known solution for the problem of the unweighted version. |
|---|---|
| AbstractList | A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph
G
=
(
X
,
Y
,
E
)
in which the neighbors of each
x
∈
X
form an interval in
Y
where
Y
is linearly ordered, and each
x
∈
X
has an associated weight. This paper considers the problem of maintaining a maximum weight matching in a dynamic LWCBG. The graph is subject to the updates of vertex and edge insertions and deletions. Our dynamic algorithms maintain the update operations in
O
(
log
2
|
V
|
)
amortized time per update, obtain the matching status of a vertex (whether it is matched) in constant worst-case time, and find the pair of a matched vertex (with which it is matched) in worst-case
O
(
k
)
time, where
k
is not greater than the cardinality of the maximum weight matching. That achieves the same time bound as the best known solution for the problem of the unweighted version. |
| Author | Zu, Quan Yu, Bin Zhang, Miaomiao |
| Author_xml | – sequence: 1 givenname: Quan surname: Zu fullname: Zu, Quan email: 7quanzu@tongji.edu.cn organization: School of Software Engineering, Tongji University – sequence: 2 givenname: Miaomiao surname: Zhang fullname: Zhang, Miaomiao organization: School of Software Engineering, Tongji University – sequence: 3 givenname: Bin surname: Yu fullname: Yu, Bin organization: School of Software Engineering, Tongji University |
| BookMark | eNp9kM1qAyEURqWk0CTtA3TnC9jq6MzoMqS_EOimXYvjXCeGxAlq0-Tta0jXXd3vwnculzNDkzAGQOie0QdGafuYGJWtJJTVRElFyfEKTVndclJJ2UxK5rIijaL1DZqltKGUliymaPF0CmbnLd6ZbNc-DAn7gLfgMj5AzHDEP-CHdYYe2zEcyt75vYnZZ8BDNPt1ukXXzmwT3P3NOfp6ef5cvpHVx-v7crEithI0EwbAwfWua6V1VpmuVk1rDIeqE7LqG-ukco2gjAtRd9BSZYSR3PSO97azwOeIXe7aOKYUwel99DsTT5pRfXagLw50caDPDvSxMNWFSaUbBoh6M37HUN78B_oF_4tjsA |
| Cites_doi | 10.1007/978-3-642-45030-3_49 10.1007/978-3-642-29700-7_12 10.1016/0898-1221(96)00079-X 10.1007/978-3-540-74456-6_37 10.1016/0743-7315(84)90004-2 10.1007/978-3-319-08016-1_30 10.1016/0022-0000(85)90014-5 10.1007/3-540-13345-3_42 10.1073/pnas.43.9.842 10.1007/BF00264533 10.1002/nav.3800140304 10.1007/978-3-540-70575-8_19 10.1145/321879.321884 10.1016/S0021-9800(68)80039-0 10.1287/ijoc.1070.0232 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10878-015-9890-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2886 |
| EndPage | 50 |
| ExternalDocumentID | 10_1007_s10878_015_9890_x |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c240t-1ee3efdfb78cfc9ab5967aa3e2b482d6cf89f64013445be709a4a83adf3dcbce3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379033200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Sat Nov 29 04:54:19 EST 2025 Fri Feb 21 02:33:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Dynamic matching BST Alternating path Implicit representation Matroid Weighted convex bipartite graph |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c240t-1ee3efdfb78cfc9ab5967aa3e2b482d6cf89f64013445be709a4a83adf3dcbce3 |
| PageCount | 26 |
| ParticipantIDs | crossref_primary_10_1007_s10878_015_9890_x springer_journals_10_1007_s10878_015_9890_x |
| PublicationCentury | 2000 |
| PublicationDate | 20160700 2016-7-00 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 7 year: 2016 text: 20160700 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2016 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | BergeCTwo theorems in graph theoryProc Nat Acad Sci USA19574398428449481110.1073/pnas.43.9.8420086.16202 Zu Q, Zhang M, Yu B (2014) Dynamic matchings in left weighted convex bipartite graphs. In: Chen J, Hopcroft JE, Wang J (eds) FAW-AAIM 2014, Springer, LNCS, vol 8497, pp 330–342 GabowHNTarjanREA linear-time algorithm for a special case of disjoint set unionJ Comput Syst Sci198530220922180182310.1016/0022-0000(85)90014-50572.68058 LipskiWJrPreparataFPEfficient algorithms for finding maximum matchings in convex bipartite graphs and related problemsActa Inf19811532934663241810.1007/BF002645330445.68052 Song Y, Liu T, Xu K (2012) Independent domination on tree convex bipartite graphs. In: Snoeyink J, Lu P, Su K, Wang L (eds) FAW-AAIM 2012, Springer, Heidelberg, LNCS, vol 7285, pp 129–138 AhoAVHopcroftJEUllmanJDThe design and analysis of computer algorithms1974BostonAddison-Wesley0326.68005 Brodal GS, Georgiadis L, Hansen KA, Katriel I (2007) Dynamic matchings in convex bipartite graphs. In: Kucera L, Kucera A (eds) MFCS 2007, Springer, Heidelberg, LNCS, vol 4708, pp 406–417 Plaxton CG (2008) Fast scheduling of weighted unit jobs with release times and deadlines. In: Aceto L, Damgård I, Goldberg LA, Halldórsson MM, Ingólfsdóttir A, Walukiewicz I (eds) ICALP 2008, Springer, Heidelberg, LNCS, vol 5125, pp 222–233 SteinerGYeomansJSA linear time algorithm for maximum matchings in convex, bipartite graphsComput Math Appl199631129196141870710.1016/0898-1221(96)00079-X0851.68090 GaleDOptimal assignments in an ordered set: an application of matroid theoryJ Comb Theory19684217618022703910.1016/S0021-9800(68)80039-00197.00803 Plaxton CG (2013) Vertex-weighted matching in two-directional orthogonal ray graphs. In: Cai L, Cheng SW, Lam TW (eds) ISAAC 2013, Springer, Heidelberg, LNCS, vol 8283, pp 524–534 KatrielIMatchings in node-weighted convex bipartite graphsINFORMS J Comput2008202205211241305010.1287/ijoc.1070.02321243.05200 DekelESahniSA parallel matching algorithm for convex bipartite graphs and applications to schedulingJ Parallel Distrib Comput19841218520510.1016/0743-7315(84)90004-2 TarjanREEfficiency of a good but not linear set union algorithmJ ACM197522221522545899610.1145/321879.3218840307.68029 Spencer TH, Mayr EW (1984) Node weighted matching. In: Paredaens J (ed) ICALP 1984, Springer, Heidelberg, LNCS, vol 172, pp 454–464 GloverFMaximum matching in a convex bipartite graphNaval Res Logist Q196714331331610.1002/nav.38001403040183.24501 C Berge (9890_CR2) 1957; 43 D Gale (9890_CR6) 1968; 4 G Steiner (9890_CR14) 1996; 31 I Katriel (9890_CR8) 2008; 20 F Glover (9890_CR7) 1967; 14 RE Tarjan (9890_CR15) 1975; 22 9890_CR3 W Lipski Jr (9890_CR9) 1981; 15 AV Aho (9890_CR1) 1974 9890_CR10 HN Gabow (9890_CR5) 1985; 30 9890_CR16 9890_CR11 9890_CR12 9890_CR13 E Dekel (9890_CR4) 1984; 1 |
| References_xml | – reference: Plaxton CG (2013) Vertex-weighted matching in two-directional orthogonal ray graphs. In: Cai L, Cheng SW, Lam TW (eds) ISAAC 2013, Springer, Heidelberg, LNCS, vol 8283, pp 524–534 – reference: TarjanREEfficiency of a good but not linear set union algorithmJ ACM197522221522545899610.1145/321879.3218840307.68029 – reference: Zu Q, Zhang M, Yu B (2014) Dynamic matchings in left weighted convex bipartite graphs. In: Chen J, Hopcroft JE, Wang J (eds) FAW-AAIM 2014, Springer, LNCS, vol 8497, pp 330–342 – reference: Brodal GS, Georgiadis L, Hansen KA, Katriel I (2007) Dynamic matchings in convex bipartite graphs. In: Kucera L, Kucera A (eds) MFCS 2007, Springer, Heidelberg, LNCS, vol 4708, pp 406–417 – reference: LipskiWJrPreparataFPEfficient algorithms for finding maximum matchings in convex bipartite graphs and related problemsActa Inf19811532934663241810.1007/BF002645330445.68052 – reference: Plaxton CG (2008) Fast scheduling of weighted unit jobs with release times and deadlines. In: Aceto L, Damgård I, Goldberg LA, Halldórsson MM, Ingólfsdóttir A, Walukiewicz I (eds) ICALP 2008, Springer, Heidelberg, LNCS, vol 5125, pp 222–233 – reference: KatrielIMatchings in node-weighted convex bipartite graphsINFORMS J Comput2008202205211241305010.1287/ijoc.1070.02321243.05200 – reference: GabowHNTarjanREA linear-time algorithm for a special case of disjoint set unionJ Comput Syst Sci198530220922180182310.1016/0022-0000(85)90014-50572.68058 – reference: GaleDOptimal assignments in an ordered set: an application of matroid theoryJ Comb Theory19684217618022703910.1016/S0021-9800(68)80039-00197.00803 – reference: Song Y, Liu T, Xu K (2012) Independent domination on tree convex bipartite graphs. In: Snoeyink J, Lu P, Su K, Wang L (eds) FAW-AAIM 2012, Springer, Heidelberg, LNCS, vol 7285, pp 129–138 – reference: Spencer TH, Mayr EW (1984) Node weighted matching. In: Paredaens J (ed) ICALP 1984, Springer, Heidelberg, LNCS, vol 172, pp 454–464 – reference: BergeCTwo theorems in graph theoryProc Nat Acad Sci USA19574398428449481110.1073/pnas.43.9.8420086.16202 – reference: GloverFMaximum matching in a convex bipartite graphNaval Res Logist Q196714331331610.1002/nav.38001403040183.24501 – reference: DekelESahniSA parallel matching algorithm for convex bipartite graphs and applications to schedulingJ Parallel Distrib Comput19841218520510.1016/0743-7315(84)90004-2 – reference: AhoAVHopcroftJEUllmanJDThe design and analysis of computer algorithms1974BostonAddison-Wesley0326.68005 – reference: SteinerGYeomansJSA linear time algorithm for maximum matchings in convex, bipartite graphsComput Math Appl199631129196141870710.1016/0898-1221(96)00079-X0851.68090 – ident: 9890_CR11 doi: 10.1007/978-3-642-45030-3_49 – ident: 9890_CR12 doi: 10.1007/978-3-642-29700-7_12 – volume: 31 start-page: 91 issue: 12 year: 1996 ident: 9890_CR14 publication-title: Comput Math Appl doi: 10.1016/0898-1221(96)00079-X – ident: 9890_CR3 doi: 10.1007/978-3-540-74456-6_37 – volume: 1 start-page: 185 issue: 2 year: 1984 ident: 9890_CR4 publication-title: J Parallel Distrib Comput doi: 10.1016/0743-7315(84)90004-2 – ident: 9890_CR16 doi: 10.1007/978-3-319-08016-1_30 – volume: 30 start-page: 209 issue: 2 year: 1985 ident: 9890_CR5 publication-title: J Comput Syst Sci doi: 10.1016/0022-0000(85)90014-5 – ident: 9890_CR13 doi: 10.1007/3-540-13345-3_42 – volume: 43 start-page: 842 issue: 9 year: 1957 ident: 9890_CR2 publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.43.9.842 – volume: 15 start-page: 329 year: 1981 ident: 9890_CR9 publication-title: Acta Inf doi: 10.1007/BF00264533 – volume: 14 start-page: 313 issue: 3 year: 1967 ident: 9890_CR7 publication-title: Naval Res Logist Q doi: 10.1002/nav.3800140304 – ident: 9890_CR10 doi: 10.1007/978-3-540-70575-8_19 – volume: 22 start-page: 215 issue: 2 year: 1975 ident: 9890_CR15 publication-title: J ACM doi: 10.1145/321879.321884 – volume-title: The design and analysis of computer algorithms year: 1974 ident: 9890_CR1 – volume: 4 start-page: 176 issue: 2 year: 1968 ident: 9890_CR6 publication-title: J Comb Theory doi: 10.1016/S0021-9800(68)80039-0 – volume: 20 start-page: 205 issue: 2 year: 2008 ident: 9890_CR8 publication-title: INFORMS J Comput doi: 10.1287/ijoc.1070.0232 |
| SSID | ssj0009054 |
| Score | 2.0502617 |
| Snippet | A left vertex weighted convex bipartite graph (LWCBG) is a bipartite graph
G
=
(
X
,
Y
,
E
)
in which the neighbors of each
x
∈
X
form an interval in
Y
where
Y... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 25 |
| SubjectTerms | Combinatorics Convex and Discrete Geometry Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Theory of Computation |
| Title | Dynamic matchings in left vertex weighted convex bipartite graphs |
| URI | https://link.springer.com/article/10.1007/s10878-015-9890-x |
| Volume | 32 |
| WOSCitedRecordID | wos000379033200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SPejBt1hf5OBJCdRNdjc5FrV40CI-Sm9LnlCQbemu2p_vJLtrW9CDHndJluVjkpnJTL4PoXNqmdGRccRvwIQxzWBJWUsimUZGO3Aw4cBtcJ_2-3w4FI_1Pe6i6XZvSpJhp1647MY9G-xVTAQXHQKB4yp4O-71Gp6eB3Om3U5cKdlC6AipX9yUMn_6xLIzWq6EBgfT2_rXr22jzTqexN3KAHbQis130cYCyyA8PXxTsxZ7qHtTadBjeBH6KAs8yvGbdSX20sx2hj_Daak1OHSkz7AaTbx9lRYHdutiH732bl-u70ito0A0-OuSAPbUOuNUyrXTQqpYJKmU1EaK8cgk2nHhEp9oMRYrm3aEZJJTaRw1WmlLD1ArH-f2EGHphFMQ4jFjYG5MVcwTn5TRCNKehOk2umgAzSYVXUY2J0b2KGWAUuZRymZtdNnAmdUrp_h99NGfRh-jdQhtkqqx9gS1yum7PUVr-qMcFdOzYDFfgeO-aQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBfXBuzivefBJCcwmbZPHoY6J2xCdY28lVxiMOtaq-_kmaes20Ad9bElK-TjJd07OyXcAuMSaKBkog9wGjAiRxC4prVHA40BJYwnGH7gNOnGvR4dD9lTe486qavcqJel36oXLbtSpwd6EiFHWQNZxXCWWsJxg_vPLYK602wiLTrbWdbShX1ilMn_6xDIZLWdCPcG0tv_1aztgq_QnYbMwgF2wotM9sLmgMmifut_SrNk-aN4VPeihfeHrKDM4SuFYmxy61sx6Bj_9aalW0Fekz6AYTZx95Rp6devsALy27vu3bVT2UUDS8nWOLPZYG2VETKWRjIuQRTHnWAeC0EBF0lBmIhdoERIKHTcYJ5xirgxWUkiND0EtfUv1EYDcMCOsi0eUsnNDLEIauaAMBzbsiYisg6sK0GRSyGUkc2Fkh1JiUUocSsmsDq4rOJNy5WS_jz7-0-gLsN7udztJ56H3eAI2rJsTFUW2p6CWT9_1GViTH_kom5576_kCedPBTQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5ERfTgW6zPPXhSltbsJtk9FmtRrKWglt7CPqEgsTRR-_PdTRrbgh7EY8ImhNnZzDc7334DcEEM1SrQFvsfMKZUUbekjMGBiAOtrAswxYZbvxN3u2ww4L1pn9OsYrtXJcnyTINXaUrz-kjb-tzBN-aVYa9DzBlvYAciV6jn0ft0_ak_U91thGVXWwcjXRoYVmXNn16xGJgWq6JFsGlv_fszt2FzijNRs3SMHVgy6S5szKkPuqvHb8nWbA-arbI3PXI3Cn5lhoYpejU2R75ls5mgz2IX1WhUMNUnSA5H3u9ygwrV62wfXtq3zzd3eNpfASsXx3Ps5oQYq62MmbKKCxnyKBaCmEBSFuhIWcZt5BMwSkNp4gYXVDAitCVaSWXIASynb6k5BCQst9JBP6q1ezYkMmSRT9ZI4NKhiKoaXFbGTUaljEYyE0z2VkqclRJvpWRSg6vKtMl0RWW_jz760-hzWOu12knnvvtwDOsO_UQl9_YElvPxuzmFVfWRD7PxWeFIX1TKyjE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+matchings+in+left+vertex+weighted+convex+bipartite+graphs&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Zu%2C+Quan&rft.au=Zhang%2C+Miaomiao&rft.au=Yu%2C+Bin&rft.date=2016-07-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=32&rft.issue=1&rft.spage=25&rft.epage=50&rft_id=info:doi/10.1007%2Fs10878-015-9890-x&rft.externalDocID=10_1007_s10878_015_9890_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |