Response Surface Modeling and Multi-objective Genetic Algorithm Optimization of Polyphenol/terpineol Yield from Luffa cylindrica Oil

Using the Response surface methodology (RSM) and multi-objective genetic algorithm (MOGA) techniques, this study investigated the optimal extraction conditions of polyphenol and terpineol from luffa cylindrica oil. The antioxidant activity was examined using the stable free radical: 2,2-diphenyl-1-p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences, India. Section B: Biological sciences Ročník 94; číslo 5; s. 1041 - 1049
Hlavní autoři: Nwosu-Obieogu, Kenechi, Dzarma, Goziya W., Linus, Chiemenem, Nwosu, Ozioma, Udemgba, Chinonso
Médium: Journal Article
Jazyk:angličtina
Vydáno: New Delhi Springer India 01.11.2024
Témata:
ISSN:0369-8211, 2250-1746
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Using the Response surface methodology (RSM) and multi-objective genetic algorithm (MOGA) techniques, this study investigated the optimal extraction conditions of polyphenol and terpineol from luffa cylindrica oil. The antioxidant activity was examined using the stable free radical: 2,2-diphenyl-1-picrylhydrazyl (DPPH). Under optimal conditions, luffa cylindrica oil was extracted for terpineol/polyphenol yield analysis. The process was optimized using a Box–Behnken design with a genetic algorithm (GA) solver and response surface technique. The process variables are time and temperature, with terpineol and polyphenol yield being the responses. The ability of the models built from the process variables and the response was assessed using the coefficient of determination (for terpineol: R 2 —0.9999, Adj R 2 —0.9998, Pred R 2 —0.9991; for polyphenol: R 2 —0.9880, Adj R 2 —0.9795, Pred R 2 —0.9149). The results indicated a good agreement between the observed and predicted data. RSM achieved an optimum extraction of 7.71907 mg/g terpineol and 2.36748 mg/g polyphenol at 62.71 °C and 4.87 h. In contrast, MOGA predicted extraction optimal conditions of 7.264 mg/g terpineol and 2.327 mg/g polyphenol was obtained at 60.231 °C and 4 h. While the gas chromatography-mass spectrometry validated the percentages of 29.1 and 16.8 for terpineol and polyphenol, respectively, the Fourier transform infrared spectroscopy showed that terpineol and polyphenol were present at the peak of 1461.1 and 3008.0 cm −1 . Terpineol and polyphenol also showed significant scavenging of DPPH radicals with (32.5 and 34.5)% at 100 μg/ml. This study's novelty dwells on optimizing the extraction process of terpineol/polyphenol using RSM and GA techniques.
AbstractList Using the Response surface methodology (RSM) and multi-objective genetic algorithm (MOGA) techniques, this study investigated the optimal extraction conditions of polyphenol and terpineol from luffa cylindrica oil. The antioxidant activity was examined using the stable free radical: 2,2-diphenyl-1-picrylhydrazyl (DPPH). Under optimal conditions, luffa cylindrica oil was extracted for terpineol/polyphenol yield analysis. The process was optimized using a Box–Behnken design with a genetic algorithm (GA) solver and response surface technique. The process variables are time and temperature, with terpineol and polyphenol yield being the responses. The ability of the models built from the process variables and the response was assessed using the coefficient of determination (for terpineol: R²—0.9999, Adj R²—0.9998, Pred R²—0.9991; for polyphenol: R²—0.9880, Adj R²—0.9795, Pred R²—0.9149). The results indicated a good agreement between the observed and predicted data. RSM achieved an optimum extraction of 7.71907 mg/g terpineol and 2.36748 mg/g polyphenol at 62.71 °C and 4.87 h. In contrast, MOGA predicted extraction optimal conditions of 7.264 mg/g terpineol and 2.327 mg/g polyphenol was obtained at 60.231 °C and 4 h. While the gas chromatography-mass spectrometry validated the percentages of 29.1 and 16.8 for terpineol and polyphenol, respectively, the Fourier transform infrared spectroscopy showed that terpineol and polyphenol were present at the peak of 1461.1 and 3008.0 cm⁻¹. Terpineol and polyphenol also showed significant scavenging of DPPH radicals with (32.5 and 34.5)% at 100 μg/ml. This study's novelty dwells on optimizing the extraction process of terpineol/polyphenol using RSM and GA techniques.
Using the Response surface methodology (RSM) and multi-objective genetic algorithm (MOGA) techniques, this study investigated the optimal extraction conditions of polyphenol and terpineol from luffa cylindrica oil. The antioxidant activity was examined using the stable free radical: 2,2-diphenyl-1-picrylhydrazyl (DPPH). Under optimal conditions, luffa cylindrica oil was extracted for terpineol/polyphenol yield analysis. The process was optimized using a Box–Behnken design with a genetic algorithm (GA) solver and response surface technique. The process variables are time and temperature, with terpineol and polyphenol yield being the responses. The ability of the models built from the process variables and the response was assessed using the coefficient of determination (for terpineol: R 2 —0.9999, Adj R 2 —0.9998, Pred R 2 —0.9991; for polyphenol: R 2 —0.9880, Adj R 2 —0.9795, Pred R 2 —0.9149). The results indicated a good agreement between the observed and predicted data. RSM achieved an optimum extraction of 7.71907 mg/g terpineol and 2.36748 mg/g polyphenol at 62.71 °C and 4.87 h. In contrast, MOGA predicted extraction optimal conditions of 7.264 mg/g terpineol and 2.327 mg/g polyphenol was obtained at 60.231 °C and 4 h. While the gas chromatography-mass spectrometry validated the percentages of 29.1 and 16.8 for terpineol and polyphenol, respectively, the Fourier transform infrared spectroscopy showed that terpineol and polyphenol were present at the peak of 1461.1 and 3008.0 cm −1 . Terpineol and polyphenol also showed significant scavenging of DPPH radicals with (32.5 and 34.5)% at 100 μg/ml. This study's novelty dwells on optimizing the extraction process of terpineol/polyphenol using RSM and GA techniques.
Author Dzarma, Goziya W.
Nwosu, Ozioma
Linus, Chiemenem
Udemgba, Chinonso
Nwosu-Obieogu, Kenechi
Author_xml – sequence: 1
  givenname: Kenechi
  orcidid: 0000-0002-4920-8676
  surname: Nwosu-Obieogu
  fullname: Nwosu-Obieogu, Kenechi
  email: kenenwosuobie@mouau.edu.ng
  organization: Department of Chemical Engineering, College of Engineering and Engineering Technology, Michael Okpara University of Agriculture
– sequence: 2
  givenname: Goziya W.
  surname: Dzarma
  fullname: Dzarma, Goziya W.
  organization: Department of Chemical Engineering, College of Engineering and Engineering Technology, Michael Okpara University of Agriculture
– sequence: 3
  givenname: Chiemenem
  surname: Linus
  fullname: Linus, Chiemenem
  organization: Department of Chemical Engineering, College of Engineering and Engineering Technology, Michael Okpara University of Agriculture
– sequence: 4
  givenname: Ozioma
  surname: Nwosu
  fullname: Nwosu, Ozioma
  organization: Department of Chemical Engineering, College of Engineering and Engineering Technology, Michael Okpara University of Agriculture
– sequence: 5
  givenname: Chinonso
  surname: Udemgba
  fullname: Udemgba, Chinonso
  organization: Department of Chemical Engineering, College of Engineering and Engineering Technology, Michael Okpara University of Agriculture
BookMark eNp9kD1vFDEQhi0UJI6QP0DlksbE4_Xu7ZZRBAHpokN8FFSWzx5ffPLai-1FWmp-OEuOiiLTTPM-8_G8JBcxRSTkNfC3wPn2ukjOARgXknHompYtz8hGiJYz2Mrugmx40w2sFwAvyFUpJ75W13KQ_Yb8_oxlSrEg_TJnpw3S-2Qx-HikOlp6P4fqWTqc0FT_E-kdRqze0JtwTNnXh5Hup-pH_0tXnyJNjn5KYZkeMKZwXTFPPmIK9LvHYKnLaaS72TlNzbKusNkbTfc-vCLPnQ4Fr_71S_Lt_buvtx_Ybn_38fZmx4xohoWBEU6AlZ3Y2qbvD4NzPTqEzgF3zWCNta3uHTjtpJQDB8M7K4wxmh-cPDTNJXlznjvl9GPGUtXoi8EQ9HrlXFQDrYQetoKv0f4cNTmVktEp4-vjkzVrHxRw9de9OrtXq3v16F4tKyr-Q6fsR52Xp6HmDJU1HI-Y1SnNOa42nqL-AI8HnNQ
CitedBy_id crossref_primary_10_1039_D5FB00233H
Cites_doi 10.3390/antiox8120647
10.1016/j.heliyon.2022.e09216
10.1016/j.clet.2021.100360
10.54287/gujsa.972137
10.1016/j.clcb.2022.100019
10.1039/C9RA10349J
10.1111/jfpp.15078
10.1007/s11694-018-9974-2
10.1134/S2070050420020129
10.1155/2020/1251957
10.1007/s41660-021-00210-6
10.5958/0974-0112.2022.00013.5
10.1007/s00500-020-05009-0
10.1016/j.compchemeng.2019.106618
10.1016/j.foodchem.2020.127862
10.1007/s11947-020-02461-6
10.1007/s13399-021-01329-9
10.1051/e3sconf/202014201006
10.1155/2018/6391414
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The National Academy of Sciences, India 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to The National Academy of Sciences, India 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1007/s40011-024-01635-y
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2250-1746
EndPage 1049
ExternalDocumentID 10_1007_s40011_024_01635_y
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -EM
06D
0R~
203
29~
30V
4.4
406
408
96X
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RIG
RLLFE
ROL
RSV
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
TSG
U9L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7S9
L.6
ID FETCH-LOGICAL-c239y-1c2f21d4627d388b9ff8efe16f10f39dcdd5a8f1faf444901c06d2ccca0bf4b33
IEDL.DBID RSV
ISSN 0369-8211
IngestDate Fri Sep 05 12:49:44 EDT 2025
Sat Nov 29 06:18:17 EST 2025
Tue Nov 18 22:28:56 EST 2025
Fri Feb 21 02:36:37 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Polyphenol
oil
Terpineol
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c239y-1c2f21d4627d388b9ff8efe16f10f39dcdd5a8f1faf444901c06d2ccca0bf4b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4920-8676
PQID 3154181720
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_3154181720
crossref_citationtrail_10_1007_s40011_024_01635_y
crossref_primary_10_1007_s40011_024_01635_y
springer_journals_10_1007_s40011_024_01635_y
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationTitle Proceedings of the National Academy of Sciences, India. Section B: Biological sciences
PublicationTitleAbbrev Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci
PublicationYear 2024
Publisher Springer India
Publisher_xml – name: Springer India
References Rui Min, Aileen, Shao, Lassabliere, Kwong-Chee, Jingcan, Haxel, Lay, Wen, Bin (CR29) 2019; 6
Nwosu-Obieogu, Dzarma, Ugwuodo, Chiemenem, Akatobi (CR1) 2022; 6
Oke, Nwosu-Obieogu, Okolo, Adeyi, Omotoso (CR11) 2022; 23
Silva, Pogacnik (CR10) 2020; 9
Oke, Nwosu-Obieogu, Okolo, Adeyi, Ude (CR22) 2021; 1
CR15
Raghavendra, Sethi, Bhowmik, Varghese, Joshi (CR18) 2022; 79
Agu, Menkiti, Agulanna, Okolo, Nwosu-Obieogu (CR26) 2022; 6
Sales, Felipe, Bicas (CR3) 2020; 8
Stagos (CR9) 2019; 9
Nwosu-Obieogu (CR19) 2021; 8
Zainullin, Zagoruiko, Koledina, Gubaidullin, Faskhutdinova (CR20) 2020; 12
Kakhki, Mohammadpoor, Faridi, Bahadori (CR24) 2020; 10
Khaleel, Tabanca, Buchbauer (CR4) 2017; 2018
Adeyi, Oke, Okolo, Adeyi, Otolorin, Nwosu-Obieogu, Onu (CR13) 2022; 8
Kahlaoui, Vechhia, Giovine, Kbaier, Bouzouita, Pereira, Zeppa (CR8) 2019; 8
CR2
Haya, Bentahar, Trari (CR28) 2019; 13
Campone, Celano, Rizzo, Piccinelli, Rastrelli, Russo (CR5) 2020; 2
CR7
Skrypnik, Novikova (CR6) 2020; 10
CR23
Aguele, Nwosu-Obieogu, Osoh, Onyekwulu, Chiemenem (CR14) 2021; 1
Su, Jin, Zhang, Shen, Eden, Ren (CR21) 2020; 132
Abdullah, Pradhan, Pradhan, Mishra (CR16) 2021; 339
Gino Sophia, Ceronmani Sharmila, Suchitra, Sudalai Muthu, Pavithra (CR25) 2020; 24
Nwosu-Obieogu, Adeyi, Dzarma (CR27) 2022; 5
Rakshit, Srivastav (CR17) 2021; 45
Nwosu-Obieogu, Dzarma, Chiemenem (CR12) 2021; 14
RZ Zainullin (1635_CR20) 2020; 12
L Campone (1635_CR5) 2020; 2
FO Aguele (1635_CR14) 2021; 1
D Stagos (1635_CR9) 2019; 9
L Skrypnik (1635_CR6) 2020; 10
Y Su (1635_CR21) 2020; 132
RM Kakhki (1635_CR24) 2020; 10
1635_CR15
K Nwosu-Obieogu (1635_CR27) 2022; 5
EO Oke (1635_CR11) 2022; 23
M Kahlaoui (1635_CR8) 2019; 8
SG Gino Sophia (1635_CR25) 2020; 24
O Adeyi (1635_CR13) 2022; 8
S Abdullah (1635_CR16) 2021; 339
K Nwosu-Obieogu (1635_CR12) 2021; 14
1635_CR2
HR Raghavendra (1635_CR18) 2022; 79
K Nwosu-Obieogu (1635_CR19) 2021; 8
M Rakshit (1635_CR17) 2021; 45
1635_CR23
CM Agu (1635_CR26) 2022; 6
K Nwosu-Obieogu (1635_CR1) 2022; 6
RFM Silva (1635_CR10) 2020; 9
VG Rui Min (1635_CR29) 2019; 6
EM Oke (1635_CR22) 2021; 1
A Sales (1635_CR3) 2020; 8
S Haya (1635_CR28) 2019; 13
1635_CR7
C Khaleel (1635_CR4) 2017; 2018
References_xml – volume: 8
  start-page: 647
  issue: 12
  year: 2019
  end-page: 654
  ident: CR8
  article-title: Characterization of polyphenolic compounds extracted from different varieties of almond hulls (Prunus dulcis L.)
  publication-title: Antioxidants
  doi: 10.3390/antiox8120647
– ident: CR2
– volume: 8
  start-page: e09216
  issue: 4
  year: 2022
  ident: CR13
  article-title: Process optimization, scale-up studies, economic analysis, and risk assessment of phenolic-rich bioactive extracts production from Carica papaya L. leaves via heat-assisted extraction technology
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e09216
– volume: 6
  start-page: 100360
  year: 2022
  ident: CR26
  article-title: Modeling methyl ester yield from Terminalia catappa L. kernel oil by artificial neural network and response surface methodology for possible industrial application
  publication-title: Clean Eng Technol
  doi: 10.1016/j.clet.2021.100360
– volume: 8
  start-page: 494
  issue: 4
  year: 2021
  end-page: 504
  ident: CR19
  article-title: Artificial neural network predictive modelling of seed oil antioxidant yield
  publication-title: Gazi Univ J Sci Part A Eng Innov
  doi: 10.54287/gujsa.972137
– volume: 5
  start-page: 100019
  year: 2022
  ident: CR27
  article-title: Response surface methodology and artificial neural network modelling and optimization of peel sulphuric acid hydrolysis
  publication-title: Clean Circular Bioecon
  doi: 10.1016/j.clcb.2022.100019
– volume: 10
  start-page: 5951
  issue: 10
  year: 2020
  end-page: 5960
  ident: CR24
  article-title: The development of an artificial neural network–genetic algorithm model (ANN-GA) for the adsorption and photocatalysis of methylene blue on a novel sulfur–nitrogen co- doped Fe 2 O 3 nanostructure surface
  publication-title: RSC Adv
  doi: 10.1039/C9RA10349J
– volume: 6
  start-page: 1
  issue: 2
  year: 2019
  end-page: 10
  ident: CR29
  article-title: Characterization of volatile and non-volatile compounds in pomelo by gas chromatography-olfactometry, gas chromatography-quadrupole time-of-flight mass spectrometry
  publication-title: J Essential Oil Res
– ident: CR23
– volume: 14
  start-page: 65
  issue: 4
  year: 2021
  end-page: 68
  ident: CR12
  article-title: ANFIS prediction of antioxidant yields for
  publication-title: Acta Technica Corviniensis-Bulletin of Engineering
– volume: 1
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR22
  article-title: oil epoxidation: hybrid genetic algorithm-neural fuzzy-Box Bhenken (GA-ANFIS-BB) modeling with sensitivity and uncertainty analyses
  publication-title: Multiscale Multidiscip Modell Exp Des
– volume: 23
  start-page: 103
  issue: 2
  year: 2022
  end-page: 118
  ident: CR11
  article-title: Optimization of the extraction of antioxidant compounds from the plant
  publication-title: Sci Study Res Chem Chem Eng Biotechnol Food Ind
– volume: 45
  issue: 1
  year: 2021
  ident: CR17
  article-title: Optimization of pulsed ultrasonic-assisted extraction of punicalagin from pomegranate (Punica granatum) peel: a comparison between response surface methodology and artificial neural network-multiobjective genetic algorithm
  publication-title: J Food Process Preserv
  doi: 10.1111/jfpp.15078
– volume: 1
  start-page: 61
  year: 2021
  end-page: 68
  ident: CR14
  article-title: Optimization of the epoxidation process parameters of huracrepitan seed oil
  publication-title: Ann Faculty Eng Hunedoara Internation J Eng
– volume: 10
  start-page: 1
  issue: 92
  year: 2020
  end-page: 18
  ident: CR6
  article-title: Response surface modeling and optimization of polyphenols extraction from apple pomace based on nonionic emulsifiers
  publication-title: Agronomy
– volume: 13
  start-page: 614
  issue: 1
  year: 2019
  end-page: 621
  ident: CR28
  article-title: Optimization of polyphenols extraction from orange peel
  publication-title: J Food Measure Character
  doi: 10.1007/s11694-018-9974-2
– ident: CR15
– volume: 12
  start-page: 133
  issue: 2
  year: 2020
  end-page: 140
  ident: CR20
  article-title: Multi-criterion optimization of a catalytic reforming reactor unit using a genetic algorithm
  publication-title: Catal Ind
  doi: 10.1134/S2070050420020129
– volume: 2018
  start-page: 349
  issue: 16
  year: 2017
  end-page: 361
  ident: CR4
  article-title: α- Terpineol, a natural monoterpene: a review of its biological properties
  publication-title: Open Chem
– volume: 2
  start-page: 1
  issue: 4
  year: 2020
  end-page: 9
  ident: CR5
  article-title: Development of an enriched polyphenol (natural antioxidant) extract from orange juice ( by adsorption on macroporous resins
  publication-title: J Food Qual
  doi: 10.1155/2020/1251957
– volume: 6
  start-page: 175
  issue: 1
  year: 2022
  end-page: 188
  ident: CR1
  article-title: Seed oil extraction: response surface and neuro-fuzzy modelling performance evaluation and optimization
  publication-title: Process Integrat Opt Sustain
  doi: 10.1007/s41660-021-00210-6
– volume: 79
  start-page: 83
  issue: 1
  year: 2022
  end-page: 90
  ident: CR18
  article-title: Phenolics from potato peel and its extraction intensification using response surface methodology and genetic algorithm approach
  publication-title: Indian J Horticulture
  doi: 10.5958/0974-0112.2022.00013.5
– volume: 24
  start-page: 17153
  issue: 22
  year: 2020
  end-page: 17165
  ident: CR25
  article-title: Water management using genetic algorithm-based machine learning
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05009-0
– volume: 9
  start-page: 1
  issue: 61
  year: 2020
  end-page: 13
  ident: CR10
  article-title: Polyphenols from foods and natural products: Neuroprotection and safety
  publication-title: Antioxidants
– volume: 132
  year: 2020
  ident: CR21
  article-title: Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.106618
– ident: CR7
– volume: 339
  year: 2021
  ident: CR16
  article-title: Modeling and optimization of pectinase-assisted low-temperature extraction of cashew apple juice using artificial neural network coupled with genetic algorithm
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2020.127862
– volume: 8
  start-page: 120
  year: 2020
  end-page: 125
  ident: CR3
  article-title: Production, properties and application of terpineol
  publication-title: Food Bioprocess Technol
  doi: 10.1007/s11947-020-02461-6
– volume: 9
  start-page: 1
  issue: 19
  year: 2019
  end-page: 7
  ident: CR9
  article-title: Antioxidant activity of polyphenolic plant extracts
  publication-title: Antioxidants
– volume: 8
  start-page: 494
  issue: 4
  year: 2021
  ident: 1635_CR19
  publication-title: Gazi Univ J Sci Part A Eng Innov
  doi: 10.54287/gujsa.972137
– volume: 1
  start-page: 1
  year: 2021
  ident: 1635_CR22
  publication-title: Multiscale Multidiscip Modell Exp Des
– volume: 2018
  start-page: 349
  issue: 16
  year: 2017
  ident: 1635_CR4
  publication-title: Open Chem
– volume: 5
  start-page: 100019
  year: 2022
  ident: 1635_CR27
  publication-title: Clean Circular Bioecon
  doi: 10.1016/j.clcb.2022.100019
– volume: 6
  start-page: 175
  issue: 1
  year: 2022
  ident: 1635_CR1
  publication-title: Process Integrat Opt Sustain
  doi: 10.1007/s41660-021-00210-6
– volume: 8
  start-page: 120
  year: 2020
  ident: 1635_CR3
  publication-title: Food Bioprocess Technol
  doi: 10.1007/s11947-020-02461-6
– volume: 9
  start-page: 1
  issue: 61
  year: 2020
  ident: 1635_CR10
  publication-title: Antioxidants
– volume: 339
  year: 2021
  ident: 1635_CR16
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2020.127862
– volume: 6
  start-page: 1
  issue: 2
  year: 2019
  ident: 1635_CR29
  publication-title: J Essential Oil Res
– volume: 9
  start-page: 1
  issue: 19
  year: 2019
  ident: 1635_CR9
  publication-title: Antioxidants
– volume: 79
  start-page: 83
  issue: 1
  year: 2022
  ident: 1635_CR18
  publication-title: Indian J Horticulture
  doi: 10.5958/0974-0112.2022.00013.5
– volume: 6
  start-page: 100360
  year: 2022
  ident: 1635_CR26
  publication-title: Clean Eng Technol
  doi: 10.1016/j.clet.2021.100360
– volume: 10
  start-page: 5951
  issue: 10
  year: 2020
  ident: 1635_CR24
  publication-title: RSC Adv
  doi: 10.1039/C9RA10349J
– ident: 1635_CR15
– volume: 23
  start-page: 103
  issue: 2
  year: 2022
  ident: 1635_CR11
  publication-title: Sci Study Res Chem Chem Eng Biotechnol Food Ind
– volume: 12
  start-page: 133
  issue: 2
  year: 2020
  ident: 1635_CR20
  publication-title: Catal Ind
  doi: 10.1134/S2070050420020129
– volume: 132
  year: 2020
  ident: 1635_CR21
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.106618
– volume: 1
  start-page: 61
  year: 2021
  ident: 1635_CR14
  publication-title: Ann Faculty Eng Hunedoara Internation J Eng
– volume: 14
  start-page: 65
  issue: 4
  year: 2021
  ident: 1635_CR12
  publication-title: Acta Technica Corviniensis-Bulletin of Engineering
– volume: 8
  start-page: e09216
  issue: 4
  year: 2022
  ident: 1635_CR13
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e09216
– volume: 8
  start-page: 647
  issue: 12
  year: 2019
  ident: 1635_CR8
  publication-title: Antioxidants
  doi: 10.3390/antiox8120647
– ident: 1635_CR23
  doi: 10.1007/s13399-021-01329-9
– ident: 1635_CR7
  doi: 10.1051/e3sconf/202014201006
– volume: 10
  start-page: 1
  issue: 92
  year: 2020
  ident: 1635_CR6
  publication-title: Agronomy
– volume: 13
  start-page: 614
  issue: 1
  year: 2019
  ident: 1635_CR28
  publication-title: J Food Measure Character
  doi: 10.1007/s11694-018-9974-2
– ident: 1635_CR2
  doi: 10.1155/2018/6391414
– volume: 2
  start-page: 1
  issue: 4
  year: 2020
  ident: 1635_CR5
  publication-title: J Food Qual
  doi: 10.1155/2020/1251957
– volume: 24
  start-page: 17153
  issue: 22
  year: 2020
  ident: 1635_CR25
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05009-0
– volume: 45
  issue: 1
  year: 2021
  ident: 1635_CR17
  publication-title: J Food Process Preserv
  doi: 10.1111/jfpp.15078
SSID ssj0000650148
Score 2.2958987
Snippet Using the Response surface methodology (RSM) and multi-objective genetic algorithm (MOGA) techniques, this study investigated the optimal extraction conditions...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1041
SubjectTerms 2,2-diphenyl-1-picrylhydrazyl
algorithms
antioxidant activity
Behavioral Sciences
Biomedical and Life Sciences
Fourier transform infrared spectroscopy
free radicals
gas chromatography-mass spectrometry
India
Life Sciences
Luffa aegyptiaca
Nucleic Acid Chemistry
oils
Plant Biochemistry
polyphenols
Research Article
response surface methodology
temperature
terpineol
Title Response Surface Modeling and Multi-objective Genetic Algorithm Optimization of Polyphenol/terpineol Yield from Luffa cylindrica Oil
URI https://link.springer.com/article/10.1007/s40011-024-01635-y
https://www.proquest.com/docview/3154181720
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 2250-1746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650148
  issn: 0369-8211
  databaseCode: RSV
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFG8UPXgR8SOsoCkJB402TjvdmfZICMQDAQJK8DTptH26ZNgxO7smc-cP57XbWSMxJHpvO83r-_h1-n7vEbKrMxBOgmOWG7yg5F4wnTnJlCkAOG5dxKzKi6Py-FhdXurTRArrhmz34UkyeuoV2U3G9CuMKXj9xTDJ-ofkEYY7FRo2nJ1frP6sBNDBY9ss9M6aKbziJLbM35f5MyL9hpl3XkZjwDlc_7-tPiNPE8Cke0uN2CAP_PQ52Ugm3NF3qc70-xfk5myZH-vp-WIGxnoaGqMFejo1U0cjNZe19dXSJdIwEdeke833djaZ_7imJ-hurhOPk7ZAT9umDyljbfMpZDIifm0b-i2kyNHAYqFHCwBDbY-fcMH90pNJ85J8PTz4sv-ZpaYMzIpc94xbAYI7WYjS5UrVGkB58LwAnkGunXVubBRwMCClRLRhs8IJi4qS1SDrPH9F1qbt1G8GuniNoVGX46JW0ntvxuPagwRpeVFmXo8IHw6msqlieWic0VSrWstR0BUKuoqCrvoR-bCa83NZr-Pe0TvDeVdoVuGtxKBsFl2VI7RE8FOKbEQ-DodcJfvu7lny9b8N3yJPRNCTyG7cJmvz2cK_IY_tr_mkm72Nin0LwNX1tA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMEFKA-xPI3EAQRWY8ebxMcKURWxbKu2VOVkObYHFqUbtNlFyp0fztjrLAKhSnC3HWs8L8ffN0PIc5WBcBIcs9zgBSX3gqnMSVaZAoDj1kVEVZ5Oyum0OjtTh4kU1g1o9-FJMnrqDdlNRvgVxhS8_mKYZP1lckVixAoV84-OTzd_VkLSwWPbLPTOilV4xUlsmb8v83tE-pVm_vEyGgPO3s3_2-otciMlmHR3rRHb5JKf3ybbyYQ7-iLVmX55h_w4WuNjPT1eLcBYT0NjtEBPp2buaKTmsrb-unaJNEzENelu87ldzJZfzukBupvzxOOkLdDDtukDZKxtdgKSEfPXtqGfAkSOBhYLnawADLU9fsIF90sPZs1d8nHv7cmbfZaaMjArctUzbgUI7mQhSpdXVa0AKg-eF8AzyJWzzo1NBRwMSCkx27BZ4YRFRclqkHWe3yNb83bu7we6eI2hUZXjoq6k996Mx7UHCdLyosy8GhE-HIy2qWJ5aJzR6E2t5ShojYLWUdC6H5FXmznf1vU6Lhz9bDhvjWYV3koMymbV6Rz1CpOfUmQj8no4ZJ3su7tgyQf_NvwpubZ_8mGiJ--m7x-S6yLoTGQ6PiJby8XKPyZX7fflrFs8iUr-E0zU-Jg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSlUKBieRqJAwisjR1vEh8rYAVitV1RqMrJcmwPLEqTah-VcueHM3ayy0OoEuJuO9Z4PI_4-2YIeaoSEE6CY5YbTFBSL5hKnGSFyQA4bl1EVOXxJJ9Oi5MTNfuFxR_R7psnyY7TEKo01avhmYPhlvgmIxQL_QumwugyWXuZXJEBSB_y9aPj7V-WEIDw2EILLbViBaY7PXPm78v87p1-hpx_vJJG5zO-8f_bvkl2-8CTHnSaskcu-foW2euv9pI-6-tPP79Nvn_ocLOeHq0XYKynoWFaoK1TUzsaKbusKb91ppKGibgmPai-NIv56uspPUQzdNrzO2kDdNZUbYCSNdUwIBwxrm0q-jlA52hgt9DJGsBQ2-InXDDL9HBe3SGfxm8-vnrL-mYNzIpUtYxbAYI7mYncpUVRKoDCg-cZ8ARS5axzI1MABwNSSoxCbJI5YVGBkhJkmab7ZKduan830MhLdJkqH2VlIb33ZjQqPUiQlmd54tWA8M0hadtXMg8NNSq9rcEcBa1R0DoKWrcD8mI756yr43Hh6Cebs9d43cIbikHZrJc6xZATg6JcJAPycnPgur_3ywuWvPdvwx-Ta7PXYz15N31_n1wXQWUiAfIB2Vkt1v4huWrPV_Pl4lHU9x_jPwGL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+Surface+Modeling+and+Multi-objective+Genetic+Algorithm+Optimization+of+Polyphenol%2Fterpineol+Yield+from+Luffa+cylindrica+Oil&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences%2C+India.+Section+B%3A+Biological+sciences&rft.au=Nwosu-Obieogu%2C+Kenechi&rft.au=Dzarma%2C+Goziya+W&rft.au=Linus%2C+Chiemenem&rft.au=Nwosu%2C+Ozioma&rft.date=2024-11-01&rft.issn=0369-8211&rft.volume=94&rft.issue=5+p.1041-1049&rft.spage=1041&rft.epage=1049&rft_id=info:doi/10.1007%2Fs40011-024-01635-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-8211&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-8211&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-8211&client=summon