Development of incremental average differential evolution algorithm for photovoltaic system identification
•A novel variant of the average differential evolution (ADE) algorithm, named incremental ADE (IncADE), is developed for parameter estimation of PV models.•The IncADE employs the incremental population strategy to improve the global search ability of the original ADE.•The performance of IncADE is ev...
Uloženo v:
| Vydáno v: | Solar energy Ročník 244; s. 242 - 254 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.09.2022
|
| Témata: | |
| ISSN: | 0038-092X, 1471-1257 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A novel variant of the average differential evolution (ADE) algorithm, named incremental ADE (IncADE), is developed for parameter estimation of PV models.•The IncADE employs the incremental population strategy to improve the global search ability of the original ADE.•The performance of IncADE is evaluated through benchmark functions and parameter estimation problems of PV models.•Experimental results confirm the superiority of IncADE on parameter estimation in terms of accuracy and computational efficiency by comparing with original ADE and other metaheuristic algorithms.
The determination of the behavior of photovoltaic (PV) systems is a current subject of research due to the increase in their share in electricity production. This identification problem is generally defined as the estimation of the unknown parameters of the equivalent circuit model. The parameters of the PV model are optimized by minimizing the error between the measured data from the actual PV cell and the results of the model. An efficient optimizer tool is required to obtain the best model’s parameter. This paper presents a novel metaheuristic named incremental average differential evolution algorithm (IncADE) for parameter estimation of PV models. The IncADE is a new variant of average differential evolution (ADE) that enhances the global search ability of ADE algorithm by the incremental population strategies. The performance of the developed IncADE is firstly evaluated on well-known benchmark functions, and the experimental results show that the proposed method improves the accuracy of the concluding solutions and the convergence performance of the basic ADE. Then, the IncADE is employed to estimate the optimal parameters of different PV models, which are single diode, double diode and PV module. Experimental results prove the superiority of IncADE on parameter estimation in terms of accuracy and computational efficiency by comparing with ADE and other metaheuristic algorithms. |
|---|---|
| AbstractList | •A novel variant of the average differential evolution (ADE) algorithm, named incremental ADE (IncADE), is developed for parameter estimation of PV models.•The IncADE employs the incremental population strategy to improve the global search ability of the original ADE.•The performance of IncADE is evaluated through benchmark functions and parameter estimation problems of PV models.•Experimental results confirm the superiority of IncADE on parameter estimation in terms of accuracy and computational efficiency by comparing with original ADE and other metaheuristic algorithms.
The determination of the behavior of photovoltaic (PV) systems is a current subject of research due to the increase in their share in electricity production. This identification problem is generally defined as the estimation of the unknown parameters of the equivalent circuit model. The parameters of the PV model are optimized by minimizing the error between the measured data from the actual PV cell and the results of the model. An efficient optimizer tool is required to obtain the best model’s parameter. This paper presents a novel metaheuristic named incremental average differential evolution algorithm (IncADE) for parameter estimation of PV models. The IncADE is a new variant of average differential evolution (ADE) that enhances the global search ability of ADE algorithm by the incremental population strategies. The performance of the developed IncADE is firstly evaluated on well-known benchmark functions, and the experimental results show that the proposed method improves the accuracy of the concluding solutions and the convergence performance of the basic ADE. Then, the IncADE is employed to estimate the optimal parameters of different PV models, which are single diode, double diode and PV module. Experimental results prove the superiority of IncADE on parameter estimation in terms of accuracy and computational efficiency by comparing with ADE and other metaheuristic algorithms. |
| Author | Gün, Ayhan Durmuş, Burhanettin |
| Author_xml | – sequence: 1 givenname: Burhanettin surname: Durmuş fullname: Durmuş, Burhanettin email: burhanettin.durmus@dpu.edu.tr – sequence: 2 givenname: Ayhan surname: Gün fullname: Gün, Ayhan |
| BookMark | eNqFkM1qwzAQhEVJoUnaRyjoBexKchzZ9FBK-guBXnLoTSjSKpGxrSCphrx95SanXnJadoZv2J0ZmvSuB4TuKckpocuHJg-uhR58zghjOalyslheoSldcJpRVvIJmhJSVBmp2fcNmoXQEEI5rfgUNS8wQOsOHfQRO4NtrzyMi2yxHMDLHWBtjQGfNJtEGFz7E63rsWx3ztu477BxHh_2LrrkRWkVDscQocNWj5CxSo7ALbo2sg1wd55ztHl73aw-svXX--fqeZ0pVtQx00xqqgtKSrqVqi5qpbiuteHK6C3TSS31VkoutSxUrTkQA2xBeEVUSSkt5qg8xSrvQvBgxMHbTvqjoESMfYlGnPsSY1-CVCL1lbjHf5yy8e_w6KVtL9JPJxrSZ4NNblAWegXaelBRaGcvJPwCkTiSEQ |
| CitedBy_id | crossref_primary_10_1007_s10825_024_02205_1 crossref_primary_10_1016_j_engappai_2023_106225 crossref_primary_10_1016_j_renene_2024_120388 |
| Cites_doi | 10.1016/j.apenergy.2017.05.029 10.1016/j.solener.2011.04.013 10.1016/j.renene.2012.01.082 10.1016/j.enconman.2014.06.026 10.1109/4235.910464 10.1371/journal.pone.0216201 10.1016/j.apenergy.2012.09.052 10.1016/j.enconman.2015.11.041 10.1016/j.aeue.2018.07.021 10.1016/j.solener.2013.05.007 10.1109/4235.771163 10.1145/1388969.1389004 10.1016/j.enconman.2017.04.054 10.1016/j.renene.2018.06.039 10.1016/j.ijleo.2018.06.047 10.1016/j.energy.2016.01.052 10.1016/j.energy.2020.117804 10.1016/j.energy.2017.12.058 10.1109/TIE.2018.2793216 10.1016/j.apenergy.2017.12.115 10.1016/j.solener.2020.04.036 10.1109/T-ED.1987.22920 10.1016/j.enconman.2018.09.054 10.1016/j.ins.2009.03.004 10.1016/j.solener.2005.06.010 10.1016/j.rser.2016.07.053 10.1016/j.solener.2010.02.012 10.1016/j.energy.2014.05.011 10.1016/j.solener.2018.01.047 10.1016/j.solener.2011.09.032 |
| ContentType | Journal Article |
| Copyright | 2022 International Solar Energy Society |
| Copyright_xml | – notice: 2022 International Solar Energy Society |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.solener.2022.08.046 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1471-1257 |
| EndPage | 254 |
| ExternalDocumentID | 10_1016_j_solener_2022_08_046 S0038092X22005965 |
| GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- SAC SEW UKR VOH WUQ XOL ZY4 ~A~ ~HD |
| ID | FETCH-LOGICAL-c239t-d2ad1d31051bac939cc7d9df7cfdb2d51b5dbaa7ada3c9d7e0fe240780c51113 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877911600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-092X |
| IngestDate | Tue Nov 18 22:23:54 EST 2025 Sat Nov 29 07:26:17 EST 2025 Fri Feb 23 02:38:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parameter estimation Photovoltaic (PV) cell Average differential evolution (ADE) Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c239t-d2ad1d31051bac939cc7d9df7cfdb2d51b5dbaa7ada3c9d7e0fe240780c51113 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_solener_2022_08_046 crossref_citationtrail_10_1016_j_solener_2022_08_046 elsevier_sciencedirect_doi_10_1016_j_solener_2022_08_046 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-15 |
| PublicationDateYYYYMMDD | 2022-09-15 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Solar energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | AlHajri, El-Naggar, AlRashidi, Al-Othman (b0005) 2012; 44 Yao, Liu, Lin (b0145) 1999; 3 Guo, Meng, Sun, Wang (b0070) 2016; 108 (accessed October 15, 2021). De Soto, Klein, Beckman (b0040) 2006; 80 Wang, Xuan (b0135) 2018; 144 Jiao, Chong, Huang, Hu, Wang, Heidari, Chen, Zhao (b0075) 2020; 203 Zagrouba, Sellami, Bouaïcha, Ksouri (b0155) 2010; 84 Chen, Yu, Du, Zhao, Liu (b0030) 2016; 99 Gude, Jana (b0065) 2020; 204 Chan, Phang (b0025) 1987; 34 AlRashidi, AlHajri, El-Naggar, Al-Othman (b0010) 2011; 85 Durmuş (b0045) 2018; 94 Yahya-Khotbehsara, Shahhoseini (b0140) 2018; 162 Yu, Chen, Wang, Wang (b0150) 2017; 145 Toledo, Blanes, Galiano (b0130) 2018; 65 Ayang, Wamkeue, Ouhrouche, Djongyang, Essiane Salomé, Pombe, Ekemb (b0020) 2019; 130 Gong, Cai (b0060) 2013; 94 Oliva, Abd El Aziz, Ella Hassanien (b0115) 2017; 200 El-Achouby, Zaimi, Ibral, Assaid (b0050) 2018; 177 Luo, Cao, Wang, Zhao, Huang (b0090) 2018; 171 Askarzadeh, Rezazadeh (b0015) 2013; 102 Montes de Oca, M.A., Stützle, T., 2008. Towards incremental social learning in optimization and multiagent systems. In: 10th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO’08), New York, pp. 1939–1944. Niu, Zhang, Li (b0105) 2014; 86 Chen, Xu, Mei, Ding, Li (b0035) 2018; 212 El-Naggar, AlRashidi, AlHajri, Al-Othman (b0055) 2012; 86 Rashedi, Nezamabadi-pour, Saryazdi (b0120) 2009; 179 Jordehi (b0080) 2016; 65 Muhammad, F.F., Karim Sangawi, A.W., Hashim, S., Ghoshal, S.K., Abdullah, I.K., Hameed, S.S., 2019. Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS One 14 (5), e0216201. 10.1371/journal.pone.0216201. Oliva, Cuevas, Pajares (b0110) 2014; 72 Leung, Wang (b0085) 2001; 5 Renewables 2021 global status report (REN21), 2021. URL Chen (10.1016/j.solener.2022.08.046_b0035) 2018; 212 Luo (10.1016/j.solener.2022.08.046_b0090) 2018; 171 El-Naggar (10.1016/j.solener.2022.08.046_b0055) 2012; 86 Leung (10.1016/j.solener.2022.08.046_b0085) 2001; 5 Durmuş (10.1016/j.solener.2022.08.046_b0045) 2018; 94 10.1016/j.solener.2022.08.046_b0100 10.1016/j.solener.2022.08.046_b0125 Gong (10.1016/j.solener.2022.08.046_b0060) 2013; 94 De Soto (10.1016/j.solener.2022.08.046_b0040) 2006; 80 Rashedi (10.1016/j.solener.2022.08.046_b0120) 2009; 179 AlHajri (10.1016/j.solener.2022.08.046_b0005) 2012; 44 Askarzadeh (10.1016/j.solener.2022.08.046_b0015) 2013; 102 Gude (10.1016/j.solener.2022.08.046_b0065) 2020; 204 Yao (10.1016/j.solener.2022.08.046_b0145) 1999; 3 Zagrouba (10.1016/j.solener.2022.08.046_b0155) 2010; 84 AlRashidi (10.1016/j.solener.2022.08.046_b0010) 2011; 85 Ayang (10.1016/j.solener.2022.08.046_b0020) 2019; 130 Jordehi (10.1016/j.solener.2022.08.046_b0080) 2016; 65 10.1016/j.solener.2022.08.046_b0095 Guo (10.1016/j.solener.2022.08.046_b0070) 2016; 108 Niu (10.1016/j.solener.2022.08.046_b0105) 2014; 86 Toledo (10.1016/j.solener.2022.08.046_b0130) 2018; 65 Jiao (10.1016/j.solener.2022.08.046_b0075) 2020; 203 Chen (10.1016/j.solener.2022.08.046_b0030) 2016; 99 Chan (10.1016/j.solener.2022.08.046_b0025) 1987; 34 Oliva (10.1016/j.solener.2022.08.046_b0115) 2017; 200 Yahya-Khotbehsara (10.1016/j.solener.2022.08.046_b0140) 2018; 162 Wang (10.1016/j.solener.2022.08.046_b0135) 2018; 144 Yu (10.1016/j.solener.2022.08.046_b0150) 2017; 145 El-Achouby (10.1016/j.solener.2022.08.046_b0050) 2018; 177 Oliva (10.1016/j.solener.2022.08.046_b0110) 2014; 72 |
| References_xml | – volume: 44 start-page: 238 year: 2012 end-page: 245 ident: b0005 article-title: Optimal extraction of solar cell parameters using pattern search publication-title: Renew. Energy – volume: 80 start-page: 78 year: 2006 end-page: 88 ident: b0040 article-title: Improvement and validation of a model for photovoltaic array performance publication-title: Sol. Energy – volume: 177 start-page: 258 year: 2018 end-page: 271 ident: b0050 article-title: New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar modüle publication-title: Energy Convers. Manage. – volume: 86 start-page: 1173 year: 2014 end-page: 1185 ident: b0105 article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells publication-title: Energy Convers. Manage. – volume: 203 start-page: 117804 year: 2020 ident: b0075 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models publication-title: Energy – volume: 86 start-page: 266 year: 2012 end-page: 274 ident: b0055 article-title: Simulated annealing algorithm for photovoltaic parameters identification publication-title: Sol. Energy – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b0145 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. – reference: >. (accessed October 15, 2021). – volume: 5 start-page: 41 year: 2001 end-page: 53 ident: b0085 article-title: An orthogonal genetic algorithm with quantization for global numerical optimization publication-title: IEEE Trans. Evol. Comput. – volume: 171 start-page: 200 year: 2018 end-page: 203 ident: b0090 article-title: Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm publication-title: Optik – volume: 84 start-page: 860 year: 2010 end-page: 866 ident: b0155 article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction publication-title: Sol Energy – reference: Renewables 2021 global status report (REN21), 2021. URL: < – volume: 34 start-page: 286 year: 1987 end-page: 293 ident: b0025 article-title: Analytical methods for the extraction of solar-cell single and double diode model parameters from I-V characteristics publication-title: IEEE Trans. Electron. Dev. – volume: 108 start-page: 520 year: 2016 end-page: 528 ident: b0070 article-title: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm publication-title: Energy Convers. Manage. – volume: 85 start-page: 1543 year: 2011 end-page: 1550 ident: b0010 article-title: A new estimation approach for determining the I-V characteristics of solar cells publication-title: Sol. Energy – volume: 144 start-page: 490 year: 2018 end-page: 500 ident: b0135 article-title: A detailed study on loss processes in solar cells publication-title: Energy – volume: 212 start-page: 1578 year: 2018 end-page: 1588 ident: b0035 article-title: Teaching-learning-based artificial bee colony for solar phtovoltaic parameter estimation publication-title: Appl. Energy – reference: Muhammad, F.F., Karim Sangawi, A.W., Hashim, S., Ghoshal, S.K., Abdullah, I.K., Hameed, S.S., 2019. Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS One 14 (5), e0216201. 10.1371/journal.pone.0216201. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0120 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. – volume: 102 start-page: 943 year: 2013 end-page: 949 ident: b0015 article-title: Artificial bee swarm optimization algorithm for parameters identification of solar cell models publication-title: Appl. Energy – volume: 94 start-page: 293 year: 2018 end-page: 302 ident: b0045 article-title: Optimal components selection for active filter design with average differential evolution algorithm publication-title: AEU Int. J. Electron. Commun. – volume: 99 start-page: 170 year: 2016 end-page: 180 ident: b0030 article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization publication-title: Energy – reference: Montes de Oca, M.A., Stützle, T., 2008. Towards incremental social learning in optimization and multiagent systems. In: 10th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO’08), New York, pp. 1939–1944. – volume: 72 start-page: 93 year: 2014 end-page: 102 ident: b0110 article-title: Parameter identification of solar cells using artificial bee colony optimization publication-title: Energy – volume: 65 start-page: 6301 year: 2018 end-page: 6308 ident: b0130 article-title: Two-step linear least-squares method for photovoltaic single-diode model parameters extraction publication-title: IEEE Trans. Ind. Electron. – volume: 162 start-page: 403 year: 2018 end-page: 409 ident: b0140 article-title: A fast modeling of the double-diode model for PV modules using combined analytical and numerical approach publication-title: Sol. Energy – volume: 130 start-page: 111 year: 2019 end-page: 121 ident: b0020 article-title: Maximum likelihood parameters estimation of single-diode model of photovoltaic generator publication-title: Renew. Energy – volume: 65 start-page: 1127 year: 2016 end-page: 1138 ident: b0080 article-title: Maximum power point tracking in photovoltaic (PV) systems: a review of different approaches publication-title: Renew. Sustain. Energy Rev. – volume: 145 start-page: 233 year: 2017 end-page: 246 ident: b0150 article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization publication-title: Energy Convers. Manage. – volume: 204 start-page: 280 year: 2020 end-page: 293 ident: b0065 article-title: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization publication-title: Sol. Energy – volume: 94 start-page: 209 year: 2013 end-page: 220 ident: b0060 article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution publication-title: Sol. Energy – volume: 200 start-page: 141 year: 2017 end-page: 154 ident: b0115 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy – volume: 200 start-page: 141 year: 2017 ident: 10.1016/j.solener.2022.08.046_b0115 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.029 – volume: 85 start-page: 1543 issue: 7 year: 2011 ident: 10.1016/j.solener.2022.08.046_b0010 article-title: A new estimation approach for determining the I-V characteristics of solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2011.04.013 – volume: 44 start-page: 238 year: 2012 ident: 10.1016/j.solener.2022.08.046_b0005 article-title: Optimal extraction of solar cell parameters using pattern search publication-title: Renew. Energy doi: 10.1016/j.renene.2012.01.082 – volume: 86 start-page: 1173 year: 2014 ident: 10.1016/j.solener.2022.08.046_b0105 article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.06.026 – volume: 5 start-page: 41 issue: 1 year: 2001 ident: 10.1016/j.solener.2022.08.046_b0085 article-title: An orthogonal genetic algorithm with quantization for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.910464 – ident: 10.1016/j.solener.2022.08.046_b0100 doi: 10.1371/journal.pone.0216201 – volume: 102 start-page: 943 year: 2013 ident: 10.1016/j.solener.2022.08.046_b0015 article-title: Artificial bee swarm optimization algorithm for parameters identification of solar cell models publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.09.052 – volume: 108 start-page: 520 year: 2016 ident: 10.1016/j.solener.2022.08.046_b0070 article-title: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.11.041 – volume: 94 start-page: 293 year: 2018 ident: 10.1016/j.solener.2022.08.046_b0045 article-title: Optimal components selection for active filter design with average differential evolution algorithm publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2018.07.021 – volume: 94 start-page: 209 year: 2013 ident: 10.1016/j.solener.2022.08.046_b0060 article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution publication-title: Sol. Energy doi: 10.1016/j.solener.2013.05.007 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.solener.2022.08.046_b0145 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – ident: 10.1016/j.solener.2022.08.046_b0095 doi: 10.1145/1388969.1389004 – volume: 145 start-page: 233 year: 2017 ident: 10.1016/j.solener.2022.08.046_b0150 article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.04.054 – volume: 130 start-page: 111 year: 2019 ident: 10.1016/j.solener.2022.08.046_b0020 article-title: Maximum likelihood parameters estimation of single-diode model of photovoltaic generator publication-title: Renew. Energy doi: 10.1016/j.renene.2018.06.039 – volume: 171 start-page: 200 year: 2018 ident: 10.1016/j.solener.2022.08.046_b0090 article-title: Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm publication-title: Optik doi: 10.1016/j.ijleo.2018.06.047 – volume: 99 start-page: 170 year: 2016 ident: 10.1016/j.solener.2022.08.046_b0030 article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization publication-title: Energy doi: 10.1016/j.energy.2016.01.052 – ident: 10.1016/j.solener.2022.08.046_b0125 – volume: 203 start-page: 117804 year: 2020 ident: 10.1016/j.solener.2022.08.046_b0075 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models publication-title: Energy doi: 10.1016/j.energy.2020.117804 – volume: 144 start-page: 490 year: 2018 ident: 10.1016/j.solener.2022.08.046_b0135 article-title: A detailed study on loss processes in solar cells publication-title: Energy doi: 10.1016/j.energy.2017.12.058 – volume: 65 start-page: 6301 issue: 8 year: 2018 ident: 10.1016/j.solener.2022.08.046_b0130 article-title: Two-step linear least-squares method for photovoltaic single-diode model parameters extraction publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2793216 – volume: 212 start-page: 1578 year: 2018 ident: 10.1016/j.solener.2022.08.046_b0035 article-title: Teaching-learning-based artificial bee colony for solar phtovoltaic parameter estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.115 – volume: 204 start-page: 280 year: 2020 ident: 10.1016/j.solener.2022.08.046_b0065 article-title: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization publication-title: Sol. Energy doi: 10.1016/j.solener.2020.04.036 – volume: 34 start-page: 286 issue: 2 year: 1987 ident: 10.1016/j.solener.2022.08.046_b0025 article-title: Analytical methods for the extraction of solar-cell single and double diode model parameters from I-V characteristics publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/T-ED.1987.22920 – volume: 177 start-page: 258 year: 2018 ident: 10.1016/j.solener.2022.08.046_b0050 article-title: New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar modüle publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.09.054 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.solener.2022.08.046_b0120 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 80 start-page: 78 issue: 1 year: 2006 ident: 10.1016/j.solener.2022.08.046_b0040 article-title: Improvement and validation of a model for photovoltaic array performance publication-title: Sol. Energy doi: 10.1016/j.solener.2005.06.010 – volume: 65 start-page: 1127 year: 2016 ident: 10.1016/j.solener.2022.08.046_b0080 article-title: Maximum power point tracking in photovoltaic (PV) systems: a review of different approaches publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.07.053 – volume: 84 start-page: 860 issue: 5 year: 2010 ident: 10.1016/j.solener.2022.08.046_b0155 article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction publication-title: Sol Energy doi: 10.1016/j.solener.2010.02.012 – volume: 72 start-page: 93 year: 2014 ident: 10.1016/j.solener.2022.08.046_b0110 article-title: Parameter identification of solar cells using artificial bee colony optimization publication-title: Energy doi: 10.1016/j.energy.2014.05.011 – volume: 162 start-page: 403 year: 2018 ident: 10.1016/j.solener.2022.08.046_b0140 article-title: A fast modeling of the double-diode model for PV modules using combined analytical and numerical approach publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.047 – volume: 86 start-page: 266 issue: 1 year: 2012 ident: 10.1016/j.solener.2022.08.046_b0055 article-title: Simulated annealing algorithm for photovoltaic parameters identification publication-title: Sol. Energy doi: 10.1016/j.solener.2011.09.032 |
| SSID | ssj0017187 |
| Score | 2.405451 |
| Snippet | •A novel variant of the average differential evolution (ADE) algorithm, named incremental ADE (IncADE), is developed for parameter estimation of PV models.•The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 242 |
| SubjectTerms | Average differential evolution (ADE) Optimization Parameter estimation Photovoltaic (PV) cell |
| Title | Development of incremental average differential evolution algorithm for photovoltaic system identification |
| URI | https://dx.doi.org/10.1016/j.solener.2022.08.046 |
| Volume | 244 |
| WOSCitedRecordID | wos000877911600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-1257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017187 issn: 0038-092X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0M7FH0iSR_g0EyBUouiQnFMjQRth6BAPXgTKJKqbTiSochG-u9zJ1KPtkFfQBfBoEGb4n0ij6fvviPkbQZecQSPTaCQW8FVGAdKRDzQnHMhdGROQ90UmxCXl8l8Lj-PRps2F2a3FkWR3NzIzX81NbSBsTF19i_M3f0oNMBnMDpcwexw_SPDD2hATg9CuxAgigLAzSBHp62KUmO43O78cI7V-mtZLevFVcM93CzKuoTvarXUXvD5eGk8uai356pN80U6q20yCXvnuLraHk3jI3nRwGhbLVRh61bsG1k_-J7-_dTJGHxbeKT6IAScX7GIQtxHxtrsmJ6K1Ky2EVIrmnLpsNe4BRY2wwCcKjFcgRnnwzXUyW357Zg5jemfVnoXdFidXCN9waKyK2ONGCv_QVm72au_4FhwKIw1BYfie2SPiVgmY7J39vF8_ql78wR7tdNZ9WPvs77e3flnd_szAx9l9pg88ocLeuZA8YSMbPGUPBxITj4jqwE8aJnTATyohwcdwoN28KAdPCjAgw7hQR086PfweE5mF-ez6YfA19sINItkHRimTGjA34_DTGkZSa2FkSYXOjcZM9Aam0wpoYyKtDTCTnKLAYFkosFtD6MXZFyUhd1HvpzAShsZkyhfFwtl4dgh1ASL0-WxMQeEt5OWaq9FjyVR1mlLOlylfq5TnOsUS6Xy0wNy0nXbODGW33VIWouk3qN0nmIKMPp118N_7_qSPOifkVdkXFdb-5rc17t6eV298YC7BSygo-o |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+incremental+average+differential+evolution+algorithm+for+photovoltaic+system+identification&rft.jtitle=Solar+energy&rft.au=Durmu%C5%9F%2C+Burhanettin&rft.au=G%C3%BCn%2C+Ayhan&rft.date=2022-09-15&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=244&rft.spage=242&rft.epage=254&rft_id=info:doi/10.1016%2Fj.solener.2022.08.046&rft.externalDocID=S0038092X22005965 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |