Development of incremental average differential evolution algorithm for photovoltaic system identification

•A novel variant of the average differential evolution (ADE) algorithm, named incremental ADE (IncADE), is developed for parameter estimation of PV models.•The IncADE employs the incremental population strategy to improve the global search ability of the original ADE.•The performance of IncADE is ev...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Solar energy Ročník 244; s. 242 - 254
Hlavní autoři: Durmuş, Burhanettin, Gün, Ayhan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.09.2022
Témata:
ISSN:0038-092X, 1471-1257
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel variant of the average differential evolution (ADE) algorithm, named incremental ADE (IncADE), is developed for parameter estimation of PV models.•The IncADE employs the incremental population strategy to improve the global search ability of the original ADE.•The performance of IncADE is evaluated through benchmark functions and parameter estimation problems of PV models.•Experimental results confirm the superiority of IncADE on parameter estimation in terms of accuracy and computational efficiency by comparing with original ADE and other metaheuristic algorithms. The determination of the behavior of photovoltaic (PV) systems is a current subject of research due to the increase in their share in electricity production. This identification problem is generally defined as the estimation of the unknown parameters of the equivalent circuit model. The parameters of the PV model are optimized by minimizing the error between the measured data from the actual PV cell and the results of the model. An efficient optimizer tool is required to obtain the best model’s parameter. This paper presents a novel metaheuristic named incremental average differential evolution algorithm (IncADE) for parameter estimation of PV models. The IncADE is a new variant of average differential evolution (ADE) that enhances the global search ability of ADE algorithm by the incremental population strategies. The performance of the developed IncADE is firstly evaluated on well-known benchmark functions, and the experimental results show that the proposed method improves the accuracy of the concluding solutions and the convergence performance of the basic ADE. Then, the IncADE is employed to estimate the optimal parameters of different PV models, which are single diode, double diode and PV module. Experimental results prove the superiority of IncADE on parameter estimation in terms of accuracy and computational efficiency by comparing with ADE and other metaheuristic algorithms.
AbstractList •A novel variant of the average differential evolution (ADE) algorithm, named incremental ADE (IncADE), is developed for parameter estimation of PV models.•The IncADE employs the incremental population strategy to improve the global search ability of the original ADE.•The performance of IncADE is evaluated through benchmark functions and parameter estimation problems of PV models.•Experimental results confirm the superiority of IncADE on parameter estimation in terms of accuracy and computational efficiency by comparing with original ADE and other metaheuristic algorithms. The determination of the behavior of photovoltaic (PV) systems is a current subject of research due to the increase in their share in electricity production. This identification problem is generally defined as the estimation of the unknown parameters of the equivalent circuit model. The parameters of the PV model are optimized by minimizing the error between the measured data from the actual PV cell and the results of the model. An efficient optimizer tool is required to obtain the best model’s parameter. This paper presents a novel metaheuristic named incremental average differential evolution algorithm (IncADE) for parameter estimation of PV models. The IncADE is a new variant of average differential evolution (ADE) that enhances the global search ability of ADE algorithm by the incremental population strategies. The performance of the developed IncADE is firstly evaluated on well-known benchmark functions, and the experimental results show that the proposed method improves the accuracy of the concluding solutions and the convergence performance of the basic ADE. Then, the IncADE is employed to estimate the optimal parameters of different PV models, which are single diode, double diode and PV module. Experimental results prove the superiority of IncADE on parameter estimation in terms of accuracy and computational efficiency by comparing with ADE and other metaheuristic algorithms.
Author Gün, Ayhan
Durmuş, Burhanettin
Author_xml – sequence: 1
  givenname: Burhanettin
  surname: Durmuş
  fullname: Durmuş, Burhanettin
  email: burhanettin.durmus@dpu.edu.tr
– sequence: 2
  givenname: Ayhan
  surname: Gün
  fullname: Gün, Ayhan
BookMark eNqFkM1qwzAQhEVJoUnaRyjoBexKchzZ9FBK-guBXnLoTSjSKpGxrSCphrx95SanXnJadoZv2J0ZmvSuB4TuKckpocuHJg-uhR58zghjOalyslheoSldcJpRVvIJmhJSVBmp2fcNmoXQEEI5rfgUNS8wQOsOHfQRO4NtrzyMi2yxHMDLHWBtjQGfNJtEGFz7E63rsWx3ztu477BxHh_2LrrkRWkVDscQocNWj5CxSo7ALbo2sg1wd55ztHl73aw-svXX--fqeZ0pVtQx00xqqgtKSrqVqi5qpbiuteHK6C3TSS31VkoutSxUrTkQA2xBeEVUSSkt5qg8xSrvQvBgxMHbTvqjoESMfYlGnPsSY1-CVCL1lbjHf5yy8e_w6KVtL9JPJxrSZ4NNblAWegXaelBRaGcvJPwCkTiSEQ
CitedBy_id crossref_primary_10_1007_s10825_024_02205_1
crossref_primary_10_1016_j_engappai_2023_106225
crossref_primary_10_1016_j_renene_2024_120388
Cites_doi 10.1016/j.apenergy.2017.05.029
10.1016/j.solener.2011.04.013
10.1016/j.renene.2012.01.082
10.1016/j.enconman.2014.06.026
10.1109/4235.910464
10.1371/journal.pone.0216201
10.1016/j.apenergy.2012.09.052
10.1016/j.enconman.2015.11.041
10.1016/j.aeue.2018.07.021
10.1016/j.solener.2013.05.007
10.1109/4235.771163
10.1145/1388969.1389004
10.1016/j.enconman.2017.04.054
10.1016/j.renene.2018.06.039
10.1016/j.ijleo.2018.06.047
10.1016/j.energy.2016.01.052
10.1016/j.energy.2020.117804
10.1016/j.energy.2017.12.058
10.1109/TIE.2018.2793216
10.1016/j.apenergy.2017.12.115
10.1016/j.solener.2020.04.036
10.1109/T-ED.1987.22920
10.1016/j.enconman.2018.09.054
10.1016/j.ins.2009.03.004
10.1016/j.solener.2005.06.010
10.1016/j.rser.2016.07.053
10.1016/j.solener.2010.02.012
10.1016/j.energy.2014.05.011
10.1016/j.solener.2018.01.047
10.1016/j.solener.2011.09.032
ContentType Journal Article
Copyright 2022 International Solar Energy Society
Copyright_xml – notice: 2022 International Solar Energy Society
DBID AAYXX
CITATION
DOI 10.1016/j.solener.2022.08.046
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 254
ExternalDocumentID 10_1016_j_solener_2022_08_046
S0038092X22005965
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
UKR
VOH
WUQ
XOL
ZY4
~A~
~HD
ID FETCH-LOGICAL-c239t-d2ad1d31051bac939cc7d9df7cfdb2d51b5dbaa7ada3c9d7e0fe240780c51113
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877911600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Tue Nov 18 22:23:54 EST 2025
Sat Nov 29 07:26:17 EST 2025
Fri Feb 23 02:38:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parameter estimation
Photovoltaic (PV) cell
Average differential evolution (ADE)
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c239t-d2ad1d31051bac939cc7d9df7cfdb2d51b5dbaa7ada3c9d7e0fe240780c51113
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_solener_2022_08_046
crossref_citationtrail_10_1016_j_solener_2022_08_046
elsevier_sciencedirect_doi_10_1016_j_solener_2022_08_046
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Solar energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References AlHajri, El-Naggar, AlRashidi, Al-Othman (b0005) 2012; 44
Yao, Liu, Lin (b0145) 1999; 3
Guo, Meng, Sun, Wang (b0070) 2016; 108
(accessed October 15, 2021).
De Soto, Klein, Beckman (b0040) 2006; 80
Wang, Xuan (b0135) 2018; 144
Jiao, Chong, Huang, Hu, Wang, Heidari, Chen, Zhao (b0075) 2020; 203
Zagrouba, Sellami, Bouaïcha, Ksouri (b0155) 2010; 84
Chen, Yu, Du, Zhao, Liu (b0030) 2016; 99
Gude, Jana (b0065) 2020; 204
Chan, Phang (b0025) 1987; 34
AlRashidi, AlHajri, El-Naggar, Al-Othman (b0010) 2011; 85
Durmuş (b0045) 2018; 94
Yahya-Khotbehsara, Shahhoseini (b0140) 2018; 162
Yu, Chen, Wang, Wang (b0150) 2017; 145
Toledo, Blanes, Galiano (b0130) 2018; 65
Ayang, Wamkeue, Ouhrouche, Djongyang, Essiane Salomé, Pombe, Ekemb (b0020) 2019; 130
Gong, Cai (b0060) 2013; 94
Oliva, Abd El Aziz, Ella Hassanien (b0115) 2017; 200
El-Achouby, Zaimi, Ibral, Assaid (b0050) 2018; 177
Luo, Cao, Wang, Zhao, Huang (b0090) 2018; 171
Askarzadeh, Rezazadeh (b0015) 2013; 102
Montes de Oca, M.A., Stützle, T., 2008. Towards incremental social learning in optimization and multiagent systems. In: 10th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO’08), New York, pp. 1939–1944.
Niu, Zhang, Li (b0105) 2014; 86
Chen, Xu, Mei, Ding, Li (b0035) 2018; 212
El-Naggar, AlRashidi, AlHajri, Al-Othman (b0055) 2012; 86
Rashedi, Nezamabadi-pour, Saryazdi (b0120) 2009; 179
Jordehi (b0080) 2016; 65
Muhammad, F.F., Karim Sangawi, A.W., Hashim, S., Ghoshal, S.K., Abdullah, I.K., Hameed, S.S., 2019. Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS One 14 (5), e0216201. 10.1371/journal.pone.0216201.
Oliva, Cuevas, Pajares (b0110) 2014; 72
Leung, Wang (b0085) 2001; 5
Renewables 2021 global status report (REN21), 2021. URL
Chen (10.1016/j.solener.2022.08.046_b0035) 2018; 212
Luo (10.1016/j.solener.2022.08.046_b0090) 2018; 171
El-Naggar (10.1016/j.solener.2022.08.046_b0055) 2012; 86
Leung (10.1016/j.solener.2022.08.046_b0085) 2001; 5
Durmuş (10.1016/j.solener.2022.08.046_b0045) 2018; 94
10.1016/j.solener.2022.08.046_b0100
10.1016/j.solener.2022.08.046_b0125
Gong (10.1016/j.solener.2022.08.046_b0060) 2013; 94
De Soto (10.1016/j.solener.2022.08.046_b0040) 2006; 80
Rashedi (10.1016/j.solener.2022.08.046_b0120) 2009; 179
AlHajri (10.1016/j.solener.2022.08.046_b0005) 2012; 44
Askarzadeh (10.1016/j.solener.2022.08.046_b0015) 2013; 102
Gude (10.1016/j.solener.2022.08.046_b0065) 2020; 204
Yao (10.1016/j.solener.2022.08.046_b0145) 1999; 3
Zagrouba (10.1016/j.solener.2022.08.046_b0155) 2010; 84
AlRashidi (10.1016/j.solener.2022.08.046_b0010) 2011; 85
Ayang (10.1016/j.solener.2022.08.046_b0020) 2019; 130
Jordehi (10.1016/j.solener.2022.08.046_b0080) 2016; 65
10.1016/j.solener.2022.08.046_b0095
Guo (10.1016/j.solener.2022.08.046_b0070) 2016; 108
Niu (10.1016/j.solener.2022.08.046_b0105) 2014; 86
Toledo (10.1016/j.solener.2022.08.046_b0130) 2018; 65
Jiao (10.1016/j.solener.2022.08.046_b0075) 2020; 203
Chen (10.1016/j.solener.2022.08.046_b0030) 2016; 99
Chan (10.1016/j.solener.2022.08.046_b0025) 1987; 34
Oliva (10.1016/j.solener.2022.08.046_b0115) 2017; 200
Yahya-Khotbehsara (10.1016/j.solener.2022.08.046_b0140) 2018; 162
Wang (10.1016/j.solener.2022.08.046_b0135) 2018; 144
Yu (10.1016/j.solener.2022.08.046_b0150) 2017; 145
El-Achouby (10.1016/j.solener.2022.08.046_b0050) 2018; 177
Oliva (10.1016/j.solener.2022.08.046_b0110) 2014; 72
References_xml – volume: 44
  start-page: 238
  year: 2012
  end-page: 245
  ident: b0005
  article-title: Optimal extraction of solar cell parameters using pattern search
  publication-title: Renew. Energy
– volume: 80
  start-page: 78
  year: 2006
  end-page: 88
  ident: b0040
  article-title: Improvement and validation of a model for photovoltaic array performance
  publication-title: Sol. Energy
– volume: 177
  start-page: 258
  year: 2018
  end-page: 271
  ident: b0050
  article-title: New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar modüle
  publication-title: Energy Convers. Manage.
– volume: 86
  start-page: 1173
  year: 2014
  end-page: 1185
  ident: b0105
  article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells
  publication-title: Energy Convers. Manage.
– volume: 203
  start-page: 117804
  year: 2020
  ident: b0075
  article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models
  publication-title: Energy
– volume: 86
  start-page: 266
  year: 2012
  end-page: 274
  ident: b0055
  article-title: Simulated annealing algorithm for photovoltaic parameters identification
  publication-title: Sol. Energy
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b0145
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
– reference: >. (accessed October 15, 2021).
– volume: 5
  start-page: 41
  year: 2001
  end-page: 53
  ident: b0085
  article-title: An orthogonal genetic algorithm with quantization for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 171
  start-page: 200
  year: 2018
  end-page: 203
  ident: b0090
  article-title: Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm
  publication-title: Optik
– volume: 84
  start-page: 860
  year: 2010
  end-page: 866
  ident: b0155
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction
  publication-title: Sol Energy
– reference: Renewables 2021 global status report (REN21), 2021. URL: <
– volume: 34
  start-page: 286
  year: 1987
  end-page: 293
  ident: b0025
  article-title: Analytical methods for the extraction of solar-cell single and double diode model parameters from I-V characteristics
  publication-title: IEEE Trans. Electron. Dev.
– volume: 108
  start-page: 520
  year: 2016
  end-page: 528
  ident: b0070
  article-title: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm
  publication-title: Energy Convers. Manage.
– volume: 85
  start-page: 1543
  year: 2011
  end-page: 1550
  ident: b0010
  article-title: A new estimation approach for determining the I-V characteristics of solar cells
  publication-title: Sol. Energy
– volume: 144
  start-page: 490
  year: 2018
  end-page: 500
  ident: b0135
  article-title: A detailed study on loss processes in solar cells
  publication-title: Energy
– volume: 212
  start-page: 1578
  year: 2018
  end-page: 1588
  ident: b0035
  article-title: Teaching-learning-based artificial bee colony for solar phtovoltaic parameter estimation
  publication-title: Appl. Energy
– reference: Muhammad, F.F., Karim Sangawi, A.W., Hashim, S., Ghoshal, S.K., Abdullah, I.K., Hameed, S.S., 2019. Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS One 14 (5), e0216201. 10.1371/journal.pone.0216201.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0120
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 102
  start-page: 943
  year: 2013
  end-page: 949
  ident: b0015
  article-title: Artificial bee swarm optimization algorithm for parameters identification of solar cell models
  publication-title: Appl. Energy
– volume: 94
  start-page: 293
  year: 2018
  end-page: 302
  ident: b0045
  article-title: Optimal components selection for active filter design with average differential evolution algorithm
  publication-title: AEU Int. J. Electron. Commun.
– volume: 99
  start-page: 170
  year: 2016
  end-page: 180
  ident: b0030
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
– reference: Montes de Oca, M.A., Stützle, T., 2008. Towards incremental social learning in optimization and multiagent systems. In: 10th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO’08), New York, pp. 1939–1944.
– volume: 72
  start-page: 93
  year: 2014
  end-page: 102
  ident: b0110
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
– volume: 65
  start-page: 6301
  year: 2018
  end-page: 6308
  ident: b0130
  article-title: Two-step linear least-squares method for photovoltaic single-diode model parameters extraction
  publication-title: IEEE Trans. Ind. Electron.
– volume: 162
  start-page: 403
  year: 2018
  end-page: 409
  ident: b0140
  article-title: A fast modeling of the double-diode model for PV modules using combined analytical and numerical approach
  publication-title: Sol. Energy
– volume: 130
  start-page: 111
  year: 2019
  end-page: 121
  ident: b0020
  article-title: Maximum likelihood parameters estimation of single-diode model of photovoltaic generator
  publication-title: Renew. Energy
– volume: 65
  start-page: 1127
  year: 2016
  end-page: 1138
  ident: b0080
  article-title: Maximum power point tracking in photovoltaic (PV) systems: a review of different approaches
  publication-title: Renew. Sustain. Energy Rev.
– volume: 145
  start-page: 233
  year: 2017
  end-page: 246
  ident: b0150
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
– volume: 204
  start-page: 280
  year: 2020
  end-page: 293
  ident: b0065
  article-title: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization
  publication-title: Sol. Energy
– volume: 94
  start-page: 209
  year: 2013
  end-page: 220
  ident: b0060
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol. Energy
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: b0115
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.solener.2022.08.046_b0115
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.029
– volume: 85
  start-page: 1543
  issue: 7
  year: 2011
  ident: 10.1016/j.solener.2022.08.046_b0010
  article-title: A new estimation approach for determining the I-V characteristics of solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.04.013
– volume: 44
  start-page: 238
  year: 2012
  ident: 10.1016/j.solener.2022.08.046_b0005
  article-title: Optimal extraction of solar cell parameters using pattern search
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.01.082
– volume: 86
  start-page: 1173
  year: 2014
  ident: 10.1016/j.solener.2022.08.046_b0105
  article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.06.026
– volume: 5
  start-page: 41
  issue: 1
  year: 2001
  ident: 10.1016/j.solener.2022.08.046_b0085
  article-title: An orthogonal genetic algorithm with quantization for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.910464
– ident: 10.1016/j.solener.2022.08.046_b0100
  doi: 10.1371/journal.pone.0216201
– volume: 102
  start-page: 943
  year: 2013
  ident: 10.1016/j.solener.2022.08.046_b0015
  article-title: Artificial bee swarm optimization algorithm for parameters identification of solar cell models
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.052
– volume: 108
  start-page: 520
  year: 2016
  ident: 10.1016/j.solener.2022.08.046_b0070
  article-title: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.11.041
– volume: 94
  start-page: 293
  year: 2018
  ident: 10.1016/j.solener.2022.08.046_b0045
  article-title: Optimal components selection for active filter design with average differential evolution algorithm
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2018.07.021
– volume: 94
  start-page: 209
  year: 2013
  ident: 10.1016/j.solener.2022.08.046_b0060
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.05.007
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.solener.2022.08.046_b0145
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– ident: 10.1016/j.solener.2022.08.046_b0095
  doi: 10.1145/1388969.1389004
– volume: 145
  start-page: 233
  year: 2017
  ident: 10.1016/j.solener.2022.08.046_b0150
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.054
– volume: 130
  start-page: 111
  year: 2019
  ident: 10.1016/j.solener.2022.08.046_b0020
  article-title: Maximum likelihood parameters estimation of single-diode model of photovoltaic generator
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.06.039
– volume: 171
  start-page: 200
  year: 2018
  ident: 10.1016/j.solener.2022.08.046_b0090
  article-title: Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.06.047
– volume: 99
  start-page: 170
  year: 2016
  ident: 10.1016/j.solener.2022.08.046_b0030
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.052
– ident: 10.1016/j.solener.2022.08.046_b0125
– volume: 203
  start-page: 117804
  year: 2020
  ident: 10.1016/j.solener.2022.08.046_b0075
  article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117804
– volume: 144
  start-page: 490
  year: 2018
  ident: 10.1016/j.solener.2022.08.046_b0135
  article-title: A detailed study on loss processes in solar cells
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.058
– volume: 65
  start-page: 6301
  issue: 8
  year: 2018
  ident: 10.1016/j.solener.2022.08.046_b0130
  article-title: Two-step linear least-squares method for photovoltaic single-diode model parameters extraction
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2793216
– volume: 212
  start-page: 1578
  year: 2018
  ident: 10.1016/j.solener.2022.08.046_b0035
  article-title: Teaching-learning-based artificial bee colony for solar phtovoltaic parameter estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.115
– volume: 204
  start-page: 280
  year: 2020
  ident: 10.1016/j.solener.2022.08.046_b0065
  article-title: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.04.036
– volume: 34
  start-page: 286
  issue: 2
  year: 1987
  ident: 10.1016/j.solener.2022.08.046_b0025
  article-title: Analytical methods for the extraction of solar-cell single and double diode model parameters from I-V characteristics
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/T-ED.1987.22920
– volume: 177
  start-page: 258
  year: 2018
  ident: 10.1016/j.solener.2022.08.046_b0050
  article-title: New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar modüle
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.09.054
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.solener.2022.08.046_b0120
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 80
  start-page: 78
  issue: 1
  year: 2006
  ident: 10.1016/j.solener.2022.08.046_b0040
  article-title: Improvement and validation of a model for photovoltaic array performance
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.06.010
– volume: 65
  start-page: 1127
  year: 2016
  ident: 10.1016/j.solener.2022.08.046_b0080
  article-title: Maximum power point tracking in photovoltaic (PV) systems: a review of different approaches
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.07.053
– volume: 84
  start-page: 860
  issue: 5
  year: 2010
  ident: 10.1016/j.solener.2022.08.046_b0155
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.02.012
– volume: 72
  start-page: 93
  year: 2014
  ident: 10.1016/j.solener.2022.08.046_b0110
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.011
– volume: 162
  start-page: 403
  year: 2018
  ident: 10.1016/j.solener.2022.08.046_b0140
  article-title: A fast modeling of the double-diode model for PV modules using combined analytical and numerical approach
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.047
– volume: 86
  start-page: 266
  issue: 1
  year: 2012
  ident: 10.1016/j.solener.2022.08.046_b0055
  article-title: Simulated annealing algorithm for photovoltaic parameters identification
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.09.032
SSID ssj0017187
Score 2.405451
Snippet •A novel variant of the average differential evolution (ADE) algorithm, named incremental ADE (IncADE), is developed for parameter estimation of PV models.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms Average differential evolution (ADE)
Optimization
Parameter estimation
Photovoltaic (PV) cell
Title Development of incremental average differential evolution algorithm for photovoltaic system identification
URI https://dx.doi.org/10.1016/j.solener.2022.08.046
Volume 244
WOSCitedRecordID wos000877911600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0M7FH0iSR_g0EyBUouiQnFMjQRth6BAPXgTKJKqbTiSochG-u9zJ1KPtkFfQBfBoEGb4n0ij6fvviPkbQZecQSPTaCQW8FVGAdKRDzQnHMhdGROQ90UmxCXl8l8Lj-PRps2F2a3FkWR3NzIzX81NbSBsTF19i_M3f0oNMBnMDpcwexw_SPDD2hATg9CuxAgigLAzSBHp62KUmO43O78cI7V-mtZLevFVcM93CzKuoTvarXUXvD5eGk8uai356pN80U6q20yCXvnuLraHk3jI3nRwGhbLVRh61bsG1k_-J7-_dTJGHxbeKT6IAScX7GIQtxHxtrsmJ6K1Ky2EVIrmnLpsNe4BRY2wwCcKjFcgRnnwzXUyW357Zg5jemfVnoXdFidXCN9waKyK2ONGCv_QVm72au_4FhwKIw1BYfie2SPiVgmY7J39vF8_ql78wR7tdNZ9WPvs77e3flnd_szAx9l9pg88ocLeuZA8YSMbPGUPBxITj4jqwE8aJnTATyohwcdwoN28KAdPCjAgw7hQR086PfweE5mF-ez6YfA19sINItkHRimTGjA34_DTGkZSa2FkSYXOjcZM9Aam0wpoYyKtDTCTnKLAYFkosFtD6MXZFyUhd1HvpzAShsZkyhfFwtl4dgh1ASL0-WxMQeEt5OWaq9FjyVR1mlLOlylfq5TnOsUS6Xy0wNy0nXbODGW33VIWouk3qN0nmIKMPp118N_7_qSPOifkVdkXFdb-5rc17t6eV298YC7BSygo-o
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+incremental+average+differential+evolution+algorithm+for+photovoltaic+system+identification&rft.jtitle=Solar+energy&rft.au=Durmu%C5%9F%2C+Burhanettin&rft.au=G%C3%BCn%2C+Ayhan&rft.date=2022-09-15&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=244&rft.spage=242&rft.epage=254&rft_id=info:doi/10.1016%2Fj.solener.2022.08.046&rft.externalDocID=S0038092X22005965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon