On the Far Field Patterns for Electromagnetic Scattering in Two Dimensions

We consider the problem of scattering time-harmonic electromagnetic plane waves by a dielectric infinitely long cylinder with core which may be a perfect or an imperfect conductor. The corresponding scattering problems are reduced to mixed boundary value problems for the two-dimensional Helmholtz eq...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Reports on mathematical physics Ročník 89; číslo 2; s. 253 - 265
Hlavní autoři: Athanasiadis, Christodoulos E., Athanasiadou, Evagelia S., Roupa, Paraskevi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2022
Témata:
ISSN:0034-4877, 1879-0674
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of scattering time-harmonic electromagnetic plane waves by a dielectric infinitely long cylinder with core which may be a perfect or an imperfect conductor. The corresponding scattering problems are reduced to mixed boundary value problems for the two-dimensional Helmholtz equation. For the far field patterns of these problems, we prove a reciprocity principle and a general scattering theorem. The combination of these theorems with Herglotz wave functions leads to the proof of some properties of the far field operator, which are used in the study of inverse scattering problems. Finally, an optical theorem for the above scattering problems is proved.
ISSN:0034-4877
1879-0674
DOI:10.1016/S0034-4877(22)00026-X