Research on performance degradation of force sensors based on improved error back propagation algorithm
Studying the performance degradation of force sensors, a core component of aircraft control stick force measurement devices, is essential. The key to investigating equipment performance degradation lies in constructing a degradation model. When dealing with degradation data from specific devices, re...
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 2849; číslo 1; s. 12025 - 12030 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.09.2024
|
| Témata: | |
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Studying the performance degradation of force sensors, a core component of aircraft control stick force measurement devices, is essential. The key to investigating equipment performance degradation lies in constructing a degradation model. When dealing with degradation data from specific devices, relying solely on fitting methods may not effectively describe the degradation of the equipment. This study introduces an error backpropagation neural network model for constructing the performance degradation model of force sensors, and optimization improvements are made by using a genetic algorithm. Experimental results demonstrate a 99% reduction in Root Mean Square Error with the proposed modeling approach. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1742-6588 1742-6596 |
| DOI: | 10.1088/1742-6596/2849/1/012025 |