Optimal scheduling of distributed generation in smart microgrids: A comprehensive model and efficient algorithm

This study proposes an optimal scheduling model for distributed generation (DG) within smart microgrids, incorporating various distributed energy resources (DERs) such as photovoltaic panels, wind turbines, biomass generators, and energy storage systems. To address the complexities of the scheduling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 2876; H. 1; S. 12032 - 12036
1. Verfasser: Zhang, Fan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.11.2024
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes an optimal scheduling model for distributed generation (DG) within smart microgrids, incorporating various distributed energy resources (DERs) such as photovoltaic panels, wind turbines, biomass generators, and energy storage systems. To address the complexities of the scheduling problem, we design a hybrid optimization algorithm combining Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). This hybrid algorithm leverages the global search capabilities of GA and the local search efficiency of PSO to achieve robust and efficient convergence to near-optimal solutions. A comprehensive case study based on a real-world smart microgrid system demonstrates the effectiveness of the proposed model and algorithm. The results indicate significant reductions in total operational costs, enhanced renewable energy utilization, reduced grid dependency, and improved system reliability. This research highlights the potential for broader implementation of the model, contributing to the advancement of smart grid technologies and the transition towards sustainable energy systems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2876/1/012032