Optimal scheduling of distributed generation in smart microgrids: A comprehensive model and efficient algorithm
This study proposes an optimal scheduling model for distributed generation (DG) within smart microgrids, incorporating various distributed energy resources (DERs) such as photovoltaic panels, wind turbines, biomass generators, and energy storage systems. To address the complexities of the scheduling...
Saved in:
| Published in: | Journal of physics. Conference series Vol. 2876; no. 1; pp. 12032 - 12036 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bristol
IOP Publishing
01.11.2024
|
| Subjects: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study proposes an optimal scheduling model for distributed generation (DG) within smart microgrids, incorporating various distributed energy resources (DERs) such as photovoltaic panels, wind turbines, biomass generators, and energy storage systems. To address the complexities of the scheduling problem, we design a hybrid optimization algorithm combining Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). This hybrid algorithm leverages the global search capabilities of GA and the local search efficiency of PSO to achieve robust and efficient convergence to near-optimal solutions. A comprehensive case study based on a real-world smart microgrid system demonstrates the effectiveness of the proposed model and algorithm. The results indicate significant reductions in total operational costs, enhanced renewable energy utilization, reduced grid dependency, and improved system reliability. This research highlights the potential for broader implementation of the model, contributing to the advancement of smart grid technologies and the transition towards sustainable energy systems. |
|---|---|
| AbstractList | This study proposes an optimal scheduling model for distributed generation (DG) within smart microgrids, incorporating various distributed energy resources (DERs) such as photovoltaic panels, wind turbines, biomass generators, and energy storage systems. To address the complexities of the scheduling problem, we design a hybrid optimization algorithm combining Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). This hybrid algorithm leverages the global search capabilities of GA and the local search efficiency of PSO to achieve robust and efficient convergence to near-optimal solutions. A comprehensive case study based on a real-world smart microgrid system demonstrates the effectiveness of the proposed model and algorithm. The results indicate significant reductions in total operational costs, enhanced renewable energy utilization, reduced grid dependency, and improved system reliability. This research highlights the potential for broader implementation of the model, contributing to the advancement of smart grid technologies and the transition towards sustainable energy systems. |
| Author | Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Fan surname: Zhang fullname: Zhang, Fan organization: State Grid Energy Research Institute Department of Corporate Strategy Study, Beijing, 102209, China |
| BookMark | eNqFkE1LxDAQhoOs4K76Gwx4rk2aNm29LYtfsLAXPYc0mXaztElNWsF_b0tlPTowHzDzzjDPBq2ss4DQHSUPlBRFTPM0iXhW8jgpch7TmNCEsOQCrc-d1bkuiiu0CeFECJssXyN36AfTyRYHdQQ9tsY22NVYmzB4U40DaNyABS8H4yw2FodO-gF3RnnXeKPDI95i5brewxFsMF-AO6ehxdJqDHVtlAE7YNk2zpvh2N2gy1q2AW5_8zX6eH56371G-8PL2267j1TCyiTSZQplnqkpaKVAMplPrhkpQdUSGK8rVpFSZZJUXIOqpCpplnJSZLqsZcGu0f2yt_fuc4QwiJMbvZ1OCkaTlGeccjpN5cvU9E0IHmrR-4mG_xaUiJmumLmJmaGY6QoqFrqTki1K4_q_1f-pfgDS5oEk |
| Cites_doi | 10.1016/j.egyr.2023.05.067 10.3390/en17071760 10.3390/en9121031 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/2876/1/012032 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2876_1_012032 JPCS_2876_1_012032 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2392-d94e975ce97dccea3a7a3ad309ecfae36fb3b09c5a0b6decbac91546085d9fa83 |
| IEDL.DBID | PIMPY |
| ISSN | 1742-6588 |
| IngestDate | Sat Jul 26 00:24:37 EDT 2025 Sat Nov 29 03:36:56 EST 2025 Tue Nov 12 22:26:41 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2392-d94e975ce97dccea3a7a3ad309ecfae36fb3b09c5a0b6decbac91546085d9fa83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3124656161?pq-origsite=%requestingapplication% |
| PQID | 3124656161 |
| PQPubID | 4998668 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_3124656161 crossref_primary_10_1088_1742_6596_2876_1_012032 iop_journals_10_1088_1742_6596_2876_1_012032 |
| PublicationCentury | 2000 |
| PublicationDate | 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20241101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2024 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Liu (JPCS_2876_1_012032bib8) 2016; 9 Shi (JPCS_2876_1_012032bib5) 1998; 4 Zhang (JPCS_2876_1_012032bib3) 2019; 139 Liu (JPCS_2876_1_012032bib4) 2020; 201 Zhang (JPCS_2876_1_012032bib9) 2020; 273 Wang (JPCS_2876_1_012032bib2) 2019; 7 Liu (JPCS_2876_1_012032bib1) 2021; 17 Vignesh Babu (JPCS_2876_1_012032bib6) 2023; 9 Wang (JPCS_2876_1_012032bib7) 2024; 17 |
| References_xml | – volume: 139 start-page: 1476 year: 2019 ident: JPCS_2876_1_012032bib3 article-title: Computational Efficiency in Large-Scale DG Scheduling publication-title: Renewable Energy – volume: 17 start-page: 1881 year: 2021 ident: JPCS_2876_1_012032bib1 article-title: Advanced Technologies in Smart Microgrids for Optimal Management publication-title: IEEE Transactions on Industrial Informatics – volume: 7 start-page: 96523 year: 2019 ident: JPCS_2876_1_012032bib2 article-title: Challenges and Solutions in DG Scheduling Models publication-title: IEEE Access – volume: 4 start-page: 1942 year: 1998 ident: JPCS_2876_1_012032bib5 publication-title: Particle Swarm Optimization in Smart Grids – volume: 9 start-page: 5992 year: 2023 ident: JPCS_2876_1_012032bib6 article-title: Multi-objective genetic algorithm based energy management system considering optimal utilization of grid and degradation of battery storage in microgrid publication-title: Energy Reports doi: 10.1016/j.egyr.2023.05.067 – volume: 17 start-page: 1760 year: 2024 ident: JPCS_2876_1_012032bib7 article-title: Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm publication-title: Energies doi: 10.3390/en17071760 – volume: 201 year: 2020 ident: JPCS_2876_1_012032bib4 article-title: Optimization Techniques for Smart Microgrids publication-title: Energy – volume: 273 year: 2020 ident: JPCS_2876_1_012032bib9 article-title: Coordinated Control Strategies for Distributed Generation in Microgrids publication-title: Journal of Cleaner Production – volume: 9 start-page: 1031 year: 2016 ident: JPCS_2876_1_012032bib8 article-title: A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids publication-title: Energies doi: 10.3390/en9121031 |
| SSID | ssj0033337 |
| Score | 2.3781595 |
| Snippet | This study proposes an optimal scheduling model for distributed generation (DG) within smart microgrids, incorporating various distributed energy resources... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 12032 |
| SubjectTerms | Biomass energy production Design optimization Distributed generation Energy costs Energy sources Energy utilization Genetic algorithms Particle swarm optimization Renewable energy Resource scheduling Smart grid System reliability Wind turbines |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60KnjxLVar7MGjMY9tkl1vRSye2otib8tmHzVgk5JUf7-z2QQpIiIYSMhhdrLMJDPfkHkgdJ1QSgJNQ4_GCgIUM8w8IU3kJbYdYKhJEkrZDJtIJxM6m7G1Wphy2Zr-W7h1jYKdCNuEOOoDhgZeMUt8QPuJH_q2_pOAGd4iNI5tWt-UvHTWmMCRuqJIu4jSLsfrZ0ZrHmoTdvHNTDe-Z7z_H7s-QHst8sQjt-IQbejiCO00GaCyPkblFIzHAggg3AX3Y6vUcWmwso117UwsrfC8aVFtNYnzAtcLeDhe2IS-eZWr-g6PsE1Qr_SrS4rHzZQdLAqFddOoAvwbFm_zsspXr4sT9Dx-eLp_9NppDJ6MAER5ig01S2MJFyWlFkSkcCoSMC2NAK2ajGQBk7EIskRpmQnJAJ8lgOkUM4KSU9QrykKfIUxDAeSGpMADnGOUZRIiKcMg2ATzMYz7KOg0wJeu6QZvfpZTyq0cuZUjt3LkIXdy7KMbkDxvP8D6d_JBp9KvNQSwDsBbwMDnf-N2gXYjwDquRHGAeqvqXV-ibfmxyuvqqnkfPwHNqNtJ priority: 102 providerName: IOP Publishing |
| Title | Optimal scheduling of distributed generation in smart microgrids: A comprehensive model and efficient algorithm |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2876/1/012032 https://www.proquest.com/docview/3124656161 |
| Volume | 2876 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH44Mwpe3MVlHHLwaOmSaZt4kVEUPTgWUVwuJU3SccBpx-no7_elCyKCXiw0hzYNKV_6vfeatwAcBoxRRzPXYr5CAyXtJ5aQqWcFJh2gq2ngSlkWmwiHQ_b4yKM6PLqo3SobTiyJusr2bPy2kYRtlUvzx9ymKJZQE0F15WT6ZpkaUmavtS6o0YKOSbzltKETXV1HTw0zUzzCKkASJ-Mz1vh7oRFYX-OBjSZEYLu2CSql3jdp1Rrn0x-UXcqhi9X_fYM1WKn1UTKoFtA6LOhsA5ZKv1BZbEJ-g5QywQ5oBKNQMrHrJE-JMul2TaUsrcioTFxt8CXjjBQTXItkYtz8RrOxKo7JgBi39Zl-qVzlSVl7h4hMEV2mr8DpEvE6wrnNXyZbcH9xfnd2adU1GizpoWplKd7XPPQlNkpKLagI8VTU4VqmArFOE5o4XPrCSQKlZSIkR60tQE1P8VQwug3tLM_0DhDmCuye0hDHQJHpJYlE-yrlaIIiqfT9XXAaLOJplYojLrfQGYsNfLGBLzbwxW5cwbcLR4hZXH-Wxd_duw1yX898AbX3--19WPZQ46kCFbvQns_e9QEsyo_5uJj1oHN6Poxue9C6oQ_YRv5zr16fn2gE7ng |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL1qpyDYlLcoLeAF7IgmiSeJXQmhCqg6ajvMokhlZRzbmY7EJMNkAPFT_UaO81CFkGDVBZGSReJYsX1yH8m59xK9SIXgoRNRIBILB6UY5YE2RRykPh1g5HgaGdMUm8gmE3F-LqcbdNnHwnhaZS8TG0FtK-O_kQ85FBFsDxgob5ZfA181yv9d7UtotLA4dj9_wGWrX4_fYX1fxvHh-7O3R0FXVSAwMYyBwMqRk1licLDGOM11ht3yUDpTaDxdkfM8lCbRYZ5aZ3JtJOyMFLaJlYUWHP1u0tYIYA8HtDUdn04_9bKfY8vaEEwMNxGiZ5TBzezOyXQIJyUdRkMftsrj3_Th5rxa_qEUGk13eOd_m6O7tN3Z1OygfQnu0YYr79PNhttq6gdUfYBYXKABHHkoVh9_z6qCWZ8y2Ff7cpbNmuTbHqNsXrJ6gfeJLTxVcbaa23qfHTBPvV-5i5buz5r6QUyXlrkmBQc0N9NfZpiL9cXiIX28ltE-okFZle4xMRFpNC94hj6g9uM8N_ARCwk3GoJxlOxQ2K-2WrbpRFRDAxBCeYAoDxDlAaIi1QJkh14BFaoTLfW_m-_12Li65woYT_5--TndOjo7PVEn48nxLt2OYcG1gZd7NFivvrmndMN8X8_r1bMO-Yw-XzeQfgGUBUCA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC587IoXH7uKb_vgcWMePUm6vQ3qoCgzHhS9NZ1-jANOMiSjv9_qJKMsIiI4kCGH7qKpSqq-IlVfARwljNHAsNBjscYExXYyTyobeYmjAwwNTUKl6mETab_PHh74zRz03nphiknr-o_xtiEKblTYFsQxHzE0yop54iPaT_zQd_2fNPIn2s7DoqMrcZMMBvR-5pEp_tKmMdJtZGxW5_W5sP-i1Dye5IOrruNPb_WnTr4GKy0CJd1m1zrMmfwP_K4rQVX1F4oBOpExLsC0F8OQ61YnhSXaEey62VhGk2FNVe0sSkY5qcZ4ADJ2hX3DcqSrE9IlrlC9NI9NcTypp-0QmWtiasIKjHNEPg2LcjR9HG_AXe_89vTCa6cyeCpCMOVp3jE8jRX-aaWMpDLFS9OAG2UlWtdmNAu4imWQJdqoTCqOOC1BbKe5lYxuwkJe5GYLCAslLrc0RRkYJKMsU5hRWY5JJ7qRTrwNwcwKYtKQb4j6ozljwulSOF0Kp0sRikaX2_APtS_aF7H6evnezKzveyhiHoS5iIV3viftEJZuznri-rJ_tQvLEcKfpmtxDxam5bPZh1_qZTqqyoP68XwFfEvgqA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+scheduling+of+distributed+generation+in+smart+microgrids%3A+A+comprehensive+model+and+efficient+algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Zhang%2C+Fan&rft.date=2024-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2876&rft.issue=1&rft.spage=012032&rft_id=info:doi/10.1088%2F1742-6596%2F2876%2F1%2F012032 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |