Research of neural network algorithms for recognizing railway infrastructure objects in video images
The article describes the development of two neural network algorithms for recognizing objects of the railway infrastructure in video images. Both algorithms are aimed at improving railway traffic safety. One algorithm detects foreign objects on railway tracks and objects relating to the railway inf...
Uložené v:
| Vydané v: | Kompʹûternaâ optika Ročník 49; číslo 3; s. 443 - 450 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Samara National Research University
01.06.2025
|
| Predmet: | |
| ISSN: | 0134-2452, 2412-6179 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The article describes the development of two neural network algorithms for recognizing objects of the railway infrastructure in video images. Both algorithms are aimed at improving railway traffic safety. One algorithm detects foreign objects on railway tracks and objects relating to the railway infrastructure. The other algorithm implements the semantic segmentation of main and auxiliary railway tracks, as well as trains within the visible range of the locomotive. The algorithms are implemented based on convolutional neural networks (CNN) YOLO and U-Net. The CNN is trained and tested using the image database of the Research Institute of Information, Automation and Communications in Railway Transport. The experimental studies conducted are aimed at increasing the efficiency of algorithms for object detection and segmentation through the use of data augmentation methods and additional preprocessing, as well as selecting an architecture and optimal network hyperparameters. The detection algorithm works in real time, achieving an average accuracy of 64% for 11 object classes according to the mAP metric. The operating speed of the semantic segmentation algorithm is 5 frames/s, the average accuracy for three classes of objects according to the IoU metric is 92%. |
|---|---|
| AbstractList | The article describes the development of two neural network algorithms for recognizing objects of the railway infrastructure in video images. Both algorithms are aimed at improving railway traffic safety. One algorithm detects foreign objects on railway tracks and objects relating to the railway infrastructure. The other algorithm implements the semantic segmentation of main and auxiliary railway tracks, as well as trains within the visible range of the locomotive. The algorithms are implemented based on convolutional neural networks (CNN) YOLO and U-Net. The CNN is trained and tested using the image database of the Research Institute of Information, Automation and Communications in Railway Transport. The experimental studies conducted are aimed at increasing the efficiency of algorithms for object detection and segmentation through the use of data augmentation methods and additional preprocessing, as well as selecting an architecture and optimal network hyperparameters. The detection algorithm works in real time, achieving an average accuracy of 64% for 11 object classes according to the mAP metric. The operating speed of the semantic segmentation algorithm is 5 frames/s, the average accuracy for three classes of objects according to the IoU metric is 92%. |
| Author | Perevoshchikova, A.A. Medvedeva, E.V. |
| Author_xml | – sequence: 1 givenname: E.V. surname: Medvedeva fullname: Medvedeva, E.V. – sequence: 2 givenname: A.A. surname: Perevoshchikova fullname: Perevoshchikova, A.A. |
| BookMark | eNo9kNtqwzAMhs3oYF3XF9iVXyCbD0mcXI6wQ6FQGNu1cRU5dZfGw05Xuqdf0o5eSIJf6BN8t2TS-Q4JuefsgReiUI8i5SLJuSqTapXwLJdXZHrJJmTKuEwTkWbihsxj3DLGhqucp3xK6neMaAJsqLe0w30w7TD6gw9f1LSND67f7CK1PtCA4JvO_bquocG49mCO1HU2mNiHPfT7gNSvtwh9HGL642r01O1Mg_GOXFvTRpz_zxn5fHn-qN6S5ep1UT0tExCy6BOhSsihQFYIULwAgcyua45jSzNWGyksIgjDcyVzxeSwFiUbCgRkZS1nZHHm1t5s9XcYvoej9sbpU-BDo03oHbSoc1CZKXnNCyXTUnIjbbkGloEUBaapGVjizILgYwxoLzzO9Em7HhXrUbGuVnrULv8AQFl48g |
| Cites_doi | 10.1016/j.hspr.2023.01.001 10.1109/AERO53065.2022.9843537 10.30932/9785002182794-2023-620-625 10.21046/2070-7401-2021-18-6-35-45 10.1109/ICSP58490.2023.10248526 10.1016/j.autcon.2023.105069 10.23919/FRUCT50888.2021.9347653 10.14498/tech.2022.1.4 10.1016/j.measurement.2022.111277 10.18196/26123 10.1109/ICCEAI52939.2021.00075 10.1109/ICITCS.2013.6717896 10.1016/j.jii.2024.100571 10.1109/TENCON58879.2023.10322378 10.1016/j.procs.2022.12.031 10.1007/978-3-319-46448-0_2 10.30932/1992-3252-2019-17-62-72 10.1109/ICCV.2017.322 10.1109/NNICE58320.2023.10105805 10.1007/978-3-319-11430-9_11 10.1109/ICAAIC56838.2023.10140366 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.18287/2412-6179-CO-1563 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2412-6179 |
| EndPage | 450 |
| ExternalDocumentID | oai_doaj_org_article_6c75a91d18734931a3f9bc05c328e44a 10_18287_2412_6179_CO_1563 |
| GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c238t-279c6c8e082c718c2e0fbd1efbd1450da32feec2a167367030fb290b29c2c59d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001466104000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0134-2452 |
| IngestDate | Fri Oct 03 12:44:31 EDT 2025 Sat Oct 25 05:10:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c238t-279c6c8e082c718c2e0fbd1efbd1450da32feec2a167367030fb290b29c2c59d3 |
| OpenAccessLink | https://doaj.org/article/6c75a91d18734931a3f9bc05c328e44a |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6c75a91d18734931a3f9bc05c328e44a crossref_primary_10_18287_2412_6179_CO_1563 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Kompʹûternaâ optika |
| PublicationYear | 2025 |
| Publisher | Samara National Research University |
| Publisher_xml | – name: Samara National Research University |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref0 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref12 doi: 10.1016/j.hspr.2023.01.001 – ident: ref13 doi: 10.1109/AERO53065.2022.9843537 – ident: ref1 doi: 10.30932/9785002182794-2023-620-625 – ident: ref6 doi: 10.21046/2070-7401-2021-18-6-35-45 – ident: ref18 doi: 10.1109/ICSP58490.2023.10248526 – ident: ref11 doi: 10.1016/j.autcon.2023.105069 – ident: ref7 doi: 10.23919/FRUCT50888.2021.9347653 – ident: ref8 doi: 10.14498/tech.2022.1.4 – ident: ref3 doi: 10.1016/j.measurement.2022.111277 – ident: ref14 doi: 10.18196/26123 – ident: ref16 doi: 10.1109/ICCEAI52939.2021.00075 – ident: ref5 doi: 10.1109/ICITCS.2013.6717896 – ident: ref2 doi: 10.1016/j.jii.2024.100571 – ident: ref20 doi: 10.1109/TENCON58879.2023.10322378 – ident: ref10 doi: 10.1016/j.procs.2022.12.031 – ident: ref15 doi: 10.1007/978-3-319-46448-0_2 – ident: ref9 doi: 10.30932/1992-3252-2019-17-62-72 – ident: ref19 doi: 10.1109/ICCV.2017.322 – ident: ref22 doi: 10.1109/NNICE58320.2023.10105805 – ident: ref4 doi: 10.1007/978-3-319-11430-9_11 – ident: ref21 doi: 10.1109/ICAAIC56838.2023.10140366 – ident: ref0 – ident: ref17 |
| SSID | ssj0002876141 |
| Score | 2.3271546 |
| Snippet | The article describes the development of two neural network algorithms for recognizing objects of the railway infrastructure in video images. Both algorithms... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 443 |
| SubjectTerms | machine vision systems neural network algorithms object detection railway infrastructure objects railway traffic safety semantic segmentation |
| Title | Research of neural network algorithms for recognizing railway infrastructure objects in video images |
| URI | https://doaj.org/article/6c75a91d18734931a3f9bc05c328e44a |
| Volume | 49 |
| WOSCitedRecordID | wos001466104000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2412-6179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876141 issn: 0134-2452 databaseCode: DOA dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8sCGrDq28_AIFRVTywBSt8h2bChqG9QUEPx67pIUlYmFIRmsJIo-P747--47Qi5lGmxqwTuJg-VMSWWYFRlnqQmwXMa8cNzWxSbS4TAbj_X9WqkvjAlr5IEb4HqJS2OjoyLKUqm0jIwM2joeOykyr1RtGvFUrzlTL_WWEbjnqilGKBXD48U2YwYF3ntAWwKT4zTrjxh4MPIXK62J99csM9gl2615SK-b39ojG36-T3ZaU5G2E7E6IMUqYo6WgaImJbw0byK6qZk-leDyP88qChYpbUOEvoCj6MJMph_mk8KwWphGOvZt4WlpcTemgmaKaXklncxgmakOyePg9qF_x9qCCcwB8y6ZSLVLXOaB1h1wjhOeB1tEHm8KcDdSBO-dMBFGc-FcD1ZoDpcTLtaFPCKdeTn3x4SqzMbeG8md10p4kdkkyYQO3EgrvEu65GoFWP7a6GLk6E8gvDnCmyO8eX-UI7xdcoOY_jyJmtZ1A_R03vZ0_ldPn_zHR07JlsAKvvU-yhnpANL-nGy69-WkWlzUg-gbxCXJ0A |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+of+neural+network+algorithms+for+recognizing+railway+infrastructure+objects+in+video+images&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=E.V.+Medvedeva&rft.au=A.A.+Perevoshchikova&rft.date=2025-06-01&rft.pub=Samara+National+Research+University&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=49&rft.issue=3&rft.spage=443&rft.epage=450&rft_id=info:doi/10.18287%2F2412-6179-CO-1563&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6c75a91d18734931a3f9bc05c328e44a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |