A LANE TRACKING ALGORITHM FOR LOW-COMPUTATIONAL-POWER MICROCONTROLLER-CONTROLLED AUTONOMOUS VEHICLE MODELS

At work, three tasks were presented: road lane detection and trajectory estimation, environment mapping, and the application of a neural network. All these tasks are based on the results of the lane detection method. The presented lane detection method stands out due to the execution of an interpola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Problemy Transportu Jg. 19; H. 1; S. 43 - 56
Hauptverfasser: KOZŁOWSKI, Maciej, CZEREPICKI, Andrzej, DZIDO, Piotr
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.01.2024
ISSN:1896-0596, 2300-861X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract At work, three tasks were presented: road lane detection and trajectory estimation, environment mapping, and the application of a neural network. All these tasks are based on the results of the lane detection method. The presented lane detection method stands out due to the execution of an interpolation transformation for all previously detected edge points. This transformation transfers these points to a “bird’s-eye” coordinate system and distributes them on a grid. Road lanes are identified by a lane feature filter based on the analysis of the distances between unique points. This allows lane views to be obtained in a coordinate system while preserving the distance condition. The road environment map is constructed from the obtained images using a probabilistic algorithm called Distributed Particle-SLAM (DP-SLAM). Based on the map result, a method for representing characteristic points describing the path of road lanes in each incoming camera image has been developed. These points are then used for training the neural network. The neural network solves a regression task for the coordinates of the points on the road lanes, enabling the identification of coefficients for parabolic fitting. Validation has been performed.
AbstractList At work, three tasks were presented: road lane detection and trajectory estimation, environment mapping, and the application of a neural network. All these tasks are based on the results of the lane detection method. The presented lane detection method stands out due to the execution of an interpolation transformation for all previously detected edge points. This transformation transfers these points to a “bird’s-eye” coordinate system and distributes them on a grid. Road lanes are identified by a lane feature filter based on the analysis of the distances between unique points. This allows lane views to be obtained in a coordinate system while preserving the distance condition. The road environment map is constructed from the obtained images using a probabilistic algorithm called Distributed Particle-SLAM (DP-SLAM). Based on the map result, a method for representing characteristic points describing the path of road lanes in each incoming camera image has been developed. These points are then used for training the neural network. The neural network solves a regression task for the coordinates of the points on the road lanes, enabling the identification of coefficients for parabolic fitting. Validation has been performed.
Author CZEREPICKI, Andrzej
DZIDO, Piotr
KOZŁOWSKI, Maciej
Author_xml – sequence: 1
  givenname: Maciej
  surname: KOZŁOWSKI
  fullname: KOZŁOWSKI, Maciej
– sequence: 2
  givenname: Andrzej
  surname: CZEREPICKI
  fullname: CZEREPICKI, Andrzej
– sequence: 3
  givenname: Piotr
  surname: DZIDO
  fullname: DZIDO, Piotr
BookMark eNo9kLtOwzAYRi1UJErpzugXcPAtiT1GbtpGOPmrNKFsVq4SFbRV0oW3J1zEt3xnOsO5R7PT-dQh9Miox6ny1dP1MgGXHtMe86i8QXMuKCUqYK8zNGdKB4T6OrhDy3E80mlSKyXCOTpG2EZZjIs8Ms9JtsGR3UCeFNsUryHHFg7EQLori6hIIIss2cEhznGamBwMZEUO1sY5-ccVjsoCMkih3OOXeJsYG-MUVrHdP6Dbvnofu-XfL1C5jguzJRY2iZnUDRfqSjjnugoan_VhQBsW-koENKgaEbJWtLRWTPKKdbqVsuaScsVr3uq-b1rR8davxQLRX28znMdx6Hp3Gd4-quHTMep-crnrxX3nckw75qgUX75pVwY
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.20858/tp.2024.19.1.04
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2300-861X
EndPage 56
ExternalDocumentID 10_20858_tp_2024_19_1_04
GroupedDBID 123
29Q
2WC
AAYXX
ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
CITATION
E3Z
EAD
EAP
EMK
EOJEC
EPL
ESX
GROUPED_DOAJ
IAO
KQ8
OBODZ
OK1
OVT
QF4
QN7
RNS
TH9
TUS
Y2W
ID FETCH-LOGICAL-c238t-2229a6c51f760c17583606ac371d3d0b8142a1e9d44b240282b2d9ffcd3e2d5b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001293511100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1896-0596
IngestDate Sat Nov 29 04:38:52 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c238t-2229a6c51f760c17583606ac371d3d0b8142a1e9d44b240282b2d9ffcd3e2d5b3
OpenAccessLink https://doi.org/10.20858/tp.2024.19.1.04
PageCount 14
ParticipantIDs crossref_primary_10_20858_tp_2024_19_1_04
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Problemy Transportu
PublicationYear 2024
SSID ssj0000498837
Score 2.257009
Snippet At work, three tasks were presented: road lane detection and trajectory estimation, environment mapping, and the application of a neural network. All these...
SourceID crossref
SourceType Index Database
StartPage 43
Title A LANE TRACKING ALGORITHM FOR LOW-COMPUTATIONAL-POWER MICROCONTROLLER-CONTROLLED AUTONOMOUS VEHICLE MODELS
Volume 19
WOSCitedRecordID wos001293511100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2300-861X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498837
  issn: 1896-0596
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj5swELWibaX2UvVTbXdb-dAeKuQ0fAVzRIQ2aEkcEdKsckFgQNqoykZZdrXtb-mP7RgToKkidQ-9IGSQBbzHeMb2vEHoA1CEc83QSZIPEgLWLyMpzSzCrWEBKNNCM5Oq2IQ1ndKLC3vW6_3a58Lcfrc2G3p3Z2__K9TQBmCL1Nl7wN10Cg1wDqDDEWCH4z8B7yiBM_WUKHTcczEV5QRfWehH44kCAZ8SsCVx2WS2iGoZXDJjSy9UAI2QuWwahSwIvJA0pyMF3ksUO2SLufLNG_tu4CkTNvKCedexncnCND9atfSbxpaz1UfXBJeVLefnvkwQAouybpY_Vl7ozXxXXhM7LH-2F0crf8QqV_fyqtx15yg0ozNHIc0qFVudTbsWva7aIPYZEDqsCua0ttj-i3PSsEotp3qIllLkh8ZfVBsVGQ2lkCHVjL5q99W-rG38p872wfjX7EqEeKjqIy63seghVu1YjYXY7APNMm3aCdjXMraitBJlbV5ProNXnXw-eIyO39NxYKKn6EkdeWBHMuYZ6uWb5-jRPjH9-gVaO1gwB--ZgxvmYGAOPsIcfJw5uGUOrpmDJXNeosUXL3LHpC7FQTj4dCURVd-TITfVwhoOOLicIvdnmHAdfm49G6RUNbREze3MMFKxXke1VMvsouCZnmuZmeqv0MnmapO_RtgWZSDVnPLCMIwCoqYsSy2LpypN8xwGnDfo0_5DxVupuBIfQ-btPe49RY9bap6hk3J3k79DD_lteXm9e19B-xv4u2Pd
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+LANE+TRACKING+ALGORITHM+FOR+LOW-COMPUTATIONAL-POWER+MICROCONTROLLER-CONTROLLED+AUTONOMOUS+VEHICLE+MODELS&rft.jtitle=Problemy+Transportu&rft.au=KOZ%C5%81OWSKI%2C+Maciej&rft.au=CZEREPICKI%2C+Andrzej&rft.au=DZIDO%2C+Piotr&rft.date=2024-01-01&rft.issn=1896-0596&rft.eissn=2300-861X&rft.volume=19&rft.issue=1&rft.spage=43&rft.epage=56&rft_id=info:doi/10.20858%2Ftp.2024.19.1.04&rft.externalDBID=n%2Fa&rft.externalDocID=10_20858_tp_2024_19_1_04
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1896-0596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1896-0596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1896-0596&client=summon