Completion of Global Ionospheric TEC Maps Using a Deep Learning Approach

Total electron content (TEC) is an important parameter that describes the features of the ionosphere. The International GNSS Service (IGS) has been providing IGS Global TEC maps using analysis algorithms. However, collecting the completed data is difficult because of the lack of ground receivers, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics Jg. 127; H. 5
Hauptverfasser: Yang, Ding, Fang, Hanxian, Liu, Zhendi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington Blackwell Publishing Ltd 01.05.2022
Schlagworte:
ISSN:2169-9380, 2169-9402
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Total electron content (TEC) is an important parameter that describes the features of the ionosphere. The International GNSS Service (IGS) has been providing IGS Global TEC maps using analysis algorithms. However, collecting the completed data is difficult because of the lack of ground receivers, and the processing to obtain the completed IGS TEC maps is time‐consuming. The fast development of deep learning brings an effective way to solve these problems. Among the various deep learning methods, the generative adversarial network (GAN) exhibits great potential in recovering missing data. In this paper, we fill the missing data of the global IGS TEC maps using pix2pixhd, which is a novel deep learning method based on GAN. Differing from the traditional GAN, pix2pixhd has two generators and three discriminators. The network enhances the ability of our model to complete images with large‐scale missing areas. The result demonstrates that our model generates the ionospheric peak structures at low latitudes well, while behaving badly (the average correlation coefficient: 0.6857) around the edge of the ionospheric peak region. Comparing different scales of the missing data areas, our model has the best performance with 0%–15% missing data. With the large scale of missing data areas (30%–45% and >45%), the performance is still satisfactory. In addition, the completion effect of our model is slightly affected by geomagnetic and solar activity. Our work demonstrates a new possibility for the application of deep learning to a broader field of geosciences, particularly for problems of missing observational data. Key Points We make a model to complete International GNSS Service total electron content maps using pix2pixhd based on generative adversarial network The completion effect of our model with the large scale of missing data areas is still satisfactory Our model generates the ionospheric peak structures well while it behaves slightly badly around the edge of ionospheric peak region
AbstractList Total electron content (TEC) is an important parameter that describes the features of the ionosphere. The International GNSS Service (IGS) has been providing IGS Global TEC maps using analysis algorithms. However, collecting the completed data is difficult because of the lack of ground receivers, and the processing to obtain the completed IGS TEC maps is time‐consuming. The fast development of deep learning brings an effective way to solve these problems. Among the various deep learning methods, the generative adversarial network (GAN) exhibits great potential in recovering missing data. In this paper, we fill the missing data of the global IGS TEC maps using pix2pixhd, which is a novel deep learning method based on GAN. Differing from the traditional GAN, pix2pixhd has two generators and three discriminators. The network enhances the ability of our model to complete images with large‐scale missing areas. The result demonstrates that our model generates the ionospheric peak structures at low latitudes well, while behaving badly (the average correlation coefficient: 0.6857) around the edge of the ionospheric peak region. Comparing different scales of the missing data areas, our model has the best performance with 0%–15% missing data. With the large scale of missing data areas (30%–45% and >45%), the performance is still satisfactory. In addition, the completion effect of our model is slightly affected by geomagnetic and solar activity. Our work demonstrates a new possibility for the application of deep learning to a broader field of geosciences, particularly for problems of missing observational data.
Total electron content (TEC) is an important parameter that describes the features of the ionosphere. The International GNSS Service (IGS) has been providing IGS Global TEC maps using analysis algorithms. However, collecting the completed data is difficult because of the lack of ground receivers, and the processing to obtain the completed IGS TEC maps is time‐consuming. The fast development of deep learning brings an effective way to solve these problems. Among the various deep learning methods, the generative adversarial network (GAN) exhibits great potential in recovering missing data. In this paper, we fill the missing data of the global IGS TEC maps using pix2pixhd, which is a novel deep learning method based on GAN. Differing from the traditional GAN, pix2pixhd has two generators and three discriminators. The network enhances the ability of our model to complete images with large‐scale missing areas. The result demonstrates that our model generates the ionospheric peak structures at low latitudes well, while behaving badly (the average correlation coefficient: 0.6857) around the edge of the ionospheric peak region. Comparing different scales of the missing data areas, our model has the best performance with 0%–15% missing data. With the large scale of missing data areas (30%–45% and >45%), the performance is still satisfactory. In addition, the completion effect of our model is slightly affected by geomagnetic and solar activity. Our work demonstrates a new possibility for the application of deep learning to a broader field of geosciences, particularly for problems of missing observational data. We make a model to complete International GNSS Service total electron content maps using pix2pixhd based on generative adversarial network The completion effect of our model with the large scale of missing data areas is still satisfactory Our model generates the ionospheric peak structures well while it behaves slightly badly around the edge of ionospheric peak region
Total electron content (TEC) is an important parameter that describes the features of the ionosphere. The International GNSS Service (IGS) has been providing IGS Global TEC maps using analysis algorithms. However, collecting the completed data is difficult because of the lack of ground receivers, and the processing to obtain the completed IGS TEC maps is time‐consuming. The fast development of deep learning brings an effective way to solve these problems. Among the various deep learning methods, the generative adversarial network (GAN) exhibits great potential in recovering missing data. In this paper, we fill the missing data of the global IGS TEC maps using pix2pixhd, which is a novel deep learning method based on GAN. Differing from the traditional GAN, pix2pixhd has two generators and three discriminators. The network enhances the ability of our model to complete images with large‐scale missing areas. The result demonstrates that our model generates the ionospheric peak structures at low latitudes well, while behaving badly (the average correlation coefficient: 0.6857) around the edge of the ionospheric peak region. Comparing different scales of the missing data areas, our model has the best performance with 0%–15% missing data. With the large scale of missing data areas (30%–45% and >45%), the performance is still satisfactory. In addition, the completion effect of our model is slightly affected by geomagnetic and solar activity. Our work demonstrates a new possibility for the application of deep learning to a broader field of geosciences, particularly for problems of missing observational data. Key Points We make a model to complete International GNSS Service total electron content maps using pix2pixhd based on generative adversarial network The completion effect of our model with the large scale of missing data areas is still satisfactory Our model generates the ionospheric peak structures well while it behaves slightly badly around the edge of ionospheric peak region
Author Yang, Ding
Fang, Hanxian
Liu, Zhendi
Author_xml – sequence: 1
  givenname: Ding
  surname: Yang
  fullname: Yang, Ding
  organization: National University of Defense Technology
– sequence: 2
  givenname: Hanxian
  orcidid: 0000-0002-9866-2293
  surname: Fang
  fullname: Fang, Hanxian
  email: fanghx@hit.edu.cn
  organization: National University of Defense Technology
– sequence: 3
  givenname: Zhendi
  orcidid: 0000-0001-6705-137X
  surname: Liu
  fullname: Liu, Zhendi
  organization: National University of Defense Technology
BookMark eNp9kF1LwzAUhoNMcM7d-QMC3lpNTtImuSx17oOJINt1SWPqOrqmJh2yf2_HFETQc3M-eN5zOO8lGjSusQhdU3JHCah7IACLlDDCIDlDQ6CJihQnMPiumSQXaBzClvQh-xGNh2iWuV1b265yDXYlntau0DWeu8aFdmN9ZfBqkuEn3Qa8DlXzhjV-sLbFS6t9c-zTtvVOm80VOi91Hez4K4_Q-nGyymbR8nk6z9JlZIAJFRkpuGaJkHEcF0wClIInliuZCGtkWRSqoBS4lSohJTHKKm4IZ7GRREhSvLIRujnt7c--723o8q3b-6Y_mUMiAPrHKO8pOFHGuxC8LXNTdfr4Zed1VeeU5EfT8p-m9aLbX6LWVzvtD3_h7IR_VLU9_Mvmi-lLGguqFPsEwbN55A
CitedBy_id crossref_primary_10_3390_universe8080405
crossref_primary_10_3390_rs17010124
crossref_primary_10_3390_rs16152701
crossref_primary_10_3390_atmos15111319
crossref_primary_10_1007_s10291_023_01413_9
crossref_primary_10_1007_s10291_025_01858_0
crossref_primary_10_1029_2024SW004018
crossref_primary_10_1029_2024SW004237
crossref_primary_10_1109_TGRS_2024_3511083
crossref_primary_10_1007_s10291_025_01943_4
crossref_primary_10_1007_s10509_023_04237_8
crossref_primary_10_1109_JSTARS_2025_3591103
crossref_primary_10_1029_2022SW003299
crossref_primary_10_1029_2024JH000555
crossref_primary_10_1109_JSTARS_2024_3349392
Cites_doi 10.1029/2019SW002411
10.1029/2020SW002600
10.1016/j.asr.2021.05.027
10.1016/S1364-6826(99)00054-1
10.1007/s11214-017-0449-2
10.1029/2010JA016269
10.48550/arXiv.1511.06434
10.1029/2006SW000294
10.1029/2002RS002859
10.1029/2000RS002393
10.1029/2012JA017968
10.1016/j.asr.2018.03.043
10.1029/97RS02707
10.1016/j.jastp.2005.07.017
10.1016/j.asr.2021.03.021
10.1029/2020JA028418
10.1002/2015ja021733
10.1029/97RS00431
10.1142/S1793351X16500045
10.1029/2018ja026167
10.1007/s00190-008-0266-1
10.1029/rg016i002p00177
10.1029/2020SW002639
10.1016/j.asr.2020.09.033
10.1002/2017GL076054
10.1109/ICMLC.2017.8108945
10.1016/j.asr.2019.08.014
10.1029/92GL00401
10.21236/ADA251589
10.1049/cp:19970323
10.3390/atmos11040316
10.1109/CVPR.2018.00917
10.1029/2019SW002390
10.1029/JA091iA11p12041
10.1029/2021SW002810
10.1029/GL015i012p01325
10.1175/BAMS-89-3-313
10.1109/CVPR.2017.632
10.1029/GM125p0011
10.1029/ja092ia07p07744
10.1002/2017JA024835
ContentType Journal Article
Copyright 2022. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2022. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.1029/2022JA030326
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2169-9402
EndPage n/a
ExternalDocumentID 10_1029_2022JA030326
JGRA57199
Genre article
GroupedDBID 05W
0R~
1OB
1OC
24P
31~
33P
3V.
50Y
52M
702
8-1
88I
8FE
8FG
8FH
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARAPS
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
D0L
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PCBAR
PQQKQ
PROAC
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
AAYXX
AEYWJ
AFFHD
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
PQGLB
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c2379-c874a3678555b3822f746e49867ec8fbb9b1124e8960f0c9e94c0435c80780bd3
IEDL.DBID WIN
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000801861700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-9380
IngestDate Wed Aug 13 07:21:56 EDT 2025
Tue Nov 18 22:21:59 EST 2025
Sat Nov 29 03:21:05 EST 2025
Wed Jan 22 16:24:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2379-c874a3678555b3822f746e49867ec8fbb9b1124e8960f0c9e94c0435c80780bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6705-137X
0000-0002-9866-2293
PQID 2672281614
PQPubID 54732
PageCount 12
ParticipantIDs proquest_journals_2672281614
crossref_citationtrail_10_1029_2022JA030326
crossref_primary_10_1029_2022JA030326
wiley_primary_10_1029_2022JA030326_JGRA57199
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Space physics
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 116
2021; 68
2002; 37
1986; 91
2017; 2
2021; 3
2021; 126
2009; 83
2015; 521
1987; 92
2017; 44
1988; 15
1998
2019; 124
1992; 19
2016; 121
1978; 16
1997; 2
2018; 62
2020; 11
1991
1999; 61
2001; 125
2005; 67
2020; 19
2020; 18
1999
2019; 64
1997; 32
2004; 39
2018; 214
2021; 19
2018
2017
2007; 5
2015
2011; 26
2017; 122
2012; 89
2012; 117
1998; 33
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Schaer S. (e_1_2_9_34_1) 1999
e_1_2_9_9_1
Feltens J. (e_1_2_9_10_1) 1998
e_1_2_9_26_1
e_1_2_9_25_1
Xu B. (e_1_2_9_41_1) 2011; 26
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 19
  start-page: 601
  issue: 6
  year: 1992
  end-page: 604
  article-title: A thermosphere/ionosphere general circulation model with coupled electrodynamics
  publication-title: Geophysical Research Letters
– start-page: 3
  year: 1998
  end-page: 5
– volume: 2
  start-page: 27
  year: 1997
  end-page: 30
– volume: 18
  issue: 5
  year: 2020
  article-title: TEC map completion using DCGAN and Poisson blending
  publication-title: Space Weather
– volume: 19
  issue: 1
  year: 2020
  article-title: One day forecasting of global TEC using a novel deep learning model
  publication-title: Social Work
– volume: 214
  issue: 1
  year: 2018
  article-title: The ionospheric connection explorer mission: Mission goals and design
  publication-title: Space Science Reviews
– volume: 89
  start-page: 313
  issue: 3
  year: 2012
  end-page: 333
  article-title: The COSMIC/FORMOSAT‐3 mission: Early results
  publication-title: Bulletin of the American Meteorological Society
– year: 1999
  article-title: Mapping and predicting the Earth's ionosphere using the global positioning system
  publication-title: Geod Geophys. arb. schweiz
– volume: 44
  issue: 24
  year: 2017
  article-title: Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse
  publication-title: Geophysical Research Letters
– volume: 116
  issue: A4
  year: 2011
  article-title: Regional GPS TEC modeling; Attempted spatial and temporal extrapolation of TEC using neural networks
  publication-title: Journal of Geophysical Research
– volume: 67
  start-page: 1598
  issue: 16
  year: 2005
  end-page: 1609
  article-title: Improvement of global ionospheric VTEC maps by using Kriging interpolation technique
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 15
  start-page: 1325
  issue: 12
  year: 1988
  end-page: 1328
  article-title: A coupled thermosphere/ionosphere general circulation model
  publication-title: Geophysical Research Letters
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 439
  article-title: Deep learning
  publication-title: Nature
– volume: 62
  start-page: 745
  issue: 4
  year: 2018
  end-page: 759
  article-title: Predicting TEC in China based on the neural networks optimized by genetic algorithm
  publication-title: Advances in Space Research
– volume: 32
  start-page: 1081
  issue: 3
  year: 1997
  end-page: 1089
  article-title: Neural network modeling of the ionospheric electron content at global scale using GPS data
  publication-title: Radio Science
– start-page: 5967
  year: 2017
  end-page: 5976
  article-title: Image‐to‐Image translation with conditional adversarial networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 64
  start-page: 2269
  issue: 11
  year: 2019
  end-page: 2279
  article-title: foF2 variability at a southern low‐latitude station and the performance of IRI‐2016 model during ascending phase of solar cycle‐24
  publication-title: Advances in Space Research
– volume: 11
  issue: 4
  year: 2020
  article-title: The comparison of predicting storm‐time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq
  publication-title: Atmosphere
– volume: 124
  start-page: 790
  issue: 1
  year: 2019
  end-page: 800
  article-title: Improvement of a deep learning algorithm for total electron content maps: Image completion
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 5
  issue: 12
  year: 2007
  article-title: Development of a new three‐dimensional mathematical ionosphere model at European space agency/European space operations centre
  publication-title: Space Weather
– volume: 26
  start-page: 699
  issue: 4
  year: 2011
  end-page: 703
  article-title: Maximum useable frequency adaptive prediction
  publication-title: Chinese Journal of Radio Science
– volume: 61
  start-page: 1237
  issue: 16
  year: 1999
  end-page: 1247
  article-title: New approaches in global ionospheric determination using ground GPS data
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 125
  start-page: 11
  year: 2001
  end-page: 22
  article-title: Space weather effects on technologies
  publication-title: Geophysical monograph
– volume: 68
  start-page: 2218
  issue: 5
  year: 2021
  end-page: 2232
  article-title: Modeling the global ionospheric electron densities based on the EOF decomposition of the ionospheric radio occultation observation
  publication-title: Advances in Space Research
– volume: 18
  issue: 5
  year: 2020
  article-title: Improvement of IRI global TEC maps by deep learning based on conditional generative adversarial networks
  publication-title: Space Weather
– volume: 33
  start-page: 565
  issue: 3
  year: 1998
  end-page: 582
  article-title: A global mapping technique for GPS‐derived ionospheric total electron content measurements
  publication-title: Radio Science
– volume: 19
  issue: 11
  year: 2021
  article-title: TEC map completion through a deep learning model: SNP‐GAN
  publication-title: Space Weather
– volume: 68
  start-page: 1377
  issue: 3
  year: 2021
  end-page: 1389
  article-title: Ionospheric TEC forecast model based on support vector machine with GPU acceleration in the China region
  publication-title: Advances in Space Research
– volume: 92
  start-page: 7744
  issue: A7
  year: 1987
  end-page: 7748
  article-title: Interactions between neutral thermospheric composition and the polar ionosphere using a coupled ionosphere‐thermosphere model
  publication-title: Journal of Geophysical Research
– year: 2015
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: Computer Science
– year: 1991
– volume: 16
  start-page: 177
  issue: 2
  year: 1978
  end-page: 181
  article-title: Goals and status of the international reference ionosphere
  publication-title: Reviews of Geophysics
– volume: 117
  start-page: 667
  issue: A9
  year: 2012
  end-page: 672
  article-title: Global 3‐D ionospheric electron density reanalysis based on multisource data assimilation
  publication-title: Journal of Geophysical Research
– volume: 19
  issue: 6
  year: 2021
  article-title: Data‐driven forecasting of low‐latitude ionospheric total electron content using the random forest and LSTM machine learning methods
  publication-title: Space Weather
– volume: 39
  start-page: 1
  issue: 1
  year: 2004
  end-page: 17
  article-title: Data assimilation of ground GPS total electron content into a physics‐based ionospheric model by use of the Kalman filter
  publication-title: Radio Science
– volume: 83
  start-page: 263
  issue: 3–4
  year: 2009
  end-page: 275
  article-title: The IGS VTEC maps: A reliable source of ionospheric information since 1998
  publication-title: Journal of Geodesy
– volume: 91
  start-page: 12041
  issue: A11
  year: 1986
  end-page: 12054
  article-title: Theoretical study of the electron temperature in the high‐latitude ionosphere for solar maximum and winter conditions
  publication-title: Journal of Geophysical Research
– start-page: 8798
  year: 2018
  end-page: 8807
– volume: 121
  start-page: 2423
  issue: 3
  year: 2016
  end-page: 2430
  article-title: A unified approach to inner magnetospheric state prediction
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 122
  start-page: 12586
  issue: 12
  year: 2017
  end-page: 12590
  article-title: Ushering in a new Frontier in geospace through data science
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 2
  start-page: 340
  year: 2017
  end-page: 344
– volume: 37
  start-page: 1
  issue: 3
  year: 2002
  end-page: 13
  article-title: Global ionospheric propagation model (GIM): A propagation model for scintillations of transmitted signals
  publication-title: Radio Science
– volume: 126
  issue: 3
  year: 2021
  article-title: The application of a deep convolutional generative adversarial network on completing global TEC maps
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 3
  start-page: 2919
  issue: 7
  year: 2021
  end-page: 2929
  article-title: Prediction of total electron content (TEC) using neural network over anomaly crest region Bhopal
  publication-title: Advances in Space Research
– ident: e_1_2_9_19_1
  doi: 10.1029/2019SW002411
– ident: e_1_2_9_22_1
  doi: 10.1029/2020SW002600
– ident: e_1_2_9_33_1
  doi: 10.1016/j.asr.2021.05.027
– ident: e_1_2_9_15_1
  doi: 10.1016/S1364-6826(99)00054-1
– ident: e_1_2_9_17_1
  doi: 10.1007/s11214-017-0449-2
– ident: e_1_2_9_12_1
  doi: 10.1029/2010JA016269
– ident: e_1_2_9_28_1
  doi: 10.48550/arXiv.1511.06434
– volume: 26
  start-page: 699
  issue: 4
  year: 2011
  ident: e_1_2_9_41_1
  article-title: Maximum useable frequency adaptive prediction
  publication-title: Chinese Journal of Radio Science
– ident: e_1_2_9_9_1
  doi: 10.1029/2006SW000294
– ident: e_1_2_9_13_1
  doi: 10.1029/2002RS002859
– ident: e_1_2_9_3_1
  doi: 10.1029/2000RS002393
– ident: e_1_2_9_42_1
  doi: 10.1029/2012JA017968
– ident: e_1_2_9_36_1
  doi: 10.1016/j.asr.2018.03.043
– ident: e_1_2_9_23_1
  doi: 10.1029/97RS02707
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jastp.2005.07.017
– ident: e_1_2_9_40_1
  doi: 10.1016/j.asr.2021.03.021
– ident: e_1_2_9_6_1
  doi: 10.1029/2020JA028418
– ident: e_1_2_9_4_1
  doi: 10.1002/2015ja021733
– year: 1999
  ident: e_1_2_9_34_1
  article-title: Mapping and predicting the Earth's ionosphere using the global positioning system
  publication-title: Geod Geophys. arb. schweiz
– ident: e_1_2_9_14_1
  doi: 10.1029/97RS00431
– ident: e_1_2_9_21_1
  doi: 10.1142/S1793351X16500045
– ident: e_1_2_9_7_1
  doi: 10.1029/2018ja026167
– ident: e_1_2_9_16_1
  doi: 10.1007/s00190-008-0266-1
– ident: e_1_2_9_30_1
  doi: 10.1029/rg016i002p00177
– ident: e_1_2_9_43_1
  doi: 10.1029/2020SW002639
– ident: e_1_2_9_44_1
  doi: 10.1016/j.asr.2020.09.033
– start-page: 3
  volume-title: Proceeding of the IGS AC workshop
  year: 1998
  ident: e_1_2_9_10_1
– ident: e_1_2_9_45_1
  doi: 10.1002/2017GL076054
– ident: e_1_2_9_37_1
  doi: 10.1109/ICMLC.2017.8108945
– ident: e_1_2_9_29_1
  doi: 10.1016/j.asr.2019.08.014
– ident: e_1_2_9_31_1
  doi: 10.1029/92GL00401
– ident: e_1_2_9_8_1
  doi: 10.21236/ADA251589
– ident: e_1_2_9_5_1
  doi: 10.1049/cp:19970323
– ident: e_1_2_9_38_1
  doi: 10.3390/atmos11040316
– ident: e_1_2_9_39_1
  doi: 10.1109/CVPR.2018.00917
– ident: e_1_2_9_26_1
  doi: 10.1029/2019SW002390
– ident: e_1_2_9_35_1
  doi: 10.1029/JA091iA11p12041
– ident: e_1_2_9_27_1
  doi: 10.1029/2021SW002810
– ident: e_1_2_9_32_1
  doi: 10.1029/GL015i012p01325
– ident: e_1_2_9_2_1
  doi: 10.1175/BAMS-89-3-313
– ident: e_1_2_9_18_1
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_9_20_1
  doi: 10.1029/GM125p0011
– ident: e_1_2_9_11_1
  doi: 10.1029/ja092ia07p07744
– ident: e_1_2_9_24_1
  doi: 10.1002/2017JA024835
SSID ssj0000816915
ssib026412159
ssib023166628
ssib039538630
ssib041905647
Score 2.4765224
Snippet Total electron content (TEC) is an important parameter that describes the features of the ionosphere. The International GNSS Service (IGS) has been providing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Correlation coefficient
Correlation coefficients
Deep learning
Discriminators
Generative adversarial networks
Ionosphere
Ionospheric models
Machine learning
Missing data
Modelling
Solar activity
Teaching methods
Total Electron Content
Title Completion of Global Ionospheric TEC Maps Using a Deep Learning Approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022JA030326
https://www.proquest.com/docview/2672281614
Volume 127
WOSCitedRecordID wos000801861700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2169-9402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816915
  issn: 2169-9380
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2169-9402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816915
  issn: 2169-9380
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iHrz4W5xOyUG9aDFp06bvWDbnD3SIbOitNFkigq5jnYL_vUka5zwoiLdA07QkL3lfXl6-D6EDogUnKmZBAkkcMEpEUFApAg0JHRRUxJoIJzbBu9304QFufcDN3oWp-SGmATc7M9x6bSd4ISpPNmA5Ms2uPbzKjI0aAGKWYMqoFTC4v-xOQyxWUwKchkFoCgFEKfGp76aF09n3vzulL6Q5i1edw-ms_PdXV9Gyh5o4q21jDc2p4Traziob_C5f3vERduU6tlFtoAu7Nlgu7nKIS41rNQB8WVo2cXtLUOLeWQvfFKMKu0QDXOC2UiPsKVofceb5yTdRv3PWa10EXmghkGHEIZApZ0Vk3FYcxyIykEFzligGacKVTLUQIAwsYyo12x1NJChgkhicJS1ZPRGDaAvND8uh2kZYgRlhGgvOAYzz5yCl3cLIUOsBHQjSQMefPZ1Lz0JuxTCec3caHkI-21kNdDitParZN36o1_wctNzPwSo3Xw9DYwKUNdCJG55f28ivzu-ymFOAnb9V30VL9kGdBdlE85Pxq9pDi_Jt8lSN99FC-67Tv953pvkBPAfcuQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xkpYLsA9EWWB9YLksEU7ixJljBIWWR4VWRcstil0bIUFTNQWJf7-243a7B5AQNx9GdmSPPZ8n4-8D2KdacKoSFqSYJgELqQjKUIpAYxoOylAkmgonNsF7vez2Fq-9zql9C9PwQ8wSbnZnuPPabnCbkPZsA5Yk01zbo_PcOKlBIIuwzAzWsNoNf7q9WZLFqkqgUzGITCPAOKO--N10cTTfwf9h6R_WnEesLuScrn_4YzdgzaNNkjfu8RkW1PALbOW1zX9Xjy_kgLh2k96ov0LHHg-WjrsakkqTRhCAdCtLKG4fCkrSbx-Tq3JUE1drQEpyotSIeJbWO5J7ivJvcHPa7h93Aq-1EMgo5hjIjLMyNpErSRIRG9SgOUsVwyzlSmZaCBQGmTGVmRuPphIVMkkN1JKWr56KQbwJS8NqqLaAKDSLHCaCc0QT_zlKaW8xMtJ6EA4EbcGv6VQX0hORWz2Mh8L9EI-wmJ-sFvycWY8aAo5X7Hamq1b4bVgXZvQoMj4QshYcuvV5s4_i_Ox3nvAQcft95j_gU6d_dVlcdnsX32HVGjVFkTuwNBk_qV1Ykc-T-3q85_zzLzgI3zc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1yfOagXLaZt2nSOxXV9LyIK3kqTJiLodrEq-O9N2riuBwXxlsMwKZlJ8mWafB_ANtWCUxUxL8Y48phPhZf7UngaY7_IfRFpKmqxCd7rJXd3eOV0Tu1bmIYfYlhwszOjXq_tBFeDQju2AUuSaY7twVlqktQgkHGYYFZHpgUTnevu7cWwzGJ1JbDWMQhMw8Mwoe76u3FyMOri-8b0hTZHMWu96XRn__25czDj8CZJmwSZhzHVX4CVtLIV8PLpneySut0UOKpFOLELhCXkLvuk1KSRBCCnpaUUt08FJbk5OiSX-aAi9W0DkpOOUgPieFrvSepIypfgtnt0c3jiObUFTwYhR08mnOWh2buiKBKhwQ2as1gxTGKuZKKFQGGwGVOJOfNoKlEhk9SALWkZ66kowmVo9cu-WgGi0ITZjwTniAYBcJTSnmNkoHXhF4K2Ye9zqDPpqMitIsZjVv8SDzAbHaw27AytBw0Fxw92659Ry9xErDLTexCYHPBZG_br-PzqIzs7vk4j7iOu_s18C6auOt3s4rR3vgbT1qa5FbkOrZfnV7UBk_Lt5aF63nQJ-gGRQd_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Completion+of+Global+Ionospheric+TEC+Maps+Using+a+Deep+Learning+Approach&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Yang%2C+Ding&rft.au=Fang%2C+Hanxian&rft.au=Liu%2C+Zhendi&rft.date=2022-05-01&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=127&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022JA030326&rft.externalDBID=10.1029%252F2022JA030326&rft.externalDocID=JGRA57199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9380&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9380&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9380&client=summon