Digital tools for analyzing nondiffeomorphic shapes

The Euler Characteristic Transform (ECT) of Turner et al. provides a way to statistically analyze nondiffeomorphic shapes without relying on landmarks. In applications, this transform is typically approximated by a discrete set of directions and heights, which results in potential loss of informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 122; H. 46; S. e2426574122
Hauptverfasser: Kirveslahti, Henry, Wang, Xiaohan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 18.11.2025
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Euler Characteristic Transform (ECT) of Turner et al. provides a way to statistically analyze nondiffeomorphic shapes without relying on landmarks. In applications, this transform is typically approximated by a discrete set of directions and heights, which results in potential loss of information, as well as problems in inverting the transform. In this work, we present a fully digital algorithm for computing the ECT exactly, up to computer precision; we introduce the Ectoplasm package that implements this algorithm, and we demonstrate that this is fast and convenient enough to compute distances in real-life datasets. We also discuss the implications of this algorithm to related problems in shape analysis, such as shape inversion and subshape selection. We also show a proof-of-concept application for solving the shape alignment problem with gradient descent and adaptive grid search, which are two powerful methods, neither of which is possible using the discretized transform.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1091-6490
1091-6490
DOI:10.1073/pnas.2426574122