COMPARISON OF POISSON REGRESSION AND GENERALIZED POISSON REGRESSION IN MODELING THE NUMBER OF INFANT MORTALITY IN WEST JAVA 2022

In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and perinatal care. West Java Province consistently ranks third nationally in terms of infant mortality in 2020 and 2021. This study analyzes the factor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BAREKENG: Jurnal Ilmu Matematika dan Terapan Ročník 19; číslo 1; s. 35 - 50
Hlavní autori: Saifudin, Toha, Salsabila, Fatiha Nadia, Fitriani, Mubadi'ul, Kholidiyah, Azizatul, Auliyah, Nina, Ariani, Fildzah Tri Januar, Suliyanto, Suliyanto
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Universitas Pattimura 13.01.2025
Predmet:
ISSN:1978-7227, 2615-3017
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and perinatal care. West Java Province consistently ranks third nationally in terms of infant mortality in 2020 and 2021. This study analyzes the factors influencing infant mortality in West Java in 2022 using secondary data from the 2022 West Java Provincial Health Profile. The response variable is the number of infant deaths, while the predictor variables include the percentage of K-4 coverage (X1), high-risk pregnancy (X2), family with PHBS (X3), exclusive breastfeeding (X4), and complete immunization coverage (X5). Given the count-based nature of the data, Poisson regression was used, which assumes equidispersion where the variance is equal to the mean. However, the analysis found overdispersion, where the variance significantly exceeds the mean, making Poisson regression unsuitable. To address this, Generalized Poisson Regression (GPR) was applied, as GPR introduces a dispersion parameter that accounts for overdispersion, thus better fitting the data. The initial Poisson regression results showed that X1, X2, X4, and X5 significantly influenced infant mortality, while the GPR model showed that only X2 and X3 were significant factors, with a dispersion parameter of -3.116. The GPR model shows that every additional one high-risk pregnancy increases the infant mortality rate by 1.00006, while an increase of one unit of clean and healthy living practices reduces the mortality rate by 2.66%. Model evaluation using AIC, BIC, and RMSE confirmed that the GPR model better described the relationship between predictor variables and infant mortality rates compared to Poisson regression. These findings emphasize the need to use GPR to model cases with overdispersion in count data, so as to provide more reliable information for policy and intervention strategies.
AbstractList In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and perinatal care. West Java Province consistently ranks third nationally in terms of infant mortality in 2020 and 2021. This study analyzes the factors influencing infant mortality in West Java in 2022 using secondary data from the 2022 West Java Provincial Health Profile. The response variable is the number of infant deaths, while the predictor variables include the percentage of K-4 coverage (X1), high-risk pregnancy (X2), family with PHBS (X3), exclusive breastfeeding (X4), and complete immunization coverage (X5). Given the count-based nature of the data, Poisson regression was used, which assumes equidispersion where the variance is equal to the mean. However, the analysis found overdispersion, where the variance significantly exceeds the mean, making Poisson regression unsuitable. To address this, Generalized Poisson Regression (GPR) was applied, as GPR introduces a dispersion parameter that accounts for overdispersion, thus better fitting the data. The initial Poisson regression results showed that X1, X2, X4, and X5 significantly influenced infant mortality, while the GPR model showed that only X2 and X3 were significant factors, with a dispersion parameter of -3.116. The GPR model shows that every additional one high-risk pregnancy increases the infant mortality rate by 1.00006, while an increase of one unit of clean and healthy living practices reduces the mortality rate by 2.66%. Model evaluation using AIC, BIC, and RMSE confirmed that the GPR model better described the relationship between predictor variables and infant mortality rates compared to Poisson regression. These findings emphasize the need to use GPR to model cases with overdispersion in count data, so as to provide more reliable information for policy and intervention strategies.
Author Kholidiyah, Azizatul
Salsabila, Fatiha Nadia
Saifudin, Toha
Fitriani, Mubadi'ul
Ariani, Fildzah Tri Januar
Suliyanto, Suliyanto
Auliyah, Nina
Author_xml – sequence: 1
  givenname: Toha
  orcidid: 0000-0002-6716-3096
  surname: Saifudin
  fullname: Saifudin, Toha
– sequence: 2
  givenname: Fatiha Nadia
  orcidid: 0009-0001-5002-3169
  surname: Salsabila
  fullname: Salsabila, Fatiha Nadia
– sequence: 3
  givenname: Mubadi'ul
  orcidid: 0009-0009-5754-7051
  surname: Fitriani
  fullname: Fitriani, Mubadi'ul
– sequence: 4
  givenname: Azizatul
  orcidid: 0009-0008-9680-9387
  surname: Kholidiyah
  fullname: Kholidiyah, Azizatul
– sequence: 5
  givenname: Nina
  orcidid: 0009-0009-2542-1569
  surname: Auliyah
  fullname: Auliyah, Nina
– sequence: 6
  givenname: Fildzah Tri Januar
  orcidid: 0009-0006-3404-8557
  surname: Ariani
  fullname: Ariani, Fildzah Tri Januar
– sequence: 7
  givenname: Suliyanto
  orcidid: 0009-0002-0850-7888
  surname: Suliyanto
  fullname: Suliyanto, Suliyanto
BookMark eNptkdFOgzAYhRszE-fcO-ADoC2lLb3ErWM1DBZgGr0hBdoFnWMBY-Kdjy5sxqtd_SfnnP-7OddgtG_2GoBbBO8wJNy7L1Sr3_V--9XsEK-7Dh0OmNgEXoCxQxGxMURsBMaIM89mjsOuwLTr6gK6LqOcYzIGP7N4tfYTmcaRFS-sdSzTQSYiSESayl760dwKRCQSP5SvYn6uIiNrFc9FKKPAypbCijarB5EMPBkt_Cjr0yTr37OXofos0sx69J98y4GOcwMujdp1evp3J2CzENlsaYdxIGd-aJcOZtAuipJAg0rO3MJArnlJdQWrymBaFphrzKjGBcFwMLirtXYp8TD2TEVQpTmeAHniVo16yw9t_aHa77xRdX40mnabq_azLnc6d4hXFYozrGDpKk_xyjMeMlQhRKHRtGfxE6tsm65rtfnnIZgfl8nPLpMTiH8BLk1_jQ
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.30598/barekengvol19iss1pp35-50
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2615-3017
EndPage 50
ExternalDocumentID oai_doaj_org_article_258dba973a0c4a8a9d8f81f6a1160fe6
10_30598_barekengvol19iss1pp35_50
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2370-bbc50f1c974bf09e9c6ed0ddf36cb39e376e3b530f36c94eee4658338fd51de93
IEDL.DBID DOA
ISSN 1978-7227
IngestDate Fri Oct 03 12:32:48 EDT 2025
Sat Nov 29 04:50:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2370-bbc50f1c974bf09e9c6ed0ddf36cb39e376e3b530f36c94eee4658338fd51de93
ORCID 0009-0009-2542-1569
0009-0001-5002-3169
0009-0008-9680-9387
0009-0006-3404-8557
0009-0002-0850-7888
0009-0009-5754-7051
0000-0002-6716-3096
OpenAccessLink https://doaj.org/article/258dba973a0c4a8a9d8f81f6a1160fe6
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_258dba973a0c4a8a9d8f81f6a1160fe6
crossref_primary_10_30598_barekengvol19iss1pp35_50
PublicationCentury 2000
PublicationDate 2025-01-13
PublicationDateYYYYMMDD 2025-01-13
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-13
  day: 13
PublicationDecade 2020
PublicationTitle BAREKENG: Jurnal Ilmu Matematika dan Terapan
PublicationYear 2025
Publisher Universitas Pattimura
Publisher_xml – name: Universitas Pattimura
SSID ssib044769935
ssib044731219
Score 2.2801325
Snippet In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 35
SubjectTerms generalized poisson regression
infant mortality
overdispersion
poisson regression
Title COMPARISON OF POISSON REGRESSION AND GENERALIZED POISSON REGRESSION IN MODELING THE NUMBER OF INFANT MORTALITY IN WEST JAVA 2022
URI https://doaj.org/article/258dba973a0c4a8a9d8f81f6a1160fe6
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2615-3017
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044769935
  issn: 1978-7227
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2615-3017
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044731219
  issn: 1978-7227
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhRAXVASI8pKRuFr1K4l9TLvZNqibrLJpKVwiPxFCWlbbwpmfzjhZYA-VuHBK4thWMv7kmS-xv0HonXLCBAACiU5RIo1UxPBcE26C1cp6ZcdP2VcXRdOo62u93Ev1ldaETfLAk-GOeaa8NboQhjpplNFeRcVibhjLaQyj2DZEPXtkCpAkZSEY_ytUBtc5OOJs_MUMtKngvHiA3ibKCuGFOrZmG76G9WeYEZiGF2abjchI2ou_56z2NP1H5zM_RI92USMup6d9jO6F9RP087RdLMuuXrUNbud42dardNpVZ900R-KymeHd2rT6UzW7q0rd4EU7qy7q5gz35xVuLhcnVZf6q5t52fRwt-uhef8xVf1QrXr8vrwqMQev_BRdzqv-9JzsEioQx0VBibUuo5E54BA2Uh20y4On3keROyt0gMkmCJsJmgq0DCHIPO3KUtFnzActnqGD9bd1eI6wyl3hJHCTIsIhNxaGw_mopA8MBtwfIf7bcsNm0s0YgG-M5h7uNPeQ0SN0kmz8p0GSvh4LABDDDhDDvwDx4n908hI95CnRL2WEiVfo4Hb7PbxG992P2y832zcj1n4BlqjPPg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMPARISON+OF+POISSON+REGRESSION+AND+GENERALIZED+POISSON+REGRESSION+IN+MODELING+THE+NUMBER+OF+INFANT+MORTALITY+IN+WEST+JAVA+2022&rft.jtitle=Barekeng&rft.au=Toha+Saifudin&rft.au=Fatiha+Nadia+Salsabila&rft.au=Mubadi%27ul+Fitriani&rft.au=Azizatul+Kholidiyah&rft.date=2025-01-13&rft.pub=Universitas+Pattimura&rft.issn=1978-7227&rft.eissn=2615-3017&rft.volume=19&rft.issue=1&rft.spage=35&rft.epage=50&rft_id=info:doi/10.30598%2Fbarekengvol19iss1pp35-50&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_258dba973a0c4a8a9d8f81f6a1160fe6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1978-7227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1978-7227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1978-7227&client=summon