COMPARISON OF POISSON REGRESSION AND GENERALIZED POISSON REGRESSION IN MODELING THE NUMBER OF INFANT MORTALITY IN WEST JAVA 2022
In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and perinatal care. West Java Province consistently ranks third nationally in terms of infant mortality in 2020 and 2021. This study analyzes the factor...
Uložené v:
| Vydané v: | BAREKENG: Jurnal Ilmu Matematika dan Terapan Ročník 19; číslo 1; s. 35 - 50 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Universitas Pattimura
13.01.2025
|
| Predmet: | |
| ISSN: | 1978-7227, 2615-3017 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and perinatal care. West Java Province consistently ranks third nationally in terms of infant mortality in 2020 and 2021. This study analyzes the factors influencing infant mortality in West Java in 2022 using secondary data from the 2022 West Java Provincial Health Profile. The response variable is the number of infant deaths, while the predictor variables include the percentage of K-4 coverage (X1), high-risk pregnancy (X2), family with PHBS (X3), exclusive breastfeeding (X4), and complete immunization coverage (X5). Given the count-based nature of the data, Poisson regression was used, which assumes equidispersion where the variance is equal to the mean. However, the analysis found overdispersion, where the variance significantly exceeds the mean, making Poisson regression unsuitable. To address this, Generalized Poisson Regression (GPR) was applied, as GPR introduces a dispersion parameter that accounts for overdispersion, thus better fitting the data. The initial Poisson regression results showed that X1, X2, X4, and X5 significantly influenced infant mortality, while the GPR model showed that only X2 and X3 were significant factors, with a dispersion parameter of -3.116. The GPR model shows that every additional one high-risk pregnancy increases the infant mortality rate by 1.00006, while an increase of one unit of clean and healthy living practices reduces the mortality rate by 2.66%. Model evaluation using AIC, BIC, and RMSE confirmed that the GPR model better described the relationship between predictor variables and infant mortality rates compared to Poisson regression. These findings emphasize the need to use GPR to model cases with overdispersion in count data, so as to provide more reliable information for policy and intervention strategies. |
|---|---|
| AbstractList | In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and perinatal care. West Java Province consistently ranks third nationally in terms of infant mortality in 2020 and 2021. This study analyzes the factors influencing infant mortality in West Java in 2022 using secondary data from the 2022 West Java Provincial Health Profile. The response variable is the number of infant deaths, while the predictor variables include the percentage of K-4 coverage (X1), high-risk pregnancy (X2), family with PHBS (X3), exclusive breastfeeding (X4), and complete immunization coverage (X5). Given the count-based nature of the data, Poisson regression was used, which assumes equidispersion where the variance is equal to the mean. However, the analysis found overdispersion, where the variance significantly exceeds the mean, making Poisson regression unsuitable. To address this, Generalized Poisson Regression (GPR) was applied, as GPR introduces a dispersion parameter that accounts for overdispersion, thus better fitting the data. The initial Poisson regression results showed that X1, X2, X4, and X5 significantly influenced infant mortality, while the GPR model showed that only X2 and X3 were significant factors, with a dispersion parameter of -3.116. The GPR model shows that every additional one high-risk pregnancy increases the infant mortality rate by 1.00006, while an increase of one unit of clean and healthy living practices reduces the mortality rate by 2.66%. Model evaluation using AIC, BIC, and RMSE confirmed that the GPR model better described the relationship between predictor variables and infant mortality rates compared to Poisson regression. These findings emphasize the need to use GPR to model cases with overdispersion in count data, so as to provide more reliable information for policy and intervention strategies. |
| Author | Kholidiyah, Azizatul Salsabila, Fatiha Nadia Saifudin, Toha Fitriani, Mubadi'ul Ariani, Fildzah Tri Januar Suliyanto, Suliyanto Auliyah, Nina |
| Author_xml | – sequence: 1 givenname: Toha orcidid: 0000-0002-6716-3096 surname: Saifudin fullname: Saifudin, Toha – sequence: 2 givenname: Fatiha Nadia orcidid: 0009-0001-5002-3169 surname: Salsabila fullname: Salsabila, Fatiha Nadia – sequence: 3 givenname: Mubadi'ul orcidid: 0009-0009-5754-7051 surname: Fitriani fullname: Fitriani, Mubadi'ul – sequence: 4 givenname: Azizatul orcidid: 0009-0008-9680-9387 surname: Kholidiyah fullname: Kholidiyah, Azizatul – sequence: 5 givenname: Nina orcidid: 0009-0009-2542-1569 surname: Auliyah fullname: Auliyah, Nina – sequence: 6 givenname: Fildzah Tri Januar orcidid: 0009-0006-3404-8557 surname: Ariani fullname: Ariani, Fildzah Tri Januar – sequence: 7 givenname: Suliyanto orcidid: 0009-0002-0850-7888 surname: Suliyanto fullname: Suliyanto, Suliyanto |
| BookMark | eNptkdFOgzAYhRszE-fcO-ADoC2lLb3ErWM1DBZgGr0hBdoFnWMBY-Kdjy5sxqtd_SfnnP-7OddgtG_2GoBbBO8wJNy7L1Sr3_V--9XsEK-7Dh0OmNgEXoCxQxGxMURsBMaIM89mjsOuwLTr6gK6LqOcYzIGP7N4tfYTmcaRFS-sdSzTQSYiSESayl760dwKRCQSP5SvYn6uIiNrFc9FKKPAypbCijarB5EMPBkt_Cjr0yTr37OXofos0sx69J98y4GOcwMujdp1evp3J2CzENlsaYdxIGd-aJcOZtAuipJAg0rO3MJArnlJdQWrymBaFphrzKjGBcFwMLirtXYp8TD2TEVQpTmeAHniVo16yw9t_aHa77xRdX40mnabq_azLnc6d4hXFYozrGDpKk_xyjMeMlQhRKHRtGfxE6tsm65rtfnnIZgfl8nPLpMTiH8BLk1_jQ |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.30598/barekengvol19iss1pp35-50 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2615-3017 |
| EndPage | 50 |
| ExternalDocumentID | oai_doaj_org_article_258dba973a0c4a8a9d8f81f6a1160fe6 10_30598_barekengvol19iss1pp35_50 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c2370-bbc50f1c974bf09e9c6ed0ddf36cb39e376e3b530f36c94eee4658338fd51de93 |
| IEDL.DBID | DOA |
| ISSN | 1978-7227 |
| IngestDate | Fri Oct 03 12:32:48 EDT 2025 Sat Nov 29 04:50:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2370-bbc50f1c974bf09e9c6ed0ddf36cb39e376e3b530f36c94eee4658338fd51de93 |
| ORCID | 0009-0009-2542-1569 0009-0001-5002-3169 0009-0008-9680-9387 0009-0006-3404-8557 0009-0002-0850-7888 0009-0009-5754-7051 0000-0002-6716-3096 |
| OpenAccessLink | https://doaj.org/article/258dba973a0c4a8a9d8f81f6a1160fe6 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_258dba973a0c4a8a9d8f81f6a1160fe6 crossref_primary_10_30598_barekengvol19iss1pp35_50 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-13 |
| PublicationDateYYYYMMDD | 2025-01-13 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | BAREKENG: Jurnal Ilmu Matematika dan Terapan |
| PublicationYear | 2025 |
| Publisher | Universitas Pattimura |
| Publisher_xml | – name: Universitas Pattimura |
| SSID | ssib044769935 ssib044731219 |
| Score | 2.2801325 |
| Snippet | In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 35 |
| SubjectTerms | generalized poisson regression infant mortality overdispersion poisson regression |
| Title | COMPARISON OF POISSON REGRESSION AND GENERALIZED POISSON REGRESSION IN MODELING THE NUMBER OF INFANT MORTALITY IN WEST JAVA 2022 |
| URI | https://doaj.org/article/258dba973a0c4a8a9d8f81f6a1160fe6 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2615-3017 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044769935 issn: 1978-7227 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2615-3017 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044731219 issn: 1978-7227 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhRAXVASI8pKRuFr1K4l9TLvZNqibrLJpKVwiPxFCWlbbwpmfzjhZYA-VuHBK4thWMv7kmS-xv0HonXLCBAACiU5RIo1UxPBcE26C1cp6ZcdP2VcXRdOo62u93Ev1ldaETfLAk-GOeaa8NboQhjpplNFeRcVibhjLaQyj2DZEPXtkCpAkZSEY_ytUBtc5OOJs_MUMtKngvHiA3ibKCuGFOrZmG76G9WeYEZiGF2abjchI2ou_56z2NP1H5zM_RI92USMup6d9jO6F9RP087RdLMuuXrUNbud42dardNpVZ900R-KymeHd2rT6UzW7q0rd4EU7qy7q5gz35xVuLhcnVZf6q5t52fRwt-uhef8xVf1QrXr8vrwqMQev_BRdzqv-9JzsEioQx0VBibUuo5E54BA2Uh20y4On3keROyt0gMkmCJsJmgq0DCHIPO3KUtFnzActnqGD9bd1eI6wyl3hJHCTIsIhNxaGw_mopA8MBtwfIf7bcsNm0s0YgG-M5h7uNPeQ0SN0kmz8p0GSvh4LABDDDhDDvwDx4n908hI95CnRL2WEiVfo4Hb7PbxG992P2y832zcj1n4BlqjPPg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMPARISON+OF+POISSON+REGRESSION+AND+GENERALIZED+POISSON+REGRESSION+IN+MODELING+THE+NUMBER+OF+INFANT+MORTALITY+IN+WEST+JAVA+2022&rft.jtitle=Barekeng&rft.au=Toha+Saifudin&rft.au=Fatiha+Nadia+Salsabila&rft.au=Mubadi%27ul+Fitriani&rft.au=Azizatul+Kholidiyah&rft.date=2025-01-13&rft.pub=Universitas+Pattimura&rft.issn=1978-7227&rft.eissn=2615-3017&rft.volume=19&rft.issue=1&rft.spage=35&rft.epage=50&rft_id=info:doi/10.30598%2Fbarekengvol19iss1pp35-50&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_258dba973a0c4a8a9d8f81f6a1160fe6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1978-7227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1978-7227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1978-7227&client=summon |