LEM-PSO: a lightweight evolutionary-state-driven multiple information learning particle swarm optimization algorithm

Particle swarm optimization (PSO) has been widely used, in which each particle selects its learning sample relying on fitness information. Intuitively, fitness-based selection strategy is beneficial to optimization. However, excessive reliance on fitness information may cause premature convergence o...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 37; no. 27; pp. 22667 - 22688
Main Authors: Yang, Xu, Li, Hongru
Format: Journal Article
Language:English
Published: London Springer London 01.09.2025
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Particle swarm optimization (PSO) has been widely used, in which each particle selects its learning sample relying on fitness information. Intuitively, fitness-based selection strategy is beneficial to optimization. However, excessive reliance on fitness information may cause premature convergence of the whole population. To solve the defects of PSO, a lightweight evolutionary-state-driven multiple information learning particle swarm optimization algorithm (LEM-PSO) is proposed. In the new proposed LEM-PSO, firstly, a lightweight multiple information learning strategy is proposed. Then, adaptive evolutionary-state adjustment mechanism is proposed. Finally, local optimum warning operation is used to help the stagnant population to jump from local optimums. The comprehensive performance of LEM-PSO is compared with seven popular PSO variants on CEC2013, CEC2017 and two engineering problems, and the results confirm the firmness of LEM-PSO.
AbstractList Particle swarm optimization (PSO) has been widely used, in which each particle selects its learning sample relying on fitness information. Intuitively, fitness-based selection strategy is beneficial to optimization. However, excessive reliance on fitness information may cause premature convergence of the whole population. To solve the defects of PSO, a lightweight evolutionary-state-driven multiple information learning particle swarm optimization algorithm (LEM-PSO) is proposed. In the new proposed LEM-PSO, firstly, a lightweight multiple information learning strategy is proposed. Then, adaptive evolutionary-state adjustment mechanism is proposed. Finally, local optimum warning operation is used to help the stagnant population to jump from local optimums. The comprehensive performance of LEM-PSO is compared with seven popular PSO variants on CEC2013, CEC2017 and two engineering problems, and the results confirm the firmness of LEM-PSO.
Author Yang, Xu
Li, Hongru
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0001-6853-9449
  surname: Yang
  fullname: Yang, Xu
  organization: School of Electrical and Control Engineering, Shenyang Jianzhu University
– sequence: 2
  givenname: Hongru
  orcidid: 0000-0003-4700-962X
  surname: Li
  fullname: Li, Hongru
  email: lihongru@ise.neu.edu.cn
  organization: Information Science and Engineering, Northeastern University
BookMark eNp9kEtLxDAUhYMoOD7-gKuC62hebVN3Ir5gREFdh7RJOxnapCapQ_31dqaC4MLNvYt7vnvvOUdg3zqrATjD6AIjlF8GhFKCISIpxBhxCsc9sMCMUkhRyvfBAhVsGmeMHoKjENYIIZbxdAHi8vYJvrw-XyUyaU2zihu9rYn-dO0QjbPSjzBEGTVU3nxqm3RDG03f6sTY2vlObkVJq6W3xjZJL3001TQNG-m7xPXRdOZrFsm2cd7EVXcCDmrZBn3604_B-93t280DXD7fP95cL2FFaDZCmeVElyXJSMUlTmtc56lipNZYKs5yxbimNSYl14VSueaZwkypsuQVI0xlmB6D83lv793HoEMUazd4O50UlDBekKIgZFKRWVV5F4LXtei96SbfAiOxTVfM6YopXbFLV4wTxP9AlYk7m9FL0_6P0hkN0x3baP_71T_UN5aolOU
CitedBy_id crossref_primary_10_1007_s00521_025_11553_3
Cites_doi 10.1515/mt-2020-0053
10.1016/j.asoc.2018.02.042
10.1016/j.matcom.2022.11.023
10.1016/j.advengsoft.2016.01.008
10.1007/s11042-021-11547-y
10.1007/s00366-011-0241-y
10.1515/mt-2020-0022
10.1016/j.engappai.2016.03.007
10.1007/s00521-021-06881-z
10.1007/s11831-019-09343-x
10.1016/j.ins.2022.07.165
10.1016/j.ins.2022.07.131
10.1016/j.matcom.2022.12.020
10.1016/j.swevo.2021.100989
10.1016/j.engappai.2019.07.020
10.1016/j.swevo.2019.100573
10.1016/j.engappai.2021.104418
10.1007/s00521-020-04789-8
10.1007/s00366-021-01368-w
10.1007/s10898-007-9149-x
10.1016/j.advengsoft.2013.12.007
10.1007/s00521-022-07068-w
10.1007/s00366-020-01268-5
10.1007/s00500-016-2106-1
10.1016/j.ins.2020.02.034
10.1016/j.asoc.2018.09.007
10.1109/TCYB.2019.2943928
10.1007/s00521-021-06596-1
10.1016/j.matcom.2022.12.019
10.1109/4235.585893
10.1016/j.ins.2020.08.040
10.1016/j.ins.2009.03.004
10.1016/j.engappai.2020.103916
10.1016/j.ins.2022.07.067
10.1007/s12530-022-09420-w
10.1016/j.ijleo.2016.06.002
10.1016/j.ins.2021.07.082
10.1016/j.matcom.2022.09.013
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00521-025-11083-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 22688
ExternalDocumentID 10_1007_s00521_025_11083_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973067
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c236y-a672ebb262c8a15f1f75d42fe1ad847d48e3f12b8e9dd7e86d14ddbb8c424d613
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 08:38:54 EST 2025
Tue Nov 18 22:02:26 EST 2025
Sat Nov 29 07:32:07 EST 2025
Tue Sep 09 01:10:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords Diversity information
Lightweight
Evolutionary state
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236y-a672ebb262c8a15f1f75d42fe1ad847d48e3f12b8e9dd7e86d14ddbb8c424d613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6853-9449
0000-0003-4700-962X
PQID 3248929922
PQPubID 2043988
PageCount 22
ParticipantIDs proquest_journals_3248929922
crossref_primary_10_1007_s00521_025_11083_y
crossref_citationtrail_10_1007_s00521_025_11083_y
springer_journals_10_1007_s00521_025_11083_y
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References DH Wolpert (11083_CR39) 1997; 1
AR Yıldız (11083_CR7) 2021; 63
O Castillo (11083_CR9) 2019; 85
AR Yildiz (11083_CR13) 2019; 27
JC-W Lin (11083_CR11) 2016; 53
S Mohammadi (11083_CR28) 2023; 206
W Li (11083_CR30) 2020; 529
S Mirjalili (11083_CR43) 2014; 69
K Mittal (11083_CR8) 2020; 95
BS Yıldız (11083_CR6) 2021; 38
G Singh (11083_CR26) 2023; 204
O Castillo (11083_CR10) 2021; 9
J Yang (11083_CR22) 2022; 612
X Xia (11083_CR23) 2020; 50
11083_CR38
11083_CR15
X Yang (11083_CR34) 2022; 208
11083_CR37
11083_CR33
P Upadhyay (11083_CR3) 2021; 34
B Singh (11083_CR27) 2023; 207
X Chen (11083_CR2) 2022; 34
L Abualigah (11083_CR1) 2020; 32
B Liang (11083_CR25) 2021; 105
BS Yildiz (11083_CR12) 2021; 38
J Lu (11083_CR31) 2022; 69
K Chen (11083_CR19) 2018; 73
E Rashedi (11083_CR42) 2009; 179
X Yang (11083_CR21) 2022; 81
JC-W Lin (11083_CR24) 2022; 14
AH Gandomi (11083_CR40) 2011; 29
X Xia (11083_CR32) 2018; 67
X Xia (11083_CR36) 2021; 579
N Mansouri (11083_CR4) 2022; 34
D Tian (11083_CR18) 2019; 51
D Karaboga (11083_CR14) 2007; 39
G D’Angelo (11083_CR16) 2021; 547
BS Yıldız (11083_CR5) 2021; 63
JC-W Lin (11083_CR17) 2016; 21
F Yu (11083_CR35) 2022; 609
S Zhao (11083_CR29) 2022; 609
HT Liang (11083_CR20) 2016; 127
S Mirjalili (11083_CR41) 2016; 95
References_xml – volume: 63
  start-page: 356
  issue: 4
  year: 2021
  ident: 11083_CR5
  publication-title: Mater Test
  doi: 10.1515/mt-2020-0053
– volume: 67
  start-page: 126
  year: 2018
  ident: 11083_CR32
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.02.042
– volume: 206
  start-page: 538
  year: 2023
  ident: 11083_CR28
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.11.023
– volume: 95
  start-page: 51
  year: 2016
  ident: 11083_CR41
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 81
  start-page: 36397
  issue: 25
  year: 2022
  ident: 11083_CR21
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11547-y
– volume: 29
  start-page: 17
  issue: 1
  year: 2011
  ident: 11083_CR40
  publication-title: Eng Comput
  doi: 10.1007/s00366-011-0241-y
– volume: 63
  start-page: 157
  issue: 2
  year: 2021
  ident: 11083_CR7
  publication-title: Mater Test
  doi: 10.1515/mt-2020-0022
– volume: 53
  start-page: 1
  year: 2016
  ident: 11083_CR11
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.03.007
– ident: 11083_CR38
– volume: 34
  start-page: 7749
  issue: 10
  year: 2022
  ident: 11083_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06881-z
– volume: 27
  start-page: 1031
  issue: 4
  year: 2019
  ident: 11083_CR13
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09343-x
– volume: 612
  start-page: 1066
  year: 2022
  ident: 11083_CR22
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.07.165
– volume: 609
  start-page: 1567
  year: 2022
  ident: 11083_CR29
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.07.131
– volume: 208
  start-page: 246
  year: 2022
  ident: 11083_CR34
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.12.020
– volume: 69
  start-page: 100989
  year: 2022
  ident: 11083_CR31
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2021.100989
– ident: 11083_CR15
– volume: 85
  start-page: 666
  year: 2019
  ident: 11083_CR9
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.07.020
– volume: 9
  start-page: 19
  year: 2021
  ident: 11083_CR10
  publication-title: Mathematics
– volume: 51
  start-page: 100573
  year: 2019
  ident: 11083_CR18
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2019.100573
– volume: 105
  start-page: 104418
  year: 2021
  ident: 11083_CR25
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104418
– ident: 11083_CR33
– volume: 32
  start-page: 15533
  issue: 19
  year: 2020
  ident: 11083_CR1
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04789-8
– volume: 38
  start-page: 4207
  year: 2021
  ident: 11083_CR12
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01368-w
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 11083_CR14
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 69
  start-page: 46
  year: 2014
  ident: 11083_CR43
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 34
  start-page: 11769
  issue: 14
  year: 2022
  ident: 11083_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07068-w
– volume: 38
  start-page: 871
  issue: S2
  year: 2021
  ident: 11083_CR6
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01268-5
– volume: 21
  start-page: 5103
  issue: 17
  year: 2016
  ident: 11083_CR17
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2106-1
– volume: 529
  start-page: 179
  year: 2020
  ident: 11083_CR30
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.02.034
– volume: 73
  start-page: 482
  year: 2018
  ident: 11083_CR19
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.007
– ident: 11083_CR37
– volume: 50
  start-page: 4862
  issue: 12
  year: 2020
  ident: 11083_CR23
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2943928
– volume: 34
  start-page: 4413
  issue: 6
  year: 2021
  ident: 11083_CR3
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06596-1
– volume: 207
  start-page: 243
  year: 2023
  ident: 11083_CR27
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.12.019
– volume: 1
  start-page: 67
  year: 1997
  ident: 11083_CR39
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/4235.585893
– volume: 547
  start-page: 136
  year: 2021
  ident: 11083_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.08.040
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 11083_CR42
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 95
  start-page: 103916
  year: 2020
  ident: 11083_CR8
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103916
– volume: 609
  start-page: 60
  year: 2022
  ident: 11083_CR35
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.07.067
– volume: 14
  start-page: 593
  year: 2022
  ident: 11083_CR24
  publication-title: Evol Syst
  doi: 10.1007/s12530-022-09420-w
– volume: 127
  start-page: 8036
  issue: 19
  year: 2016
  ident: 11083_CR20
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.06.002
– volume: 579
  start-page: 33
  year: 2021
  ident: 11083_CR36
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.07.082
– volume: 204
  start-page: 727
  year: 2023
  ident: 11083_CR26
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.09.013
SSID ssj0004685
Score 2.3960695
Snippet Particle swarm optimization (PSO) has been widely used, in which each particle selects its learning sample relying on fitness information. Intuitively,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22667
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Efficiency
Fitness
Genetic algorithms
Image Processing and Computer Vision
Machine learning
Neighborhoods
Optimization
Particle swarm optimization
Probability and Statistics in Computer Science
S.I.: Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
Special Issue on Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
Title LEM-PSO: a lightweight evolutionary-state-driven multiple information learning particle swarm optimization algorithm
URI https://link.springer.com/article/10.1007/s00521-025-11083-y
https://www.proquest.com/docview/3248929922
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPXixPrFaJQdvGjDZV9abSIsHH8Wq9LbktbXQF7u1Zf-9SZptVVTQ886GMJlkvklm5gPgNIhSj2nHhEJ2ESFfiBDROMVIMB0PhTTmzJ-TTUT397TTiVuuKCwvs93LJ0l7Ui-K3cwNpg59SYBM6rqHilWwpt0dNYQNj-2XD9WQlohTxy0mp8f3XKnM92N8dkdLjPnlWdR6m2b1f_PcApsOXcKruTlsgxU13AHVkrkBuo28Cya3jTvUaj9cQgb7Jjyf2RtSqKbOEllWIFtrhGRmzkNYJh5C12nVCEFHOdGFY2eAMJ-xbABH-hwauAJPyPrdUdabvA72wHOz8XR9gxz_AhLECwvEwogozklIBGU4SHEaBdInqcJMaqcmfaq8FBNOVSxlpGgosS8l51T4xJcaJ-yDynA0VAcAkphrKKPBmuB6BCI4DkSMOYkJD0UgcQ3gchkS4ZqTG46MfrJoq2zVmmi1JlatSVEDZ4t_xvPWHL9K18vVTdw2zRONJqnGhzEhNXBeruby88-jHf5N_AhsEGMQNjetDiqT7E0dg3UxnfTy7MSa7zup6exg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QF-8xfXMg28aMGnapr6JKIrrKl74VnJVhT2kuyr7702y6Xqggj53OoTJZOabZA6ArTgtImEdE07EboqZUgnmWUGwEjYeSngmBRsMm0gbDX53l12EorBule1ePUl6Sz0sdnM3mDb0pTF2qesR7o_COLMey3XMv7y6_VAN6Qdx2rjF5fSwKJTKfM_jszt6x5hfnkW9tzma-d86Z2E6oEu0P1CHORgx7XmYqSY3oHCQF6BXPzzDF1fne0igpgvPX_0NKTIvQRNF2ce-1gjr0tlDVCUeotBp1RGhMHLiHj0FBUTdV1G2UMfaoVYo8ESied8pH3sPrUW4OTq8PjjGYf4CVjRK-lgkKTVS0oQqLkhckCKNNaOFIUJbp6YZN1FBqOQm0zo1PNGEaS0lV4wybXHCEoy1O22zDIhm0kIZC9aUtByokiRWGZE0ozJRsSY1INU25Co0J3czMpr5sK2yF2tuxZp7seb9GmwP_3katOb4lXqt2t08HNNubtEkt_gwo7QGO9Vuvn_-mdvK38g3YfL4-qye108ap6swRZ1y-Dy1NRjrlc9mHSbUS--xW254VX4DxiXvRA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEuICtBSxPH3g1lrUjpM43BCwAkGXlYCKW-RXAGlfygbQ_ntsr7M8RCshznEsa2bs-caebwZgN06LSFjHhBPxO8VMqQTzrCBYCRsPJTyTgo2bTaStFr-5ydqvWPw-271-khxzGlyVpl61N9DF3oT45m4zbRhMY-zS2CM8moZZ5hLpXbx--fcVM9I35bQxjMvvYVGgzXw8x1vX9II33z2Res_TXPr6mpdhMaBOdDA2k28wZXrfYanu6IDCBl-B6vz4D25fXuwjgToubH_yN6fIPAYLFeUIew4S1qU7J1GdkIhCBVY3CIVWFLdoEAwTDZ9E2UV9ez51A_ETic5tv7yv7ro_4Lp5fHV4gkNfBqxolIywSFJqpKQJVVyQuCBFGmtGC0OEts5OM26iglDJTaZ1aniiCdNaSq4YZdrih1WY6fV7Zg0QzaSFOBbEKWlnoEqSWGVE0ozKRMWaNIDUKslVKFruemd08km5ZS_W3Io192LNRw34OflnMC7Z8d_Rm7Wm87B9h7lFmdzixozSBvyqNfvy-d-zrX9u-A7Mt4-a-flp62wDFqizDZ--tgkzVflgtmBOPVb3w3LbW_Uzat34KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LEM-PSO%3A+a+lightweight+evolutionary-state-driven+multiple+information+learning+particle+swarm+optimization+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Yang%2C+Xu&rft.au=Li%2C+Hongru&rft.date=2025-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=27&rft.spage=22667&rft.epage=22688&rft_id=info:doi/10.1007%2Fs00521-025-11083-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_025_11083_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon