LEM-PSO: a lightweight evolutionary-state-driven multiple information learning particle swarm optimization algorithm
Particle swarm optimization (PSO) has been widely used, in which each particle selects its learning sample relying on fitness information. Intuitively, fitness-based selection strategy is beneficial to optimization. However, excessive reliance on fitness information may cause premature convergence o...
Saved in:
| Published in: | Neural computing & applications Vol. 37; no. 27; pp. 22667 - 22688 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.09.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Particle swarm optimization (PSO) has been widely used, in which each particle selects its learning sample relying on fitness information. Intuitively, fitness-based selection strategy is beneficial to optimization. However, excessive reliance on fitness information may cause premature convergence of the whole population. To solve the defects of PSO, a lightweight evolutionary-state-driven multiple information learning particle swarm optimization algorithm (LEM-PSO) is proposed. In the new proposed LEM-PSO, firstly, a lightweight multiple information learning strategy is proposed. Then, adaptive evolutionary-state adjustment mechanism is proposed. Finally, local optimum warning operation is used to help the stagnant population to jump from local optimums. The comprehensive performance of LEM-PSO is compared with seven popular PSO variants on CEC2013, CEC2017 and two engineering problems, and the results confirm the firmness of LEM-PSO. |
|---|---|
| AbstractList | Particle swarm optimization (PSO) has been widely used, in which each particle selects its learning sample relying on fitness information. Intuitively, fitness-based selection strategy is beneficial to optimization. However, excessive reliance on fitness information may cause premature convergence of the whole population. To solve the defects of PSO, a lightweight evolutionary-state-driven multiple information learning particle swarm optimization algorithm (LEM-PSO) is proposed. In the new proposed LEM-PSO, firstly, a lightweight multiple information learning strategy is proposed. Then, adaptive evolutionary-state adjustment mechanism is proposed. Finally, local optimum warning operation is used to help the stagnant population to jump from local optimums. The comprehensive performance of LEM-PSO is compared with seven popular PSO variants on CEC2013, CEC2017 and two engineering problems, and the results confirm the firmness of LEM-PSO. |
| Author | Yang, Xu Li, Hongru |
| Author_xml | – sequence: 1 givenname: Xu orcidid: 0000-0001-6853-9449 surname: Yang fullname: Yang, Xu organization: School of Electrical and Control Engineering, Shenyang Jianzhu University – sequence: 2 givenname: Hongru orcidid: 0000-0003-4700-962X surname: Li fullname: Li, Hongru email: lihongru@ise.neu.edu.cn organization: Information Science and Engineering, Northeastern University |
| BookMark | eNp9kEtLxDAUhYMoOD7-gKuC62hebVN3Ir5gREFdh7RJOxnapCapQ_31dqaC4MLNvYt7vnvvOUdg3zqrATjD6AIjlF8GhFKCISIpxBhxCsc9sMCMUkhRyvfBAhVsGmeMHoKjENYIIZbxdAHi8vYJvrw-XyUyaU2zihu9rYn-dO0QjbPSjzBEGTVU3nxqm3RDG03f6sTY2vlObkVJq6W3xjZJL3001TQNG-m7xPXRdOZrFsm2cd7EVXcCDmrZBn3604_B-93t280DXD7fP95cL2FFaDZCmeVElyXJSMUlTmtc56lipNZYKs5yxbimNSYl14VSueaZwkypsuQVI0xlmB6D83lv793HoEMUazd4O50UlDBekKIgZFKRWVV5F4LXtei96SbfAiOxTVfM6YopXbFLV4wTxP9AlYk7m9FL0_6P0hkN0x3baP_71T_UN5aolOU |
| CitedBy_id | crossref_primary_10_1007_s00521_025_11553_3 |
| Cites_doi | 10.1515/mt-2020-0053 10.1016/j.asoc.2018.02.042 10.1016/j.matcom.2022.11.023 10.1016/j.advengsoft.2016.01.008 10.1007/s11042-021-11547-y 10.1007/s00366-011-0241-y 10.1515/mt-2020-0022 10.1016/j.engappai.2016.03.007 10.1007/s00521-021-06881-z 10.1007/s11831-019-09343-x 10.1016/j.ins.2022.07.165 10.1016/j.ins.2022.07.131 10.1016/j.matcom.2022.12.020 10.1016/j.swevo.2021.100989 10.1016/j.engappai.2019.07.020 10.1016/j.swevo.2019.100573 10.1016/j.engappai.2021.104418 10.1007/s00521-020-04789-8 10.1007/s00366-021-01368-w 10.1007/s10898-007-9149-x 10.1016/j.advengsoft.2013.12.007 10.1007/s00521-022-07068-w 10.1007/s00366-020-01268-5 10.1007/s00500-016-2106-1 10.1016/j.ins.2020.02.034 10.1016/j.asoc.2018.09.007 10.1109/TCYB.2019.2943928 10.1007/s00521-021-06596-1 10.1016/j.matcom.2022.12.019 10.1109/4235.585893 10.1016/j.ins.2020.08.040 10.1016/j.ins.2009.03.004 10.1016/j.engappai.2020.103916 10.1016/j.ins.2022.07.067 10.1007/s12530-022-09420-w 10.1016/j.ijleo.2016.06.002 10.1016/j.ins.2021.07.082 10.1016/j.matcom.2022.09.013 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-025-11083-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 22688 |
| ExternalDocumentID | 10_1007_s00521_025_11083_y |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973067 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 PUEGO QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX AFFHD CITATION |
| ID | FETCH-LOGICAL-c236y-a672ebb262c8a15f1f75d42fe1ad847d48e3f12b8e9dd7e86d14ddbb8c424d613 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 08:38:54 EST 2025 Tue Nov 18 22:02:26 EST 2025 Sat Nov 29 07:32:07 EST 2025 Tue Sep 09 01:10:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Keywords | Diversity information Lightweight Evolutionary state Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c236y-a672ebb262c8a15f1f75d42fe1ad847d48e3f12b8e9dd7e86d14ddbb8c424d613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6853-9449 0000-0003-4700-962X |
| PQID | 3248929922 |
| PQPubID | 2043988 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3248929922 crossref_primary_10_1007_s00521_025_11083_y crossref_citationtrail_10_1007_s00521_025_11083_y springer_journals_10_1007_s00521_025_11083_y |
| PublicationCentury | 2000 |
| PublicationDate | 20250900 2025-09-00 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | DH Wolpert (11083_CR39) 1997; 1 AR Yıldız (11083_CR7) 2021; 63 O Castillo (11083_CR9) 2019; 85 AR Yildiz (11083_CR13) 2019; 27 JC-W Lin (11083_CR11) 2016; 53 S Mohammadi (11083_CR28) 2023; 206 W Li (11083_CR30) 2020; 529 S Mirjalili (11083_CR43) 2014; 69 K Mittal (11083_CR8) 2020; 95 BS Yıldız (11083_CR6) 2021; 38 G Singh (11083_CR26) 2023; 204 O Castillo (11083_CR10) 2021; 9 J Yang (11083_CR22) 2022; 612 X Xia (11083_CR23) 2020; 50 11083_CR38 11083_CR15 X Yang (11083_CR34) 2022; 208 11083_CR37 11083_CR33 P Upadhyay (11083_CR3) 2021; 34 B Singh (11083_CR27) 2023; 207 X Chen (11083_CR2) 2022; 34 L Abualigah (11083_CR1) 2020; 32 B Liang (11083_CR25) 2021; 105 BS Yildiz (11083_CR12) 2021; 38 J Lu (11083_CR31) 2022; 69 K Chen (11083_CR19) 2018; 73 E Rashedi (11083_CR42) 2009; 179 X Yang (11083_CR21) 2022; 81 JC-W Lin (11083_CR24) 2022; 14 AH Gandomi (11083_CR40) 2011; 29 X Xia (11083_CR32) 2018; 67 X Xia (11083_CR36) 2021; 579 N Mansouri (11083_CR4) 2022; 34 D Tian (11083_CR18) 2019; 51 D Karaboga (11083_CR14) 2007; 39 G D’Angelo (11083_CR16) 2021; 547 BS Yıldız (11083_CR5) 2021; 63 JC-W Lin (11083_CR17) 2016; 21 F Yu (11083_CR35) 2022; 609 S Zhao (11083_CR29) 2022; 609 HT Liang (11083_CR20) 2016; 127 S Mirjalili (11083_CR41) 2016; 95 |
| References_xml | – volume: 63 start-page: 356 issue: 4 year: 2021 ident: 11083_CR5 publication-title: Mater Test doi: 10.1515/mt-2020-0053 – volume: 67 start-page: 126 year: 2018 ident: 11083_CR32 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.02.042 – volume: 206 start-page: 538 year: 2023 ident: 11083_CR28 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.11.023 – volume: 95 start-page: 51 year: 2016 ident: 11083_CR41 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 81 start-page: 36397 issue: 25 year: 2022 ident: 11083_CR21 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11547-y – volume: 29 start-page: 17 issue: 1 year: 2011 ident: 11083_CR40 publication-title: Eng Comput doi: 10.1007/s00366-011-0241-y – volume: 63 start-page: 157 issue: 2 year: 2021 ident: 11083_CR7 publication-title: Mater Test doi: 10.1515/mt-2020-0022 – volume: 53 start-page: 1 year: 2016 ident: 11083_CR11 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.03.007 – ident: 11083_CR38 – volume: 34 start-page: 7749 issue: 10 year: 2022 ident: 11083_CR4 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06881-z – volume: 27 start-page: 1031 issue: 4 year: 2019 ident: 11083_CR13 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-019-09343-x – volume: 612 start-page: 1066 year: 2022 ident: 11083_CR22 publication-title: Inf Sci doi: 10.1016/j.ins.2022.07.165 – volume: 609 start-page: 1567 year: 2022 ident: 11083_CR29 publication-title: Inf Sci doi: 10.1016/j.ins.2022.07.131 – volume: 208 start-page: 246 year: 2022 ident: 11083_CR34 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.12.020 – volume: 69 start-page: 100989 year: 2022 ident: 11083_CR31 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2021.100989 – ident: 11083_CR15 – volume: 85 start-page: 666 year: 2019 ident: 11083_CR9 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.07.020 – volume: 9 start-page: 19 year: 2021 ident: 11083_CR10 publication-title: Mathematics – volume: 51 start-page: 100573 year: 2019 ident: 11083_CR18 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2019.100573 – volume: 105 start-page: 104418 year: 2021 ident: 11083_CR25 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104418 – ident: 11083_CR33 – volume: 32 start-page: 15533 issue: 19 year: 2020 ident: 11083_CR1 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04789-8 – volume: 38 start-page: 4207 year: 2021 ident: 11083_CR12 publication-title: Eng Comput doi: 10.1007/s00366-021-01368-w – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 11083_CR14 publication-title: J Global Optim doi: 10.1007/s10898-007-9149-x – volume: 69 start-page: 46 year: 2014 ident: 11083_CR43 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 34 start-page: 11769 issue: 14 year: 2022 ident: 11083_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07068-w – volume: 38 start-page: 871 issue: S2 year: 2021 ident: 11083_CR6 publication-title: Eng Comput doi: 10.1007/s00366-020-01268-5 – volume: 21 start-page: 5103 issue: 17 year: 2016 ident: 11083_CR17 publication-title: Soft Comput doi: 10.1007/s00500-016-2106-1 – volume: 529 start-page: 179 year: 2020 ident: 11083_CR30 publication-title: Inf Sci doi: 10.1016/j.ins.2020.02.034 – volume: 73 start-page: 482 year: 2018 ident: 11083_CR19 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.007 – ident: 11083_CR37 – volume: 50 start-page: 4862 issue: 12 year: 2020 ident: 11083_CR23 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2943928 – volume: 34 start-page: 4413 issue: 6 year: 2021 ident: 11083_CR3 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06596-1 – volume: 207 start-page: 243 year: 2023 ident: 11083_CR27 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.12.019 – volume: 1 start-page: 67 year: 1997 ident: 11083_CR39 publication-title: IEEE Trans Evolut Comput doi: 10.1109/4235.585893 – volume: 547 start-page: 136 year: 2021 ident: 11083_CR16 publication-title: Inf Sci doi: 10.1016/j.ins.2020.08.040 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 11083_CR42 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 95 start-page: 103916 year: 2020 ident: 11083_CR8 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103916 – volume: 609 start-page: 60 year: 2022 ident: 11083_CR35 publication-title: Inf Sci doi: 10.1016/j.ins.2022.07.067 – volume: 14 start-page: 593 year: 2022 ident: 11083_CR24 publication-title: Evol Syst doi: 10.1007/s12530-022-09420-w – volume: 127 start-page: 8036 issue: 19 year: 2016 ident: 11083_CR20 publication-title: Optik doi: 10.1016/j.ijleo.2016.06.002 – volume: 579 start-page: 33 year: 2021 ident: 11083_CR36 publication-title: Inf Sci doi: 10.1016/j.ins.2021.07.082 – volume: 204 start-page: 727 year: 2023 ident: 11083_CR26 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.09.013 |
| SSID | ssj0004685 |
| Score | 2.3960695 |
| Snippet | Particle swarm optimization (PSO) has been widely used, in which each particle selects its learning sample relying on fitness information. Intuitively,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22667 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Efficiency Fitness Genetic algorithms Image Processing and Computer Vision Machine learning Neighborhoods Optimization Particle swarm optimization Probability and Statistics in Computer Science S.I.: Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications Special Issue on Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications |
| Title | LEM-PSO: a lightweight evolutionary-state-driven multiple information learning particle swarm optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s00521-025-11083-y https://www.proquest.com/docview/3248929922 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals - Owned customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPXixPrFaJQdvGjDZV9abSIsHH8Wq9LbktbXQF7u1Zf-9SZptVVTQ886GMJlkvklm5gPgNIhSj2nHhEJ2ESFfiBDROMVIMB0PhTTmzJ-TTUT397TTiVuuKCwvs93LJ0l7Ui-K3cwNpg59SYBM6rqHilWwpt0dNYQNj-2XD9WQlohTxy0mp8f3XKnM92N8dkdLjPnlWdR6m2b1f_PcApsOXcKruTlsgxU13AHVkrkBuo28Cya3jTvUaj9cQgb7Jjyf2RtSqKbOEllWIFtrhGRmzkNYJh5C12nVCEFHOdGFY2eAMJ-xbABH-hwauAJPyPrdUdabvA72wHOz8XR9gxz_AhLECwvEwogozklIBGU4SHEaBdInqcJMaqcmfaq8FBNOVSxlpGgosS8l51T4xJcaJ-yDynA0VAcAkphrKKPBmuB6BCI4DkSMOYkJD0UgcQ3gchkS4ZqTG46MfrJoq2zVmmi1JlatSVEDZ4t_xvPWHL9K18vVTdw2zRONJqnGhzEhNXBeruby88-jHf5N_AhsEGMQNjetDiqT7E0dg3UxnfTy7MSa7zup6exg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QF-8xfXMg28aMGnapr6JKIrrKl74VnJVhT2kuyr7702y6Xqggj53OoTJZOabZA6ArTgtImEdE07EboqZUgnmWUGwEjYeSngmBRsMm0gbDX53l12EorBule1ePUl6Sz0sdnM3mDb0pTF2qesR7o_COLMey3XMv7y6_VAN6Qdx2rjF5fSwKJTKfM_jszt6x5hfnkW9tzma-d86Z2E6oEu0P1CHORgx7XmYqSY3oHCQF6BXPzzDF1fne0igpgvPX_0NKTIvQRNF2ce-1gjr0tlDVCUeotBp1RGhMHLiHj0FBUTdV1G2UMfaoVYo8ESied8pH3sPrUW4OTq8PjjGYf4CVjRK-lgkKTVS0oQqLkhckCKNNaOFIUJbp6YZN1FBqOQm0zo1PNGEaS0lV4wybXHCEoy1O22zDIhm0kIZC9aUtByokiRWGZE0ozJRsSY1INU25Co0J3czMpr5sK2yF2tuxZp7seb9GmwP_3katOb4lXqt2t08HNNubtEkt_gwo7QGO9Vuvn_-mdvK38g3YfL4-qye108ap6swRZ1y-Dy1NRjrlc9mHSbUS--xW254VX4DxiXvRA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEuICtBSxPH3g1lrUjpM43BCwAkGXlYCKW-RXAGlfygbQ_ntsr7M8RCshznEsa2bs-caebwZgN06LSFjHhBPxO8VMqQTzrCBYCRsPJTyTgo2bTaStFr-5ydqvWPw-271-khxzGlyVpl61N9DF3oT45m4zbRhMY-zS2CM8moZZ5hLpXbx--fcVM9I35bQxjMvvYVGgzXw8x1vX9II33z2Res_TXPr6mpdhMaBOdDA2k28wZXrfYanu6IDCBl-B6vz4D25fXuwjgToubH_yN6fIPAYLFeUIew4S1qU7J1GdkIhCBVY3CIVWFLdoEAwTDZ9E2UV9ez51A_ETic5tv7yv7ro_4Lp5fHV4gkNfBqxolIywSFJqpKQJVVyQuCBFGmtGC0OEts5OM26iglDJTaZ1aniiCdNaSq4YZdrih1WY6fV7Zg0QzaSFOBbEKWlnoEqSWGVE0ozKRMWaNIDUKslVKFruemd08km5ZS_W3Io192LNRw34OflnMC7Z8d_Rm7Wm87B9h7lFmdzixozSBvyqNfvy-d-zrX9u-A7Mt4-a-flp62wDFqizDZ--tgkzVflgtmBOPVb3w3LbW_Uzat34KA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LEM-PSO%3A+a+lightweight+evolutionary-state-driven+multiple+information+learning+particle+swarm+optimization+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Yang%2C+Xu&rft.au=Li%2C+Hongru&rft.date=2025-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=27&rft.spage=22667&rft.epage=22688&rft_id=info:doi/10.1007%2Fs00521-025-11083-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_025_11083_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |