On IoT intrusion detection based on data augmentation for enhancing learning on unbalanced samples

Internet of things (IoT) security is a prerequisite for the rapid development of the IoT to enhance human well-being. Machine learning-based intrusion detection systems (IDS) have good protection capabilities. However, it is difficult to identify attack information in massive amounts of data, which...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future generation computer systems Ročník 133; s. 213 - 227
Hlavní autoři: Zhang, Ying, Liu, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2022
Témata:
ISSN:0167-739X, 1872-7115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Internet of things (IoT) security is a prerequisite for the rapid development of the IoT to enhance human well-being. Machine learning-based intrusion detection systems (IDS) have good protection capabilities. However, it is difficult to identify attack information in massive amounts of data, which leads to inefficient model detection when faced with insufficient samples for certain types of attacks. In this regard, this paper fuses deep learning methods and statistical ideas to address the problem of minority samples attack detection, and proposes an intrusion detection method for the IoT based on Improved Conditional Variational Autoencoder (ICVAE) and Borderline Synthetic Minority Oversampling Technique (BSM), called ICVAE-BSM. By introducing an auxiliary network into the Conditional Variational Autoencoder (CVAE) to adjust the output probability distribution of the encoder, learning the posterior distribution of different classes of samples, so that the distributions of samples of the same class are concentrated, and the distributions of different classes of samples are scattered in the latent space; then based on BSM, adaptively synthesize the edge latent variables in the latent space of ICVAE, and feed the new synthetic edge latent variables to the ICVAE’s decoder to generate representative new samples to balance the data set. The output of the encoder is connected to the Softmax classifier at last, and the original samples are mixed with the generated samples to fine-tune it to enhance its generalization ability for intrusion detection of minority samples. We use the NSL-KDD data set, CIC-IDS2017 data set and CSE-CIC-IDS2018 data set to simulate and evaluate the model, the experimental results show that the proposed method can more effectively improve the accuracy of IoT attack detection under the condition of unbalanced samples. •Different from the traditional unsupervised discriminant model dimensionality reduction, the feature extraction is realized through the supervised generative model ICVAE, and the prior information is given to adjust the probability distribution of the data, avoiding the homogeneity in a single mode.•The proposed feature extraction model introduces an auxiliary network, which makes the probability distribution of the encoder have a pointing effect. The posterior distribution of the sample is close to its exclusive distribution, and alleviates KL-vanishing problem during the CVAE training process.•The proposed scheme has obvious boundaries in the potential space distribution after dimensionality reduction. Based on BSM, the boundary examples in the potential space are oversampled and fed to the decoder to balance the data set, avoiding the generation of noise samples and redundant samples to waste resources and affect the model detection efficiency.•The proposed model can effectively detect minority intrusions from unbalanced samples of IoT.
AbstractList Internet of things (IoT) security is a prerequisite for the rapid development of the IoT to enhance human well-being. Machine learning-based intrusion detection systems (IDS) have good protection capabilities. However, it is difficult to identify attack information in massive amounts of data, which leads to inefficient model detection when faced with insufficient samples for certain types of attacks. In this regard, this paper fuses deep learning methods and statistical ideas to address the problem of minority samples attack detection, and proposes an intrusion detection method for the IoT based on Improved Conditional Variational Autoencoder (ICVAE) and Borderline Synthetic Minority Oversampling Technique (BSM), called ICVAE-BSM. By introducing an auxiliary network into the Conditional Variational Autoencoder (CVAE) to adjust the output probability distribution of the encoder, learning the posterior distribution of different classes of samples, so that the distributions of samples of the same class are concentrated, and the distributions of different classes of samples are scattered in the latent space; then based on BSM, adaptively synthesize the edge latent variables in the latent space of ICVAE, and feed the new synthetic edge latent variables to the ICVAE’s decoder to generate representative new samples to balance the data set. The output of the encoder is connected to the Softmax classifier at last, and the original samples are mixed with the generated samples to fine-tune it to enhance its generalization ability for intrusion detection of minority samples. We use the NSL-KDD data set, CIC-IDS2017 data set and CSE-CIC-IDS2018 data set to simulate and evaluate the model, the experimental results show that the proposed method can more effectively improve the accuracy of IoT attack detection under the condition of unbalanced samples. •Different from the traditional unsupervised discriminant model dimensionality reduction, the feature extraction is realized through the supervised generative model ICVAE, and the prior information is given to adjust the probability distribution of the data, avoiding the homogeneity in a single mode.•The proposed feature extraction model introduces an auxiliary network, which makes the probability distribution of the encoder have a pointing effect. The posterior distribution of the sample is close to its exclusive distribution, and alleviates KL-vanishing problem during the CVAE training process.•The proposed scheme has obvious boundaries in the potential space distribution after dimensionality reduction. Based on BSM, the boundary examples in the potential space are oversampled and fed to the decoder to balance the data set, avoiding the generation of noise samples and redundant samples to waste resources and affect the model detection efficiency.•The proposed model can effectively detect minority intrusions from unbalanced samples of IoT.
Author Zhang, Ying
Liu, Qiang
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-2637-6765
  surname: Zhang
  fullname: Zhang, Ying
  email: yingzhang@shmtu.edu.cn
  organization: College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
– sequence: 2
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
  organization: Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
BookMark eNqFkM9KAzEQh4NUsFXfwMO-wK5JdtvsehCk-KdQ6KWCtzBJJjVlmy3JruDbm7WePOhphpn5Bn7fjEx855GQG0YLRtnidl_YoR8CFpxyXtCyoFSckSmrBc8FY_MJmaYzkYuyebsgsxj3lFImSjYlauOzVbfNnO_DEF3nM4M96n7sFEQ02TiCHjIYdgf0PXyvbBcy9O_gtfO7rEUIfmzSZvAK2jRPZITDscV4Rc4ttBGvf-oleX163C5f8vXmebV8WOeal4s-t1ZpZZUSwphmXtZoRJ0SsEYgr5pG1xUIrhmrKqwALC5qpvgcrEk4oOHlJalOf3XoYgxo5TG4A4RPyagcPcm9PHmSoydJS5k8JezuF6bdKWUfwLX_wfcnGFOwD4dBRu1wTO9CsihN5_5-8AX-N4u8
CitedBy_id crossref_primary_10_3390_electronics13091711
crossref_primary_10_1016_j_eswa_2022_119030
crossref_primary_10_1109_TIFS_2025_3530676
crossref_primary_10_1016_j_engappai_2023_106344
crossref_primary_10_1007_s10586_024_05091_1
crossref_primary_10_1080_08839514_2024_2376983
crossref_primary_10_1109_COMST_2024_3488580
crossref_primary_10_1186_s40537_023_00814_4
crossref_primary_10_1371_journal_pone_0317713
crossref_primary_10_1007_s11227_023_05771_6
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_7717_peerj_cs_1975
crossref_primary_10_1007_s11227_024_06552_5
crossref_primary_10_1016_j_comnet_2023_109982
crossref_primary_10_1109_ACCESS_2024_3360879
crossref_primary_10_3390_jmse11010221
crossref_primary_10_1109_OJCOMS_2025_3573194
crossref_primary_10_3390_sym16070850
crossref_primary_10_1109_JIOT_2023_3248259
crossref_primary_10_1186_s13677_024_00678_w
crossref_primary_10_1016_j_cose_2023_103432
crossref_primary_10_1088_1361_6501_acf7da
crossref_primary_10_3390_jmse10060743
crossref_primary_10_3390_bdcc6040137
crossref_primary_10_3390_s24196335
crossref_primary_10_3390_app13031331
crossref_primary_10_1038_s41598_024_67956_0
crossref_primary_10_1007_s11227_025_07292_w
crossref_primary_10_3390_electronics12183911
crossref_primary_10_3390_quat8030035
crossref_primary_10_5753_jisa_2025_5251
crossref_primary_10_1016_j_aei_2024_102403
crossref_primary_10_1016_j_cose_2024_104005
crossref_primary_10_1038_s41598_025_02729_x
crossref_primary_10_1016_j_oceaneng_2025_121860
crossref_primary_10_1016_j_undsp_2023_11_008
crossref_primary_10_1109_JIOT_2024_3414492
crossref_primary_10_3390_jmse10101376
crossref_primary_10_1016_j_aej_2025_06_030
crossref_primary_10_1002_spy2_70044
crossref_primary_10_7717_peerj_cs_3089
crossref_primary_10_1002_ett_5018
Cites_doi 10.1016/j.neucom.2015.04.101
10.1016/j.adhoc.2020.102177
10.1016/j.neunet.2020.10.004
10.1016/j.future.2021.07.013
10.1109/CVPR42600.2020.01259
10.1109/CSCloud.2017.39
10.1016/j.jnca.2018.07.013
10.1007/s10489-020-01886-y
10.1016/j.comnet.2018.11.025
10.1007/s10796-020-10031-6
10.1016/j.jnca.2020.102767
10.1016/j.comnet.2020.107183
10.1109/COMST.2020.2986444
10.1109/ACCESS.2020.2977007
10.1016/j.cose.2008.08.003
10.1109/ACCESS.2020.3048198
10.1109/TC.2016.2519914
10.1109/TKDE.2008.239
10.1016/j.asoc.2018.05.049
10.1109/TSMCC.2008.923876
10.1109/TETCI.2017.2772792
10.1016/j.asoc.2019.105980
10.1007/s12652-021-03082-3
10.1109/ACCESS.2019.2903723
10.1016/j.jnca.2018.07.009
10.1109/FG.2017.117
10.1109/TMI.2019.2914656
10.1109/ACCESS.2020.2980937
10.1007/s11042-021-10647-z
10.1109/JSEN.2020.3008177
10.1016/j.comnet.2020.107784
10.1016/j.inffus.2021.02.007
10.1016/j.comnet.2019.107049
10.1613/jair.953
10.3390/s17091967
10.1109/COMST.2015.2494502
10.1016/j.comnet.2020.107315
10.1109/ACCESS.2019.2928048
10.1016/j.eswa.2020.113696
10.1016/j.future.2019.03.043
10.1109/SPW.2018.00013
10.1007/978-3-030-13453-2_12
10.1016/j.eswa.2019.112963
10.1109/LCOMM.2020.3004877
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2022.03.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 227
ExternalDocumentID 10_1016_j_future_2022_03_007
S0167739X22000826
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c236t-ffbcbfbb77dd9538ed78187197e2499c84a72c1144e4aafe681b25afdc23aed23
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000806791200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:25:00 EST 2025
Tue Nov 18 21:00:39 EST 2025
Fri Feb 23 02:40:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords IoT intrusion detection
Data augmentation
Borderline-SMOTE
Conditional Variational Autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-ffbcbfbb77dd9538ed78187197e2499c84a72c1144e4aafe681b25afdc23aed23
ORCID 0000-0002-2637-6765
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_future_2022_03_007
crossref_citationtrail_10_1016_j_future_2022_03_007
elsevier_sciencedirect_doi_10_1016_j_future_2022_03_007
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Zheng, Wu, Yang (b31) 2019; 19
Saadeh, Sleit, Sabri, Almobaideen (b6) 2018; 121
Ambusaidi, He, Nanda, Tan (b11) 2016; 65
Noor, Hassan (b5) 2019; 148
Smiti, Soui (b44) 2020; 22
Hussain, Hussain, Hassan, Hossain (b1) 2020; 22
Suh, Lee, Lukowicz, Lee (b40) 2021; 133
Haibo, Garcia (b47) 2009; 21
Tama, Comuzzi, Rhee (b50) 2019; 7
Sohn, Yan, Lee (b19) 2015
Violettas, Simoglou, Petridou, Mamatas (b23) 2021; 125
A. Chawla, B. Lee, S. Fallon, P. Jacob, Host Based Intrusion Detection System with Combined CNN/RNN Model, in: ECML PKDD 2018 Workshops, 2019, pp. 149–158.
Ali, Shamsuddin, Ralescu (b15) 2015
Prasad, Tripathi, Dahal (b54) 2020; 87
S. Liu, Y. Huang, J. Hu, W. Deng, Learning Local Responses of Facial Landmarks with Conditional Variational Auto-Encoder for Face Alignment, in: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2017, 2017, pp. 947–952.
Zhang, Li, Wang (b21) 2019; 7
Gamage, Samarabandu (b51) 2020; 169
Asghari, Rahmani, Javadi (b7) 2018; 120
R. Doshi, N. Apthorpe, N. Feamster, Machine Learning DDoS Detection for Consumer Internet of Things Devices, in: 2018 IEEE Security and Privacy Workshops, SPW, 2018, pp. 29–35.
Andresini, Appice, Mauro, Loglisci, Malerba (b53) 2020; 8
Karthik, Krishnan (b46) 2021
R.C. Aygun, A.G. Yavuz, Network Anomaly Detection with Stochastically Improved Autoencoder Based Models, in: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing, CSCloud, 2017, pp. 193–198.
Ji, Wang, Li, Sun, Jin, Quek (b33) 2020; 24
Folino, Folino, Guarascio, Pisani, Pontieri (b41) 2021; 72
Pesteie, Abolmaesumi, Rohling (b30) 2019; 38
Chawla, Bowyer, Hall, Kegelmeyer (b16) 2002; 16
Liu, Wang, Lin, Liu (b55) 2021; 9
Zhang, Huang, Wu, Li (b37) 2020; 177
Lopez-Martin, Carro, Sanchez-Esguevillas (b27) 2020; 141
Schwartz, Karlinsky, Shtok, Harary, Marder, Feris, Kumar, Giryes, Bronstein (b34) 2018
Zhong, Chen, Wang, Chen, Wang, Li, Yin, Shi, Yang, Li (b42) 2020; 169
Dixit, Verma (b29) 2020; 20
Dehkordy, Rasoolzadegan (b45) 2021
Lopez-Martin, Carro, Sanchez-Esguevillas, Lloret (b32) 2017; 17
Han, Wang, Mao (b17) 2005
Jiong, Zulkernine, Haque (b8) 2008; 38
Moreno-Barea, Jerez, Franco (b38) 2020; 161
Buczak, Guven (b10) 2016; 18
Kingma, Rezende, Mohamed, Welling (b18) 2014; 2
Ge, Syed, Fu, Baig, Robles-Kelly (b22) 2021; 186
Huang, Lei (b36) 2020; 105
Khammassi, Krichen (b52) 2020; 172
Ahmad, Shahid Khan, Wai Shiang, Abdullah, Ahmad (b3) 2020
Bedi, Gupta, Jindal (b14) 2020; 51
A. Li, W. Huang, X. Lan, J. Feng, Z. Li, L. Wang, Boosting few-shot learning with adaptive margin loss, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12576–12584.
Shone, Ngoc, Phai, Shi (b25) 2018; 2
Zhang, Zhang, Chen, Wang (b26) 2021
Rathore, Park (b49) 2018; 72
Policar, Strazar, Zupan (b48) 2019
Abusitta, Bellaiche, Dagenais, Halabi (b43) 2019; 98
Sun, Liu, Li, Liu, Lu, Hao, Chen (b20) 2020; 2020
Saied, Overill, Radzik (b12) 2016; 172
Gamage, Samarabandu (b2) 2020; 169
García-Teodoro, Díaz-Verdejo, Maciá-Fernández, Vázquez (b4) 2009; 28
Yang, Zheng, Wu, Yang, Access (b39) 2020; 8
Violettas (10.1016/j.future.2022.03.007_b23) 2021; 125
Gamage (10.1016/j.future.2022.03.007_b51) 2020; 169
Shone (10.1016/j.future.2022.03.007_b25) 2018; 2
Andresini (10.1016/j.future.2022.03.007_b53) 2020; 8
Sun (10.1016/j.future.2022.03.007_b20) 2020; 2020
10.1016/j.future.2022.03.007_b35
Hussain (10.1016/j.future.2022.03.007_b1) 2020; 22
Liu (10.1016/j.future.2022.03.007_b55) 2021; 9
Ge (10.1016/j.future.2022.03.007_b22) 2021; 186
Chawla (10.1016/j.future.2022.03.007_b16) 2002; 16
Noor (10.1016/j.future.2022.03.007_b5) 2019; 148
Zhang (10.1016/j.future.2022.03.007_b37) 2020; 177
Policar (10.1016/j.future.2022.03.007_b48) 2019
Lopez-Martin (10.1016/j.future.2022.03.007_b32) 2017; 17
10.1016/j.future.2022.03.007_b28
Suh (10.1016/j.future.2022.03.007_b40) 2021; 133
Folino (10.1016/j.future.2022.03.007_b41) 2021; 72
10.1016/j.future.2022.03.007_b24
Gamage (10.1016/j.future.2022.03.007_b2) 2020; 169
García-Teodoro (10.1016/j.future.2022.03.007_b4) 2009; 28
Khammassi (10.1016/j.future.2022.03.007_b52) 2020; 172
Dehkordy (10.1016/j.future.2022.03.007_b45) 2021
Saadeh (10.1016/j.future.2022.03.007_b6) 2018; 121
Asghari (10.1016/j.future.2022.03.007_b7) 2018; 120
Ahmad (10.1016/j.future.2022.03.007_b3) 2020
Zhong (10.1016/j.future.2022.03.007_b42) 2020; 169
Zhang (10.1016/j.future.2022.03.007_b26) 2021
Dixit (10.1016/j.future.2022.03.007_b29) 2020; 20
Yang (10.1016/j.future.2022.03.007_b31) 2019; 19
Schwartz (10.1016/j.future.2022.03.007_b34) 2018
Sohn (10.1016/j.future.2022.03.007_b19) 2015
Huang (10.1016/j.future.2022.03.007_b36) 2020; 105
Buczak (10.1016/j.future.2022.03.007_b10) 2016; 18
Ji (10.1016/j.future.2022.03.007_b33) 2020; 24
Karthik (10.1016/j.future.2022.03.007_b46) 2021
Prasad (10.1016/j.future.2022.03.007_b54) 2020; 87
10.1016/j.future.2022.03.007_b13
Zhang (10.1016/j.future.2022.03.007_b21) 2019; 7
Tama (10.1016/j.future.2022.03.007_b50) 2019; 7
Moreno-Barea (10.1016/j.future.2022.03.007_b38) 2020; 161
Jiong (10.1016/j.future.2022.03.007_b8) 2008; 38
10.1016/j.future.2022.03.007_b9
Pesteie (10.1016/j.future.2022.03.007_b30) 2019; 38
Ali (10.1016/j.future.2022.03.007_b15) 2015
Han (10.1016/j.future.2022.03.007_b17) 2005
Bedi (10.1016/j.future.2022.03.007_b14) 2020; 51
Abusitta (10.1016/j.future.2022.03.007_b43) 2019; 98
Rathore (10.1016/j.future.2022.03.007_b49) 2018; 72
Haibo (10.1016/j.future.2022.03.007_b47) 2009; 21
Yang (10.1016/j.future.2022.03.007_b39) 2020; 8
Kingma (10.1016/j.future.2022.03.007_b18) 2014; 2
Lopez-Martin (10.1016/j.future.2022.03.007_b27) 2020; 141
Smiti (10.1016/j.future.2022.03.007_b44) 2020; 22
Saied (10.1016/j.future.2022.03.007_b12) 2016; 172
Ambusaidi (10.1016/j.future.2022.03.007_b11) 2016; 65
References_xml – volume: 121
  start-page: 1
  year: 2018
  end-page: 19
  ident: b6
  article-title: Hierarchical architecture and protocol for mobile object authentication in the context of IoT smart cities
  publication-title: J. Netw. Comput. Appl.
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b47
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 125
  start-page: 698
  year: 2021
  end-page: 714
  ident: b23
  article-title: A softwarized intrusion detection system for the RPL-based internet of things networks
  publication-title: Future Gener. Comput. Syst.
– volume: 2
  start-page: 41
  year: 2018
  end-page: 50
  ident: b25
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 22
  start-page: 1686
  year: 2020
  end-page: 1721
  ident: b1
  article-title: Machine learning in IoT security: Current solutions and future challenges
  publication-title: IEEE Commun. Surv. Tutor.
– reference: R.C. Aygun, A.G. Yavuz, Network Anomaly Detection with Stochastically Improved Autoencoder Based Models, in: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing, CSCloud, 2017, pp. 193–198.
– volume: 120
  start-page: 61
  year: 2018
  end-page: 77
  ident: b7
  article-title: Service composition approaches in IoT: A systematic review
  publication-title: J. Netw. Compu. Appl.
– volume: 186
  year: 2021
  ident: b22
  article-title: Towards a deep learning-driven intrusion detection approach for internet of things
  publication-title: Comput. Netw.
– volume: 8
  start-page: 42169
  year: 2020
  end-page: 42184
  ident: b39
  article-title: Network intrusion detection based on supervised adversarial variational auto-encoder with regularization
  publication-title: IEEE Access
– volume: 169
  year: 2020
  ident: b51
  article-title: Deep learning methods in network intrusion detection: A survey and an objective comparison
  publication-title: J. Netw. Comput. Appl.
– volume: 38
  start-page: 2807
  year: 2019
  end-page: 2820
  ident: b30
  article-title: Adaptive augmentation of medical data using independently conditional variational auto-encoders
  publication-title: IEEE Trans. Med. Imaging
– volume: 72
  start-page: 79
  year: 2018
  end-page: 89
  ident: b49
  article-title: Semi-supervised learning based distributed attack detection framework for IoT
  publication-title: Appl. Soft. Comput.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b16
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 9
  start-page: 7550
  year: 2021
  end-page: 7563
  ident: b55
  article-title: Intrusion detection of imbalanced network traffic based on machine learning and deep learning
  publication-title: IEEE Access
– volume: 19
  year: 2019
  ident: b31
  article-title: Improving the classification effectiveness of intrusion detection by using improved conditional variational AutoEncoder and deep neural network
  publication-title: Sensors-Basel
– year: 2020
  ident: b3
  article-title: Network intrusion detection system: A systematic study of machine learning and deep learning approaches
  publication-title: T Emerg. Telecommun. T
– volume: 72
  start-page: 48
  year: 2021
  end-page: 69
  ident: b41
  article-title: On learning effective ensembles of deep neural networks for intrusion detection
  publication-title: Inform. Fusion
– volume: 169
  year: 2020
  ident: b2
  article-title: Deep learning methods in network intrusion detection: A survey and an objective comparison
  publication-title: J. Netw. Comput. Appl.
– reference: A. Chawla, B. Lee, S. Fallon, P. Jacob, Host Based Intrusion Detection System with Combined CNN/RNN Model, in: ECML PKDD 2018 Workshops, 2019, pp. 149–158.
– reference: A. Li, W. Huang, X. Lan, J. Feng, Z. Li, L. Wang, Boosting few-shot learning with adaptive margin loss, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12576–12584.
– volume: 141
  year: 2020
  ident: b27
  article-title: Application of deep reinforcement learning to intrusion detection for supervised problems
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 94497
  year: 2019
  end-page: 94507
  ident: b50
  article-title: TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system
  publication-title: IEEE Access
– volume: 148
  start-page: 283
  year: 2019
  end-page: 294
  ident: b5
  article-title: Current research on internet of things (IoT) security: A survey
  publication-title: Comput. Netw.
– volume: 98
  start-page: 308
  year: 2019
  end-page: 318
  ident: b43
  article-title: A deep learning approach for proactive multi-cloud cooperative intrusion detection system
  publication-title: Future Gener. Comput. Syst.
– volume: 169
  year: 2020
  ident: b42
  article-title: HELAD: A novel network anomaly detection model based on heterogeneous ensemble learning
  publication-title: Comput. Netw.
– year: 2021
  ident: b45
  article-title: A new machine learning-based method for android malware detection on imbalanced dataset
  publication-title: Multimed. Tools Appl.
– volume: 172
  start-page: 385
  year: 2016
  end-page: 393
  ident: b12
  article-title: Detection of known and unknown DDoS attacks using artificial neural networks
  publication-title: Neurocomputing
– volume: 2
  start-page: 3581
  year: 2014
  end-page: 3589
  ident: b18
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems
– volume: 20
  start-page: 14337
  year: 2020
  end-page: 14346
  ident: b29
  article-title: Intelligent condition-based monitoring of rotary machines with few samples
  publication-title: IEEE Sens. J.
– volume: 133
  start-page: 69
  year: 2021
  end-page: 86
  ident: b40
  article-title: CEGAN: Classification enhancement generative adversarial networks for unraveling data imbalance problems
  publication-title: Neural Netw.
– volume: 28
  start-page: 18
  year: 2009
  end-page: 28
  ident: b4
  article-title: Anomaly-based network intrusion detection: Techniques, systems and challenges
  publication-title: Comput. Secur.
– start-page: 3483
  year: 2015
  end-page: 3491
  ident: b19
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Vol. 2
– volume: 17
  year: 2017
  ident: b32
  article-title: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in IoT
  publication-title: Sensors (Basel)
– volume: 18
  start-page: 1153
  year: 2016
  end-page: 1176
  ident: b10
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
– reference: R. Doshi, N. Apthorpe, N. Feamster, Machine Learning DDoS Detection for Consumer Internet of Things Devices, in: 2018 IEEE Security and Privacy Workshops, SPW, 2018, pp. 29–35.
– year: 2015
  ident: b15
  article-title: Classification with class imbalance problem: A review
– year: 2019
  ident: b48
  article-title: OpenTSNE: a modular python library for t-SNE dimensionality reduction and embedding
– volume: 177
  year: 2020
  ident: b37
  article-title: An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset
  publication-title: Comput. Netw.
– volume: 172
  year: 2020
  ident: b52
  article-title: A NSGA2-LR wrapper approach for feature selection in network intrusion detection
  publication-title: Comput. Netw.
– volume: 38
  start-page: 649
  year: 2008
  end-page: 659
  ident: b8
  article-title: Random-forests- based network intrusion detection systems
  publication-title: IEEE Trans. Syst., Man, Cybern. C (Applications and Reviews)
– volume: 8
  start-page: 53346
  year: 2020
  end-page: 53359
  ident: b53
  article-title: Multi-channel deep feature learning for intrusion detection
  publication-title: IEEE Access
– volume: 24
  start-page: 2191
  year: 2020
  end-page: 2195
  ident: b33
  article-title: Data-limited modulation classification with a CVAE-enhanced learning model
  publication-title: IEEE Commun. Lett.
– start-page: 878
  year: 2005
  end-page: 887
  ident: b17
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: 2005 International conference on intelligent computing
– volume: 87
  year: 2020
  ident: b54
  article-title: An efficient feature selection based Bayesian and rough set approach for intrusion detection
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 31711
  year: 2019
  end-page: 31722
  ident: b21
  article-title: Intrusion detection for IoT based on improved genetic algorithm and deep belief network
  publication-title: IEEE Access
– volume: 105
  year: 2020
  ident: b36
  article-title: IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks
  publication-title: Ad Hoc Netw.
– year: 2021
  ident: b46
  article-title: Hybrid random forest and synthetic minority over sampling technique for detecting internet of things attacks
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 65
  start-page: 2986
  year: 2016
  end-page: 2998
  ident: b11
  article-title: Building an intrusion detection system using a filter-based feature selection algorithm
  publication-title: IEEE T Comput.
– start-page: 1
  year: 2021
  ident: b26
  article-title: Reinforcement learning-based opportunistic routing protocol for underwater acoustic sensor networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 161
  year: 2020
  ident: b38
  article-title: Improving classification accuracy using data augmentation on small data sets
  publication-title: Expert Syst. Appl.
– volume: 51
  start-page: 1133
  year: 2020
  end-page: 1151
  ident: b14
  article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems
  publication-title: Appl. Intell.
– reference: S. Liu, Y. Huang, J. Hu, W. Deng, Learning Local Responses of Facial Landmarks with Conditional Variational Auto-Encoder for Face Alignment, in: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2017, 2017, pp. 947–952.
– year: 2018
  ident: b34
  article-title: Delta-encoder: an effective sample synthesis method for few-shot object recognition
– volume: 22
  start-page: 1067
  year: 2020
  end-page: 1083
  ident: b44
  article-title: Bankruptcy prediction using deep learning approach based on borderline SMOTE
  publication-title: Inf. Syst. Front.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 11
  ident: b20
  article-title: DL-IDS: Extracting features using CNN-LSTM hybrid network for intrusion detection system
  publication-title: Secur. Commun. Netw.
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b20
  article-title: DL-IDS: Extracting features using CNN-LSTM hybrid network for intrusion detection system
  publication-title: Secur. Commun. Netw.
– volume: 2
  start-page: 3581
  year: 2014
  ident: 10.1016/j.future.2022.03.007_b18
  article-title: Semi-supervised learning with deep generative models
– volume: 172
  start-page: 385
  year: 2016
  ident: 10.1016/j.future.2022.03.007_b12
  article-title: Detection of known and unknown DDoS attacks using artificial neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.101
– year: 2015
  ident: 10.1016/j.future.2022.03.007_b15
– volume: 105
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b36
  article-title: IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2020.102177
– volume: 133
  start-page: 69
  year: 2021
  ident: 10.1016/j.future.2022.03.007_b40
  article-title: CEGAN: Classification enhancement generative adversarial networks for unraveling data imbalance problems
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.10.004
– volume: 125
  start-page: 698
  year: 2021
  ident: 10.1016/j.future.2022.03.007_b23
  article-title: A softwarized intrusion detection system for the RPL-based internet of things networks
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.07.013
– ident: 10.1016/j.future.2022.03.007_b35
  doi: 10.1109/CVPR42600.2020.01259
– ident: 10.1016/j.future.2022.03.007_b24
  doi: 10.1109/CSCloud.2017.39
– volume: 120
  start-page: 61
  year: 2018
  ident: 10.1016/j.future.2022.03.007_b7
  article-title: Service composition approaches in IoT: A systematic review
  publication-title: J. Netw. Compu. Appl.
  doi: 10.1016/j.jnca.2018.07.013
– year: 2020
  ident: 10.1016/j.future.2022.03.007_b3
  article-title: Network intrusion detection system: A systematic study of machine learning and deep learning approaches
  publication-title: T Emerg. Telecommun. T
– volume: 51
  start-page: 1133
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b14
  article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01886-y
– volume: 148
  start-page: 283
  year: 2019
  ident: 10.1016/j.future.2022.03.007_b5
  article-title: Current research on internet of things (IoT) security: A survey
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.11.025
– year: 2019
  ident: 10.1016/j.future.2022.03.007_b48
– year: 2018
  ident: 10.1016/j.future.2022.03.007_b34
– volume: 22
  start-page: 1067
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b44
  article-title: Bankruptcy prediction using deep learning approach based on borderline SMOTE
  publication-title: Inf. Syst. Front.
  doi: 10.1007/s10796-020-10031-6
– volume: 169
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b51
  article-title: Deep learning methods in network intrusion detection: A survey and an objective comparison
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102767
– volume: 172
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b52
  article-title: A NSGA2-LR wrapper approach for feature selection in network intrusion detection
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107183
– volume: 22
  start-page: 1686
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b1
  article-title: Machine learning in IoT security: Current solutions and future challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2986444
– volume: 8
  start-page: 42169
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b39
  article-title: Network intrusion detection based on supervised adversarial variational auto-encoder with regularization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977007
– volume: 28
  start-page: 18
  year: 2009
  ident: 10.1016/j.future.2022.03.007_b4
  article-title: Anomaly-based network intrusion detection: Techniques, systems and challenges
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2008.08.003
– volume: 9
  start-page: 7550
  year: 2021
  ident: 10.1016/j.future.2022.03.007_b55
  article-title: Intrusion detection of imbalanced network traffic based on machine learning and deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048198
– volume: 65
  start-page: 2986
  year: 2016
  ident: 10.1016/j.future.2022.03.007_b11
  article-title: Building an intrusion detection system using a filter-based feature selection algorithm
  publication-title: IEEE T Comput.
  doi: 10.1109/TC.2016.2519914
– volume: 21
  start-page: 1263
  year: 2009
  ident: 10.1016/j.future.2022.03.007_b47
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 72
  start-page: 79
  year: 2018
  ident: 10.1016/j.future.2022.03.007_b49
  article-title: Semi-supervised learning based distributed attack detection framework for IoT
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2018.05.049
– volume: 38
  start-page: 649
  year: 2008
  ident: 10.1016/j.future.2022.03.007_b8
  article-title: Random-forests- based network intrusion detection systems
  publication-title: IEEE Trans. Syst., Man, Cybern. C (Applications and Reviews)
  doi: 10.1109/TSMCC.2008.923876
– volume: 2
  start-page: 41
  year: 2018
  ident: 10.1016/j.future.2022.03.007_b25
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2772792
– volume: 87
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b54
  article-title: An efficient feature selection based Bayesian and rough set approach for intrusion detection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105980
– start-page: 878
  year: 2005
  ident: 10.1016/j.future.2022.03.007_b17
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
– start-page: 3483
  year: 2015
  ident: 10.1016/j.future.2022.03.007_b19
  article-title: Learning structured output representation using deep conditional generative models
– year: 2021
  ident: 10.1016/j.future.2022.03.007_b46
  article-title: Hybrid random forest and synthetic minority over sampling technique for detecting internet of things attacks
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-021-03082-3
– volume: 19
  year: 2019
  ident: 10.1016/j.future.2022.03.007_b31
  article-title: Improving the classification effectiveness of intrusion detection by using improved conditional variational AutoEncoder and deep neural network
  publication-title: Sensors-Basel
– volume: 169
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b2
  article-title: Deep learning methods in network intrusion detection: A survey and an objective comparison
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102767
– volume: 7
  start-page: 31711
  year: 2019
  ident: 10.1016/j.future.2022.03.007_b21
  article-title: Intrusion detection for IoT based on improved genetic algorithm and deep belief network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903723
– volume: 121
  start-page: 1
  year: 2018
  ident: 10.1016/j.future.2022.03.007_b6
  article-title: Hierarchical architecture and protocol for mobile object authentication in the context of IoT smart cities
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.07.009
– ident: 10.1016/j.future.2022.03.007_b28
  doi: 10.1109/FG.2017.117
– volume: 38
  start-page: 2807
  year: 2019
  ident: 10.1016/j.future.2022.03.007_b30
  article-title: Adaptive augmentation of medical data using independently conditional variational auto-encoders
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2914656
– volume: 8
  start-page: 53346
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b53
  article-title: Multi-channel deep feature learning for intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980937
– start-page: 1
  year: 2021
  ident: 10.1016/j.future.2022.03.007_b26
  article-title: Reinforcement learning-based opportunistic routing protocol for underwater acoustic sensor networks
  publication-title: IEEE Trans. Veh. Technol.
– year: 2021
  ident: 10.1016/j.future.2022.03.007_b45
  article-title: A new machine learning-based method for android malware detection on imbalanced dataset
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10647-z
– volume: 20
  start-page: 14337
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b29
  article-title: Intelligent condition-based monitoring of rotary machines with few samples
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3008177
– volume: 186
  year: 2021
  ident: 10.1016/j.future.2022.03.007_b22
  article-title: Towards a deep learning-driven intrusion detection approach for internet of things
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107784
– volume: 72
  start-page: 48
  year: 2021
  ident: 10.1016/j.future.2022.03.007_b41
  article-title: On learning effective ensembles of deep neural networks for intrusion detection
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2021.02.007
– volume: 169
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b42
  article-title: HELAD: A novel network anomaly detection model based on heterogeneous ensemble learning
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.107049
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.future.2022.03.007_b16
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 17
  year: 2017
  ident: 10.1016/j.future.2022.03.007_b32
  article-title: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in IoT
  publication-title: Sensors (Basel)
  doi: 10.3390/s17091967
– volume: 18
  start-page: 1153
  year: 2016
  ident: 10.1016/j.future.2022.03.007_b10
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– volume: 177
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b37
  article-title: An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107315
– volume: 7
  start-page: 94497
  year: 2019
  ident: 10.1016/j.future.2022.03.007_b50
  article-title: TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928048
– volume: 161
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b38
  article-title: Improving classification accuracy using data augmentation on small data sets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113696
– volume: 98
  start-page: 308
  year: 2019
  ident: 10.1016/j.future.2022.03.007_b43
  article-title: A deep learning approach for proactive multi-cloud cooperative intrusion detection system
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.03.043
– ident: 10.1016/j.future.2022.03.007_b9
  doi: 10.1109/SPW.2018.00013
– ident: 10.1016/j.future.2022.03.007_b13
  doi: 10.1007/978-3-030-13453-2_12
– volume: 141
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b27
  article-title: Application of deep reinforcement learning to intrusion detection for supervised problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112963
– volume: 24
  start-page: 2191
  year: 2020
  ident: 10.1016/j.future.2022.03.007_b33
  article-title: Data-limited modulation classification with a CVAE-enhanced learning model
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2020.3004877
SSID ssj0001731
Score 2.5428407
Snippet Internet of things (IoT) security is a prerequisite for the rapid development of the IoT to enhance human well-being. Machine learning-based intrusion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 213
SubjectTerms Borderline-SMOTE
Conditional Variational Autoencoder
Data augmentation
IoT intrusion detection
Title On IoT intrusion detection based on data augmentation for enhancing learning on unbalanced samples
URI https://dx.doi.org/10.1016/j.future.2022.03.007
Volume 133
WOSCitedRecordID wos000806791200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZQy4ELb0R5yQdu0VbxehOvjxVqRRFqQQoonFZ-hlbgVk2C-vOZWT-yUFTogcsqsmzvJvNlXjv-hpDXum2n7cSwyquJrxrD6kqOvaxq5h2Ye-Fcz6X3-b04Omrnc_khlY0t-3YCIoT28lKe_1dRwxgIG4_O3kDcZVMYgM8gdLiC2OH6T4I_DqPDsxnyQFysMRU2sm7lYkNwNFkWXw9gXehIrRff08mjWG3owldk3wiL3EtigXPXQWP5I9YJLBVyCS-HDu1Bz0mCjZhdwpJJfSISSXTx2Utq-ku2llgHdLLGoY8A0sUwAQGxay5_KzlJ0LWC9x1xN0qV81_UIh9Y2DqyAVxR3jGPcLob2VR28V6RgFZsjFV-Qf-bDSuVhblo7bSLu3S4SzfmXU85sF2LiQTdt713uD9_Vyw2E6lvZfoi-YhlXwd49Wn-7MIM3JLZfXI3xRN0L-LgAbnlwkNyL_fqoEl1PyL6OFCABS2woAUWtIcFxSGABR3CggIsaIEFzbDAuRtY0ASLx-TTwf7szdsq9deoTM2nq8p7bbTXWghrJRg-ZwW4b4JJ4SAol6ZtlKgNBMyNa5TybgohTj1R3sJy5WzNn5CtcBbcU0KVbIzjVmK43AjNNDimjgnLzZh5YdkO4fkn60win8ceKN-66wS2Q6qy6jySr_xlvsjS6JIDGR3DDiB27cpnN7zTc3Jn81d4QbZAdO4luW1-rE6WF68Svn4ClReY6Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+IoT+intrusion+detection+based+on+data+augmentation+for+enhancing+learning+on+unbalanced+samples&rft.jtitle=Future+generation+computer+systems&rft.au=Zhang%2C+Ying&rft.au=Liu%2C+Qiang&rft.date=2022-08-01&rft.issn=0167-739X&rft.volume=133&rft.spage=213&rft.epage=227&rft_id=info:doi/10.1016%2Fj.future.2022.03.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2022_03_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon