Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems

Engineering design problems are usually large-scale constrained optimization problems, and metaheuristic algorithms are vital for solving such complex problems. Therefore, this paper introduces a new nature-inspired metaheuristic algorithm: the gannet optimization algorithm (GOA). The GOA mathematiz...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics and computers in simulation Ročník 202; s. 343 - 373
Hlavní autori: Pan, Jeng-Shyang, Zhang, Li-Gang, Wang, Ruo-Bin, Snášel, Václav, Chu, Shu-Chuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2022
Predmet:
ISSN:0378-4754, 1872-7166
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Engineering design problems are usually large-scale constrained optimization problems, and metaheuristic algorithms are vital for solving such complex problems. Therefore, this paper introduces a new nature-inspired metaheuristic algorithm: the gannet optimization algorithm (GOA). The GOA mathematizes the various unique behaviors of gannets during foraging and is used to enable exploration and exploitation. GOA’s U-shaped and V-shaped diving patterns are responsible for exploring the optimal region within the search space, with sudden turns and random walks ensuring better solutions are found in this region. In order to verify the ability of the GOA to find the optimal solution, we compared it with other comparison algorithms in multiple dimensions of 28 benchmark functions. We found that the GOA has a shorter running time in high dimensions and can provide a better solution. Finally, we apply the GOA to five engineering optimization problems. The experimental results show that the GOA is suitable for many constrained engineering design problems and can provide better solutions in most cases.
ISSN:0378-4754
1872-7166
DOI:10.1016/j.matcom.2022.06.007