U2-Net: Going deeper with nested U-structure for salient object detection

•A novel ReSidual U-block (RSU) is designed to capture multi-scale deep features.•A nested U-structure, called U2-Net, that uses RSU is developed for salient object detection.•Both large (176.3 MB) and small (4.7 MB) instances of U2-Net get competitive results. In this paper, we design a simple yet...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 106; p. 107404
Main Authors: Qin, Xuebin, Zhang, Zichen, Huang, Chenyang, Dehghan, Masood, Zaiane, Osmar R., Jagersand, Martin
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2020
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel ReSidual U-block (RSU) is designed to capture multi-scale deep features.•A nested U-structure, called U2-Net, that uses RSU is developed for salient object detection.•Both large (176.3 MB) and small (4.7 MB) instances of U2-Net get competitive results. In this paper, we design a simple yet powerful deep network architecture, U2-Net, for salient object detection (SOD). The architecture of our U2-Net is a two-level nested U-structure. The design has the following advantages: (1) it is able to capture more contextual information from different scales thanks to the mixture of receptive fields of different sizes in our proposed ReSidual U-blocks (RSU), (2) it increases the depth of the whole architecture without significantly increasing the computational cost because of the pooling operations used in these RSU blocks. This architecture enables us to train a deep network from scratch without using backbones from image classification tasks. We instantiate two models of the proposed architecture, U2-Net (176.3 MB, 30 FPS on GTX 1080Ti GPU) and U2-Net† (4.7 MB, 40 FPS), to facilitate the usage in different environments. Both models achieve competitive performance on six SOD datasets. The code is available: https://github.com/NathanUA/U-2-Net.
AbstractList •A novel ReSidual U-block (RSU) is designed to capture multi-scale deep features.•A nested U-structure, called U2-Net, that uses RSU is developed for salient object detection.•Both large (176.3 MB) and small (4.7 MB) instances of U2-Net get competitive results. In this paper, we design a simple yet powerful deep network architecture, U2-Net, for salient object detection (SOD). The architecture of our U2-Net is a two-level nested U-structure. The design has the following advantages: (1) it is able to capture more contextual information from different scales thanks to the mixture of receptive fields of different sizes in our proposed ReSidual U-blocks (RSU), (2) it increases the depth of the whole architecture without significantly increasing the computational cost because of the pooling operations used in these RSU blocks. This architecture enables us to train a deep network from scratch without using backbones from image classification tasks. We instantiate two models of the proposed architecture, U2-Net (176.3 MB, 30 FPS on GTX 1080Ti GPU) and U2-Net† (4.7 MB, 40 FPS), to facilitate the usage in different environments. Both models achieve competitive performance on six SOD datasets. The code is available: https://github.com/NathanUA/U-2-Net.
ArticleNumber 107404
Author Qin, Xuebin
Dehghan, Masood
Zhang, Zichen
Jagersand, Martin
Huang, Chenyang
Zaiane, Osmar R.
Author_xml – sequence: 1
  givenname: Xuebin
  orcidid: 0000-0002-9042-7192
  surname: Qin
  fullname: Qin, Xuebin
  email: xuebin@ualberta.ca
– sequence: 2
  givenname: Zichen
  surname: Zhang
  fullname: Zhang, Zichen
  email: zichen2@ualberta.ca
– sequence: 3
  givenname: Chenyang
  orcidid: 0000-0003-2811-6008
  surname: Huang
  fullname: Huang, Chenyang
  email: chuang8@ualberta.ca
– sequence: 4
  givenname: Masood
  surname: Dehghan
  fullname: Dehghan, Masood
  email: masood1@ualberta.ca
– sequence: 5
  givenname: Osmar R.
  surname: Zaiane
  fullname: Zaiane, Osmar R.
  email: zaiane@ualberta.ca
– sequence: 6
  givenname: Martin
  surname: Jagersand
  fullname: Jagersand, Martin
  email: mj7@ualberta.ca
BookMark eNqFkMtOwzAQRS1UJErhD1j4B1LGjyRNF0ioglKpgg1dW449KY5KXNkuiL8nUVixgNWVZnSuZs4lmXS-Q0JuGMwZsOK2nR91Mn4_58CHUSlBnpEpW5Qiy5nkEzIFECwTHMQFuYyxBWBlv5iSzY5nz5iWdO1dt6cW8YiBfrr0RjuMCS3dZTGFk0mngLTxgUZ9cNgl6usWTeqJ1Ifz3RU5b_Qh4vVPzsju8eF19ZRtX9ab1f02M1wUKcPa1BoqWVoo8oZBbTC3ZYVVWXDNrAUwlW2gkaJegBRMN3nOscgNkwwbXooZkWOvCT7GgI06Bveuw5dioAYdqlWjDjXoUKOOHlv-woxLejg8Be0O_8F3I4z9Yx8Og4qml2DQutB_r6x3fxd8A6Qaf9E
CitedBy_id crossref_primary_10_1109_TII_2024_3409437
crossref_primary_10_1061_JBENF2_BEENG_7032
crossref_primary_10_1109_TIP_2025_3592522
crossref_primary_10_1016_j_apacoust_2022_109014
crossref_primary_10_1007_s00371_024_03640_8
crossref_primary_10_3390_electronics12071618
crossref_primary_10_1016_j_compbiomed_2022_105942
crossref_primary_10_1038_s41598_023_40175_9
crossref_primary_10_1016_j_ces_2023_119425
crossref_primary_10_1109_ACCESS_2023_3282778
crossref_primary_10_1109_TASLP_2022_3140561
crossref_primary_10_1007_s11042_023_16646_6
crossref_primary_10_1109_TIM_2024_3449979
crossref_primary_10_1016_j_neucom_2021_04_078
crossref_primary_10_1109_TGRS_2025_3582578
crossref_primary_10_1109_LGRS_2023_3342215
crossref_primary_10_1007_s11263_024_02049_z
crossref_primary_10_1109_JSEN_2024_3506831
crossref_primary_10_1109_JSTARS_2025_3577343
crossref_primary_10_1016_j_eswa_2021_114848
crossref_primary_10_26599_OCEAN_2025_9470005
crossref_primary_10_1587_transinf_2020EDP7235
crossref_primary_10_3390_rs15071931
crossref_primary_10_1109_TMI_2023_3317072
crossref_primary_10_1016_j_autcon_2023_105138
crossref_primary_10_1038_s41559_024_02438_0
crossref_primary_10_1016_j_asoc_2024_112685
crossref_primary_10_1109_TVCG_2024_3502395
crossref_primary_10_3390_s23104592
crossref_primary_10_1007_s11042_023_14892_2
crossref_primary_10_1016_j_mvr_2024_104680
crossref_primary_10_1080_01431161_2021_1934592
crossref_primary_10_1088_1742_6596_2637_1_012003
crossref_primary_10_1109_TCYB_2022_3163152
crossref_primary_10_1016_j_patcog_2024_111072
crossref_primary_10_4218_etrij_2023_0115
crossref_primary_10_1016_j_procs_2024_09_644
crossref_primary_10_1093_mnras_stad1375
crossref_primary_10_1007_s11760_023_02700_1
crossref_primary_10_1016_j_patcog_2022_108594
crossref_primary_10_1109_TVCG_2022_3209481
crossref_primary_10_1038_s41598_025_98230_6
crossref_primary_10_1016_j_mineng_2025_109413
crossref_primary_10_1007_s10043_025_00946_3
crossref_primary_10_1109_JSTARS_2025_3567508
crossref_primary_10_1109_JIOT_2024_3470130
crossref_primary_10_3390_rs16142637
crossref_primary_10_1038_s41598_024_61105_3
crossref_primary_10_1007_s00371_023_02834_w
crossref_primary_10_1109_ACCESS_2023_3305942
crossref_primary_10_1213_XAA_0000000000002040
crossref_primary_10_1111_cgf_15251
crossref_primary_10_1080_2150704X_2024_2391082
crossref_primary_10_1007_s42452_025_06791_y
crossref_primary_10_1109_TVT_2022_3141384
crossref_primary_10_1007_s10681_023_03258_2
crossref_primary_10_3233_JIFS_232366
crossref_primary_10_1109_TNNLS_2022_3233025
crossref_primary_10_1007_s11801_025_4059_z
crossref_primary_10_1109_ACCESS_2024_3525303
crossref_primary_10_1016_j_ymssp_2025_112774
crossref_primary_10_1155_2022_4189781
crossref_primary_10_3389_fonc_2023_1064548
crossref_primary_10_1016_j_imavis_2023_104694
crossref_primary_10_1007_s10489_024_06003_x
crossref_primary_10_1016_j_media_2021_102339
crossref_primary_10_1109_TCSVT_2023_3300731
crossref_primary_10_1007_s11263_024_02058_y
crossref_primary_10_1016_j_knosys_2022_108372
crossref_primary_10_1109_ACCESS_2021_3138920
crossref_primary_10_1016_j_eswa_2022_119394
crossref_primary_10_1109_TNNLS_2023_3341246
crossref_primary_10_1364_AO_532573
crossref_primary_10_1109_TIP_2025_3557563
crossref_primary_10_3390_rs14246339
crossref_primary_10_1007_s00371_023_02836_8
crossref_primary_10_3390_electronics12244962
crossref_primary_10_1007_s10489_023_04648_8
crossref_primary_10_1109_TCE_2024_3424671
crossref_primary_10_1016_j_compbiomed_2024_108594
crossref_primary_10_3390_e25040681
crossref_primary_10_1007_s00371_022_02561_8
crossref_primary_10_1002_mp_17791
crossref_primary_10_1016_j_engappai_2023_106453
crossref_primary_10_1016_j_patcog_2024_111036
crossref_primary_10_1109_ACCESS_2023_3338629
crossref_primary_10_1109_JSTARS_2024_3437737
crossref_primary_10_1109_TGRS_2022_3148994
crossref_primary_10_1109_TIM_2021_3128961
crossref_primary_10_1007_s00530_025_01867_6
crossref_primary_10_1016_j_jenvman_2022_115732
crossref_primary_10_1109_ACCESS_2025_3548128
crossref_primary_10_1038_s41598_024_82026_1
crossref_primary_10_1016_j_eswa_2023_122851
crossref_primary_10_1007_s13246_025_01542_0
crossref_primary_10_12677_SEA_2023_122030
crossref_primary_10_1007_s42360_023_00660_7
crossref_primary_10_1109_ACCESS_2025_3542834
crossref_primary_10_3390_microorganisms12010201
crossref_primary_10_1002_pros_24844
crossref_primary_10_1016_j_measurement_2024_114640
crossref_primary_10_1016_j_measurement_2024_114642
crossref_primary_10_1007_s40747_024_01681_z
crossref_primary_10_3390_rs15235462
crossref_primary_10_1016_j_compag_2025_110746
crossref_primary_10_1109_ACCESS_2024_3352649
crossref_primary_10_1007_s10489_023_05141_y
crossref_primary_10_1002_ima_22836
crossref_primary_10_1109_TASE_2025_3554653
crossref_primary_10_1016_j_bspc_2023_105536
crossref_primary_10_3390_info15120788
crossref_primary_10_1007_s10462_022_10332_z
crossref_primary_10_1109_TVCG_2023_3247459
crossref_primary_10_1364_AO_468984
crossref_primary_10_1016_j_eswa_2025_127404
crossref_primary_10_1016_j_isci_2025_111974
crossref_primary_10_1016_j_isprsjprs_2025_07_029
crossref_primary_10_1063_5_0099159
crossref_primary_10_1016_j_conbuildmat_2023_134668
crossref_primary_10_1109_JSTARS_2025_3561160
crossref_primary_10_3390_s25103140
crossref_primary_10_1016_j_patcog_2022_109256
crossref_primary_10_1109_TIM_2025_3554859
crossref_primary_10_1016_j_aei_2025_103249
crossref_primary_10_1111_mice_13113
crossref_primary_10_1007_s00521_021_06845_3
crossref_primary_10_1016_j_knosys_2025_113588
crossref_primary_10_7717_peerj_cs_2932
crossref_primary_10_1016_j_patrec_2024_11_028
crossref_primary_10_1016_j_optcom_2025_131748
crossref_primary_10_1016_j_compag_2024_109462
crossref_primary_10_3390_rs15204977
crossref_primary_10_1109_TITS_2024_3506659
crossref_primary_10_3390_rs13234941
crossref_primary_10_1109_JOE_2024_3467309
crossref_primary_10_1177_20552076221136362
crossref_primary_10_1109_ACCESS_2024_3463804
crossref_primary_10_1109_JSEN_2024_3355388
crossref_primary_10_1109_TIP_2024_3381833
crossref_primary_10_3390_geomatics5010009
crossref_primary_10_1016_j_ijcard_2024_131945
crossref_primary_10_1016_j_bspc_2024_107140
crossref_primary_10_1016_j_compbiomed_2024_108386
crossref_primary_10_1016_j_cviu_2024_104148
crossref_primary_10_1109_TGRS_2023_3242987
crossref_primary_10_3389_frobt_2024_1387491
crossref_primary_10_1109_TGRS_2024_3502768
crossref_primary_10_1109_TIM_2022_3165270
crossref_primary_10_1007_s00371_022_02508_z
crossref_primary_10_1016_j_displa_2023_102496
crossref_primary_10_1109_TII_2024_3366221
crossref_primary_10_1016_j_ultrasmedbio_2022_08_003
crossref_primary_10_1109_ACCESS_2021_3112174
crossref_primary_10_1016_j_patcog_2025_111506
crossref_primary_10_1109_TGRS_2024_3379380
crossref_primary_10_1016_j_compbiomed_2022_105546
crossref_primary_10_1109_TIM_2023_3310088
crossref_primary_10_1016_j_cviu_2025_104436
crossref_primary_10_1109_ACCESS_2023_3263179
crossref_primary_10_1016_j_bspc_2024_107393
crossref_primary_10_1016_j_measurement_2025_116777
crossref_primary_10_1007_s00371_024_03442_y
crossref_primary_10_3390_ijgi11040256
crossref_primary_10_1016_j_engappai_2023_107741
crossref_primary_10_1109_TIP_2025_3587588
crossref_primary_10_1109_ACCESS_2021_3134196
crossref_primary_10_1016_j_compag_2025_110132
crossref_primary_10_1016_j_istruc_2023_105640
crossref_primary_10_1109_ACCESS_2024_3496723
crossref_primary_10_3390_rs15051232
crossref_primary_10_1016_j_media_2025_103510
crossref_primary_10_1016_j_eswa_2023_121568
crossref_primary_10_3390_rs15051235
crossref_primary_10_1016_j_neunet_2025_107972
crossref_primary_10_1016_j_patcog_2023_110085
crossref_primary_10_1109_ACCESS_2022_3223424
crossref_primary_10_1016_j_jvcir_2025_104452
crossref_primary_10_3390_f15020288
crossref_primary_10_1109_ACCESS_2025_3568866
crossref_primary_10_1364_OL_559616
crossref_primary_10_3390_rs17142450
crossref_primary_10_1109_ACCESS_2024_3394048
crossref_primary_10_1016_j_displa_2024_102792
crossref_primary_10_1038_s41598_025_13890_8
crossref_primary_10_1145_3589002
crossref_primary_10_3233_JIFS_231440
crossref_primary_10_1177_20552076241259664
crossref_primary_10_1007_s11265_022_01816_w
crossref_primary_10_3390_s22249834
crossref_primary_10_1007_s10489_022_04416_0
crossref_primary_10_1016_j_neunet_2024_106353
crossref_primary_10_1016_j_engappai_2025_111579
crossref_primary_10_20965_jrm_2025_p0292
crossref_primary_10_3390_atmos15070752
crossref_primary_10_1177_13694332241260136
crossref_primary_10_3390_rs15215264
crossref_primary_10_1007_s11042_023_14596_7
crossref_primary_10_1177_00405175251335188
crossref_primary_10_1016_j_neucom_2023_126530
crossref_primary_10_1038_s41598_022_19013_x
crossref_primary_10_1371_journal_pone_0299392
crossref_primary_10_3390_e22101174
crossref_primary_10_1007_s00034_025_03269_5
crossref_primary_10_3390_math9192498
crossref_primary_10_1109_TIP_2024_3497802
crossref_primary_10_1049_ipr2_12115
crossref_primary_10_3390_drones9050342
crossref_primary_10_1016_j_knosys_2025_113385
crossref_primary_10_1016_j_compbiomed_2024_108184
crossref_primary_10_1016_j_measurement_2024_116208
crossref_primary_10_3390_s25082589
crossref_primary_10_1109_TMM_2023_3325962
crossref_primary_10_3390_rs17142473
crossref_primary_10_1016_j_patcog_2024_110330
crossref_primary_10_1007_s00371_024_03375_6
crossref_primary_10_1007_s10044_024_01307_7
crossref_primary_10_3724_j_gyjzG25062002
crossref_primary_10_1134_S00051179220100034
crossref_primary_10_1016_j_atech_2025_100811
crossref_primary_10_1109_TIM_2024_3457951
crossref_primary_10_1007_s00521_022_08059_7
crossref_primary_10_1007_s10489_024_05274_8
crossref_primary_10_1109_TIP_2024_3504282
crossref_primary_10_1007_s11760_023_02905_4
crossref_primary_10_1016_j_neucom_2023_126560
crossref_primary_10_1109_TMM_2023_3330082
crossref_primary_10_1016_j_jvcir_2023_104040
crossref_primary_10_1007_s11517_024_03123_x
crossref_primary_10_3390_rs16040643
crossref_primary_10_1007_s00170_024_13275_7
crossref_primary_10_1109_TMM_2023_3325731
crossref_primary_10_1016_j_cmpb_2020_105837
crossref_primary_10_1007_s00530_025_01727_3
crossref_primary_10_1016_j_compag_2022_107542
crossref_primary_10_1016_j_compbiomed_2024_109046
crossref_primary_10_1016_j_jobe_2025_112927
crossref_primary_10_1109_LSP_2025_3560237
crossref_primary_10_1016_j_compag_2025_110338
crossref_primary_10_1109_JSEN_2022_3178119
crossref_primary_10_1016_j_bspc_2023_105711
crossref_primary_10_1016_j_dsp_2022_103425
crossref_primary_10_3233_THC_230690
crossref_primary_10_3390_plants12183209
crossref_primary_10_3390_rs13112220
crossref_primary_10_1002_jsid_1185
crossref_primary_10_1007_s00138_024_01552_0
crossref_primary_10_1002_mp_16615
crossref_primary_10_1155_2023_8212790
crossref_primary_10_1080_14680629_2025_2549572
crossref_primary_10_1007_s11063_023_11333_x
crossref_primary_10_1016_j_compmedimag_2025_102573
crossref_primary_10_1016_j_patcog_2024_110554
crossref_primary_10_1109_JSTARS_2025_3571455
crossref_primary_10_1007_s00107_025_02318_9
crossref_primary_10_1061_JPCFEV_CFENG_4952
crossref_primary_10_1038_s41597_025_05670_w
crossref_primary_10_1186_s40494_024_01221_5
crossref_primary_10_1016_j_optlastec_2023_109331
crossref_primary_10_1109_JSTARS_2024_3429491
crossref_primary_10_1007_s11265_022_01801_3
crossref_primary_10_1016_j_bspc_2021_103165
crossref_primary_10_3390_s24165305
crossref_primary_10_1109_TMC_2022_3185134
crossref_primary_10_1109_TMM_2023_3331196
crossref_primary_10_1016_j_bspc_2023_104608
crossref_primary_10_1016_j_knosys_2020_106647
crossref_primary_10_1109_JBHI_2023_3323533
crossref_primary_10_1007_s11554_023_01394_5
crossref_primary_10_3390_electronics13061006
crossref_primary_10_1016_j_ijdrr_2025_105655
crossref_primary_10_1016_j_apacoust_2021_108499
crossref_primary_10_1109_TAES_2025_3544613
crossref_primary_10_1016_j_bspc_2024_107171
crossref_primary_10_1109_JIOT_2025_3539867
crossref_primary_10_1049_ipr2_13012
crossref_primary_10_1002_mp_17730
crossref_primary_10_1002_mp_17735
crossref_primary_10_1109_TASE_2024_3506617
crossref_primary_10_1016_j_patcog_2022_109099
crossref_primary_10_3390_electronics12143129
crossref_primary_10_1088_2631_8695_addb9c
crossref_primary_10_1007_s00500_021_06388_8
crossref_primary_10_1109_ACCESS_2022_3175864
crossref_primary_10_1016_j_neunet_2025_107553
crossref_primary_10_1016_j_engstruct_2024_119262
crossref_primary_10_1108_IJCST_04_2024_0096
crossref_primary_10_1007_s00371_024_03607_9
crossref_primary_10_1016_j_compag_2024_109817
crossref_primary_10_1007_s10278_023_00947_1
crossref_primary_10_1109_TITS_2024_3384018
crossref_primary_10_1007_s11761_023_00373_9
crossref_primary_10_1016_j_patcog_2024_110650
crossref_primary_10_1109_LRA_2023_3257707
crossref_primary_10_1007_s11263_023_01801_1
crossref_primary_10_1016_j_bspc_2024_107426
crossref_primary_10_1016_j_dsp_2025_105534
crossref_primary_10_1016_j_ultrasmedbio_2023_08_003
crossref_primary_10_1109_TITS_2024_3510116
crossref_primary_10_1016_j_compbiomed_2023_107844
crossref_primary_10_1109_ACCESS_2023_3347812
crossref_primary_10_1109_JSEN_2023_3286373
crossref_primary_10_1109_TGRS_2024_3503589
crossref_primary_10_32604_cmc_2025_060793
crossref_primary_10_1109_TGRS_2024_3503588
crossref_primary_10_3390_electronics12061378
crossref_primary_10_1016_j_datak_2025_102411
crossref_primary_10_1016_j_engappai_2025_110507
crossref_primary_10_1109_JOE_2023_3252760
crossref_primary_10_3390_app13116512
crossref_primary_10_1016_j_imavis_2025_105670
crossref_primary_10_1016_j_neunet_2023_01_031
crossref_primary_10_1007_s00371_024_03636_4
crossref_primary_10_1109_ACCESS_2024_3388090
crossref_primary_10_1109_LSP_2021_3128374
crossref_primary_10_1016_j_dsp_2025_105547
crossref_primary_10_1186_s12886_025_03908_0
crossref_primary_10_1016_j_solener_2023_112282
crossref_primary_10_1109_ACCESS_2024_3373619
crossref_primary_10_1002_ima_70041
crossref_primary_10_1364_AO_553741
crossref_primary_10_1016_j_renene_2025_122926
crossref_primary_10_1016_j_neucom_2023_127206
crossref_primary_10_1155_2022_4792532
crossref_primary_10_1016_j_patcog_2021_107994
crossref_primary_10_1186_s40494_024_01470_4
crossref_primary_10_1109_ACCESS_2023_3289952
crossref_primary_10_1109_TCSVT_2021_3093890
crossref_primary_10_1109_ACCESS_2023_3289957
crossref_primary_10_1049_ipr2_12631
crossref_primary_10_1177_13694332241242975
crossref_primary_10_3390_a15080281
crossref_primary_10_1016_j_eswa_2024_123518
crossref_primary_10_1109_TASE_2024_3370147
crossref_primary_10_1016_j_patrec_2025_03_012
crossref_primary_10_1016_j_bspc_2025_107961
crossref_primary_10_1007_s00371_021_02222_2
crossref_primary_10_1109_LSP_2025_3545306
crossref_primary_10_3390_rs15082119
crossref_primary_10_1016_j_istruc_2023_02_010
crossref_primary_10_1016_j_neucom_2025_131125
crossref_primary_10_3390_pr12071337
crossref_primary_10_1109_TGRS_2021_3073840
crossref_primary_10_1016_j_imavis_2021_104243
crossref_primary_10_1117_1_JEI_33_4_043047
crossref_primary_10_3390_rs14184647
crossref_primary_10_1016_j_csbj_2023_06_017
crossref_primary_10_1016_j_eswa_2025_129349
crossref_primary_10_1109_TGRS_2025_3588415
crossref_primary_10_1088_1361_6501_adbeed
crossref_primary_10_1038_s41598_025_98938_5
crossref_primary_10_3389_fenvs_2025_1566224
crossref_primary_10_1080_15732479_2024_2363832
crossref_primary_10_1007_s00784_024_06061_y
crossref_primary_10_3390_buildings13020285
crossref_primary_10_1016_j_patcog_2024_110648
crossref_primary_10_1038_s41598_024_71194_9
crossref_primary_10_3390_rs13163187
crossref_primary_10_1038_s41598_024_67113_7
crossref_primary_10_3788_AOS250859
crossref_primary_10_1016_j_imavis_2022_104536
crossref_primary_10_1038_s41598_023_31551_6
crossref_primary_10_1109_LGRS_2022_3187760
crossref_primary_10_1111_mice_12710
crossref_primary_10_3390_jmmp8020066
crossref_primary_10_3390_math11244890
crossref_primary_10_1016_j_patcog_2024_110615
crossref_primary_10_1016_j_cviu_2025_104471
crossref_primary_10_1016_j_engappai_2024_108591
crossref_primary_10_3390_info14070366
crossref_primary_10_1016_j_patcog_2021_108414
crossref_primary_10_3390_ani12091223
crossref_primary_10_1007_s00521_022_07612_8
crossref_primary_10_1016_j_compbiomed_2023_106792
crossref_primary_10_1145_3647999
crossref_primary_10_1016_j_ymssp_2023_110484
crossref_primary_10_1049_ipr2_12888
crossref_primary_10_1109_ACCESS_2024_3378097
crossref_primary_10_1109_ACCESS_2024_3463713
crossref_primary_10_1186_s40644_022_00457_3
crossref_primary_10_1088_1361_6501_ad4ab5
crossref_primary_10_1109_JOE_2022_3190517
crossref_primary_10_1109_TII_2025_3558324
crossref_primary_10_1140_epjs_s11734_025_01950_z
crossref_primary_10_3390_insects15070557
crossref_primary_10_1016_j_measurement_2023_112497
crossref_primary_10_1109_JSTARS_2024_3472908
crossref_primary_10_1109_ACCESS_2025_3555321
crossref_primary_10_1190_geo2020_0945_1
crossref_primary_10_1109_TGRS_2024_3394901
crossref_primary_10_1016_j_compag_2025_110058
crossref_primary_10_1016_j_imavis_2025_105487
crossref_primary_10_1007_s11063_024_11662_5
crossref_primary_10_1109_JSTSP_2020_3043064
crossref_primary_10_1016_j_patcog_2022_108943
crossref_primary_10_1016_j_cviu_2022_103514
crossref_primary_10_1007_s00371_025_03899_5
crossref_primary_10_1038_s41598_024_75715_4
crossref_primary_10_1109_TASLP_2022_3184889
crossref_primary_10_1371_journal_pone_0311228
crossref_primary_10_1016_j_compeleceng_2022_108525
crossref_primary_10_1016_j_engappai_2024_109459
crossref_primary_10_1016_j_measurement_2025_118966
crossref_primary_10_3390_rs16224305
crossref_primary_10_3390_rs17183162
crossref_primary_10_3390_rs17040707
crossref_primary_10_1007_s11263_025_02431_5
crossref_primary_10_3390_app13148526
crossref_primary_10_1016_j_patcog_2025_112092
crossref_primary_10_1016_j_compbiomed_2023_107665
crossref_primary_10_1016_j_engappai_2024_109467
crossref_primary_10_3390_agriculture14020244
crossref_primary_10_7717_peerj_cs_2146
crossref_primary_10_1109_LSP_2021_3128375
crossref_primary_10_3390_s24175505
crossref_primary_10_1049_ipr2_12425
crossref_primary_10_1109_JSTARS_2024_3441644
crossref_primary_10_1016_j_imavis_2022_104508
crossref_primary_10_1016_j_engappai_2025_111829
crossref_primary_10_1016_j_knosys_2022_108901
crossref_primary_10_1109_JBHI_2022_3153793
crossref_primary_10_1007_s41365_024_01528_9
crossref_primary_10_1007_s11042_024_18291_z
crossref_primary_10_1016_j_autcon_2024_105934
crossref_primary_10_1016_j_compbiomed_2024_108819
crossref_primary_10_1016_j_compag_2025_110078
crossref_primary_10_1109_ACCESS_2023_3346933
crossref_primary_10_3390_electronics12132880
crossref_primary_10_1016_j_cemconcomp_2025_106272
crossref_primary_10_1016_j_fbio_2023_102848
crossref_primary_10_1109_ACCESS_2024_3438551
crossref_primary_10_1109_TCSVT_2022_3185252
crossref_primary_10_1007_s11760_023_02765_y
crossref_primary_10_3390_s25123646
crossref_primary_10_1016_j_engappai_2025_110974
crossref_primary_10_1109_ACCESS_2023_3264014
crossref_primary_10_1109_ACCESS_2023_3294476
crossref_primary_10_1016_j_cviu_2024_103975
crossref_primary_10_1016_j_eswa_2024_125759
crossref_primary_10_1016_j_powtec_2024_120583
crossref_primary_10_3390_rs15235441
crossref_primary_10_1016_j_jag_2023_103242
crossref_primary_10_1109_JTEHM_2023_3289990
crossref_primary_10_1016_j_compbiomed_2023_107203
crossref_primary_10_1109_LSP_2023_3329307
crossref_primary_10_3390_coatings12111730
crossref_primary_10_1177_00368504251318202
crossref_primary_10_1016_j_neunet_2023_03_041
crossref_primary_10_1007_s12530_023_09489_x
crossref_primary_10_1038_s41598_022_14879_3
crossref_primary_10_1109_LGRS_2023_3235117
crossref_primary_10_3724_SP_J_1089_2022_18927
crossref_primary_10_1109_ACCESS_2023_3298826
crossref_primary_10_1016_j_scitotenv_2023_169113
crossref_primary_10_1016_j_eswa_2024_125505
crossref_primary_10_1016_j_engappai_2025_110917
crossref_primary_10_1109_ACCESS_2024_3465534
crossref_primary_10_1109_TCSVT_2024_3417607
crossref_primary_10_3390_rs13010060
crossref_primary_10_1007_s11770_024_1085_8
crossref_primary_10_1016_j_aei_2025_103743
crossref_primary_10_1016_j_bspc_2024_106983
crossref_primary_10_1080_10447318_2025_2537795
crossref_primary_10_1109_TGRS_2023_3339970
crossref_primary_10_1016_j_engappai_2024_108782
crossref_primary_10_1016_j_optlastec_2025_113684
crossref_primary_10_1007_s10489_024_05359_4
crossref_primary_10_1371_journal_pone_0299732
crossref_primary_10_1016_j_powtec_2024_119582
crossref_primary_10_1109_ACCESS_2025_3551604
crossref_primary_10_1109_ACCESS_2023_3322371
crossref_primary_10_3390_diagnostics15141744
crossref_primary_10_1016_j_eswa_2024_124446
crossref_primary_10_3390_rs17060952
crossref_primary_10_3390_rs14174211
crossref_primary_10_1016_j_patcog_2021_108231
crossref_primary_10_1109_TIP_2024_3393365
crossref_primary_10_3390_rs17111902
crossref_primary_10_1109_ACCESS_2023_3254430
crossref_primary_10_1109_JSTARS_2024_3397488
crossref_primary_10_1016_j_ijfatigue_2024_108667
crossref_primary_10_2196_45299
crossref_primary_10_1007_s00371_024_03295_5
crossref_primary_10_1016_j_jvcir_2021_103231
crossref_primary_10_1016_j_compag_2024_109436
crossref_primary_10_1109_TPAMI_2023_3305630
crossref_primary_10_1016_j_ins_2023_119460
crossref_primary_10_1016_j_neucom_2025_129691
crossref_primary_10_1007_s11042_024_19357_8
crossref_primary_10_1038_s41598_023_27883_y
crossref_primary_10_1109_LGRS_2023_3249764
crossref_primary_10_1038_s41746_025_01753_5
crossref_primary_10_1016_j_compbiomed_2022_106090
crossref_primary_10_1088_1361_6501_acb80b
crossref_primary_10_1016_j_compbiomed_2025_109841
crossref_primary_10_1016_j_neucom_2021_08_039
crossref_primary_10_1080_10739149_2025_2479482
crossref_primary_10_1007_s00521_023_08545_6
crossref_primary_10_3389_fncom_2023_1113381
crossref_primary_10_1109_TGRS_2024_3389750
crossref_primary_10_1111_mice_13437
crossref_primary_10_1109_JBHI_2024_3446623
crossref_primary_10_1016_j_bspc_2023_105330
crossref_primary_10_1007_s11517_025_03333_x
crossref_primary_10_1016_j_compbiomed_2024_108616
crossref_primary_10_1016_j_engappai_2024_109890
crossref_primary_10_1016_j_patcog_2021_108469
crossref_primary_10_1016_j_bspc_2023_105329
crossref_primary_10_1016_j_patcog_2022_108523
crossref_primary_10_1016_j_patcog_2023_109514
crossref_primary_10_3390_rs15204931
crossref_primary_10_1007_s10618_025_01129_z
crossref_primary_10_1007_s11760_024_03034_2
crossref_primary_10_1109_TAP_2025_3553767
crossref_primary_10_1109_LSP_2023_3283541
crossref_primary_10_1038_s41598_023_36298_8
crossref_primary_10_3390_diagnostics11071246
crossref_primary_10_1007_s10554_025_03342_9
crossref_primary_10_1007_s11042_023_15343_8
crossref_primary_10_1016_j_isprsjprs_2024_10_016
crossref_primary_10_1111_mice_13401
crossref_primary_10_1007_s10044_024_01379_5
crossref_primary_10_1109_LGRS_2021_3068132
crossref_primary_10_1109_TMM_2024_3354622
crossref_primary_10_1016_j_envsoft_2025_106629
crossref_primary_10_1038_s41598_025_10506_z
crossref_primary_10_1016_j_compbiolchem_2025_108496
crossref_primary_10_1109_TGRS_2025_3598446
crossref_primary_10_3390_app14125007
crossref_primary_10_1016_j_engappai_2024_108751
crossref_primary_10_3390_rs15204900
crossref_primary_10_1111_phor_12530
crossref_primary_10_3390_s23157008
crossref_primary_10_1016_j_patcog_2025_112232
crossref_primary_10_1007_s11760_025_04740_1
crossref_primary_10_3390_rs15123094
crossref_primary_10_3390_s22218245
crossref_primary_10_3390_s23167284
crossref_primary_10_1016_j_eswa_2024_124698
crossref_primary_10_1016_j_asoc_2021_108326
crossref_primary_10_1016_j_inffus_2024_102445
crossref_primary_10_3390_app13053168
crossref_primary_10_1016_j_jksuci_2022_04_011
crossref_primary_10_1016_j_jvcir_2023_103856
crossref_primary_10_1016_j_patcog_2022_108782
crossref_primary_10_1109_JBHI_2024_3445112
crossref_primary_10_3389_fnagi_2022_1073909
crossref_primary_10_1007_s11042_023_14875_3
crossref_primary_10_1016_j_optlastec_2025_112554
crossref_primary_10_1109_JBHI_2025_3556709
crossref_primary_10_1007_s11042_024_19368_5
crossref_primary_10_1109_LGRS_2024_3372807
crossref_primary_10_3390_app15105432
crossref_primary_10_1016_j_knosys_2024_112132
crossref_primary_10_1016_j_knosys_2022_108996
crossref_primary_10_3390_s24227159
crossref_primary_10_3390_plants10061257
crossref_primary_10_3390_rs15071821
crossref_primary_10_1080_24751839_2024_2367387
crossref_primary_10_1016_j_imavis_2024_104956
crossref_primary_10_1007_s11082_023_05766_w
crossref_primary_10_1177_08953996241299998
crossref_primary_10_1016_j_procs_2024_09_167
crossref_primary_10_1016_j_engappai_2024_108530
crossref_primary_10_1016_j_compbiomed_2025_110806
crossref_primary_10_1109_TCSVT_2023_3336068
crossref_primary_10_32604_cmc_2023_038059
crossref_primary_10_1007_s11263_025_02560_x
crossref_primary_10_1109_TIM_2024_3522705
crossref_primary_10_1109_TCSVT_2022_3166914
crossref_primary_10_1016_j_infrared_2024_105489
crossref_primary_10_1088_2057_1976_ad6f12
crossref_primary_10_1016_j_cie_2024_110301
crossref_primary_10_1016_j_postharvbio_2024_113130
crossref_primary_10_1016_j_istruc_2025_110086
crossref_primary_10_1109_TMM_2023_3293994
crossref_primary_10_1016_j_displa_2023_102601
crossref_primary_10_1016_j_eswa_2023_120812
crossref_primary_10_1016_j_neucom_2025_129648
crossref_primary_10_1109_TCSVT_2023_3283705
crossref_primary_10_1177_03611981251320388
crossref_primary_10_3390_rs16010009
crossref_primary_10_1007_s11517_024_03205_w
crossref_primary_10_1109_TGRS_2024_3443280
crossref_primary_10_1109_ACCESS_2024_3523200
crossref_primary_10_3389_fcvm_2025_1606159
crossref_primary_10_3390_bioengineering11101047
crossref_primary_10_1016_j_compmedimag_2023_102307
crossref_primary_10_1016_j_eswa_2024_125562
crossref_primary_10_3390_app14114371
crossref_primary_10_1007_s10489_023_04636_y
crossref_primary_10_1049_ipr2_13145
crossref_primary_10_1002_mp_17482
crossref_primary_10_1109_TAP_2025_3577780
crossref_primary_10_1016_j_measurement_2024_115432
crossref_primary_10_1186_s13636_021_00226_3
crossref_primary_10_1109_TETCI_2024_3375022
crossref_primary_10_1007_s11517_022_02563_7
crossref_primary_10_1109_JSTARS_2023_3339241
crossref_primary_10_1016_j_jvcir_2024_104237
crossref_primary_10_1016_j_inffus_2025_103165
crossref_primary_10_1109_LGRS_2022_3166347
crossref_primary_10_3390_rs13173527
crossref_primary_10_1016_j_jfoodeng_2024_112126
crossref_primary_10_3390_s25185783
crossref_primary_10_1109_TGRS_2024_3421950
crossref_primary_10_1093_comjnl_bxae112
crossref_primary_10_1016_j_eswa_2023_120987
crossref_primary_10_1109_TITS_2022_3166208
crossref_primary_10_1007_s44295_025_00070_7
crossref_primary_10_1016_j_neucom_2024_129110
crossref_primary_10_1109_JSTARS_2025_3582803
crossref_primary_10_3390_s25061720
crossref_primary_10_1016_j_mtcomm_2025_112727
crossref_primary_10_1109_TGRS_2025_3550867
crossref_primary_10_1002_jsfa_14355
crossref_primary_10_1016_j_inffus_2025_103399
crossref_primary_10_1109_JSTARS_2024_3474849
crossref_primary_10_1007_s11263_024_02024_8
crossref_primary_10_1109_ACCESS_2023_3268114
crossref_primary_10_1016_j_eswa_2025_126853
crossref_primary_10_1016_j_compbiomed_2024_108431
crossref_primary_10_1007_s00500_023_07936_0
crossref_primary_10_1109_ACCESS_2024_3524316
crossref_primary_10_1016_j_matchar_2025_115198
crossref_primary_10_1016_j_jclepro_2024_143024
crossref_primary_10_3390_rs14164001
crossref_primary_10_1109_JIOT_2023_3343758
crossref_primary_10_1515_jisys_2024_0185
crossref_primary_10_1007_s00530_024_01640_1
crossref_primary_10_1016_j_engappai_2023_106142
crossref_primary_10_1016_j_procs_2025_04_301
crossref_primary_10_1080_01431161_2022_2107411
crossref_primary_10_1007_s00259_023_06418_7
crossref_primary_10_1109_TCPMT_2024_3428595
crossref_primary_10_1016_j_ins_2023_01_106
crossref_primary_10_1016_j_patcog_2024_111193
crossref_primary_10_1109_TIM_2024_3460882
crossref_primary_10_1109_JSEN_2023_3305681
crossref_primary_10_1109_TMM_2023_3270629
crossref_primary_10_1109_TGRS_2025_3579272
crossref_primary_10_1016_j_jvcir_2024_104257
crossref_primary_10_1109_ACCESS_2025_3563459
crossref_primary_10_1109_TCSI_2024_3521933
crossref_primary_10_1016_j_cam_2023_115551
crossref_primary_10_1109_JSTARS_2025_3540394
crossref_primary_10_3390_app15116358
crossref_primary_10_3390_coatings12101551
crossref_primary_10_1016_j_eswa_2022_119218
crossref_primary_10_3390_fire6050192
crossref_primary_10_3390_s23115344
crossref_primary_10_1016_j_compbiomed_2021_104673
crossref_primary_10_1016_j_neucom_2024_128045
crossref_primary_10_1109_LSP_2022_3151549
crossref_primary_10_3390_app15105225
crossref_primary_10_1109_TNSRE_2024_3394738
crossref_primary_10_1016_j_compbiomed_2024_109300
crossref_primary_10_1016_j_neucom_2022_05_023
crossref_primary_10_1109_JBHI_2023_3259802
crossref_primary_10_1109_JSEN_2022_3229031
crossref_primary_10_1109_TPAMI_2024_3350450
crossref_primary_10_1016_j_compbiomed_2021_104688
crossref_primary_10_1007_s11760_022_02310_3
crossref_primary_10_1007_s13246_024_01457_2
crossref_primary_10_1016_j_asoc_2025_112841
crossref_primary_10_1109_TGRS_2024_3497579
crossref_primary_10_1007_s11760_024_03477_7
crossref_primary_10_1016_j_bspc_2023_105605
crossref_primary_10_1016_j_jvcir_2024_104271
crossref_primary_10_1109_TVCG_2023_3332950
crossref_primary_10_1109_JSEN_2024_3381928
crossref_primary_10_1088_1361_6579_ac6049
crossref_primary_10_1109_TIM_2023_3302376
crossref_primary_10_3390_insects14020099
crossref_primary_10_1007_s00371_022_02597_w
crossref_primary_10_1109_TCSVT_2024_3449070
crossref_primary_10_3390_electronics10222756
crossref_primary_10_3390_s25185743
crossref_primary_10_1016_j_compbiomed_2021_105107
crossref_primary_10_1016_j_infrared_2024_105310
crossref_primary_10_12677_AAM_2023_1211478
crossref_primary_10_1051_jnwpu_20244220335
crossref_primary_10_1007_s10489_022_03917_2
crossref_primary_10_1038_s41598_024_74690_0
crossref_primary_10_1109_TGRS_2023_3338611
crossref_primary_10_1016_j_apenergy_2025_126548
crossref_primary_10_7717_peerj_cs_1751
crossref_primary_10_1109_LGRS_2021_3093101
crossref_primary_10_1109_ACCESS_2020_3025372
crossref_primary_10_1109_TIM_2023_3252632
crossref_primary_10_5194_amt_17_3029_2024
crossref_primary_10_1007_s11042_023_17678_8
crossref_primary_10_1109_LGRS_2025_3596932
crossref_primary_10_1109_TITS_2024_3413675
crossref_primary_10_3390_rs15123121
crossref_primary_10_1109_TGRS_2023_3243769
crossref_primary_10_1016_j_bspc_2022_104243
crossref_primary_10_1007_s40747_025_02015_3
crossref_primary_10_1111_mice_13018
crossref_primary_10_1016_j_bspc_2024_105970
crossref_primary_10_3390_s25133904
crossref_primary_10_1080_00140139_2024_2449113
crossref_primary_10_1016_j_compag_2024_109560
crossref_primary_10_1016_j_eswa_2023_121407
crossref_primary_10_3390_s23073691
crossref_primary_10_1016_j_eswa_2023_122736
crossref_primary_10_1007_s11042_023_15505_8
crossref_primary_10_1109_JBHI_2024_3512584
crossref_primary_10_3390_rs14122884
crossref_primary_10_1080_17538947_2024_2346258
crossref_primary_10_1016_j_softx_2025_102110
crossref_primary_10_1109_TCSVT_2023_3269951
crossref_primary_10_3390_photonics12060588
crossref_primary_10_1016_j_ascom_2024_100881
crossref_primary_10_1016_j_mtcomm_2024_110480
crossref_primary_10_1109_JSTARS_2025_3555849
crossref_primary_10_1109_TETCI_2024_3462854
crossref_primary_10_1007_s10462_025_11207_9
crossref_primary_10_1109_LGRS_2024_3437743
crossref_primary_10_1007_s11042_023_15823_x
crossref_primary_10_1117_1_JOM_5_2_024504
crossref_primary_10_1186_s13007_025_01392_7
crossref_primary_10_3390_rs14061523
crossref_primary_10_1016_j_media_2025_103480
crossref_primary_10_1016_j_compbiomed_2024_108250
crossref_primary_10_1016_j_compbiomed_2024_108010
crossref_primary_10_3389_fmats_2021_761229
crossref_primary_10_3390_s22103960
crossref_primary_10_12677_csa_2025_155138
crossref_primary_10_1016_j_media_2021_102205
crossref_primary_10_12677_met_2024_135046
crossref_primary_10_1007_s00371_024_03421_3
crossref_primary_10_1038_s41598_024_63538_2
crossref_primary_10_1109_JSTARS_2021_3123398
crossref_primary_10_2478_amns_2023_2_01579
crossref_primary_10_1049_ipr2_70184
crossref_primary_10_1109_TPAMI_2025_3562237
crossref_primary_10_1186_s13007_023_01045_7
crossref_primary_10_1109_TAP_2025_3533739
crossref_primary_10_1038_s41598_023_42190_2
crossref_primary_10_1109_TETCI_2023_3259433
crossref_primary_10_1016_j_neucom_2021_09_020
crossref_primary_10_1016_j_sigpro_2020_107896
crossref_primary_10_1109_TIM_2021_3126847
crossref_primary_10_3390_agriculture15161752
crossref_primary_10_1016_j_bspc_2025_108635
crossref_primary_10_3390_machines10121172
crossref_primary_10_3390_app14167234
crossref_primary_10_1088_1361_6560_acf641
crossref_primary_10_1016_j_solener_2025_113646
crossref_primary_10_1109_JIOT_2022_3158886
crossref_primary_10_1109_ACCESS_2025_3555654
crossref_primary_10_1007_s10851_023_01156_9
crossref_primary_10_1016_j_media_2023_103066
crossref_primary_10_1109_TIM_2022_3216399
crossref_primary_10_3389_fnins_2021_687832
crossref_primary_10_1016_j_bspc_2025_107772
crossref_primary_10_1038_s41598_024_74445_x
crossref_primary_10_1016_j_compbiomed_2024_108039
crossref_primary_10_1155_2022_7780756
crossref_primary_10_1109_JBHI_2024_3487630
crossref_primary_10_1109_TIM_2023_3325447
crossref_primary_10_1109_JSEN_2024_3409769
crossref_primary_10_3390_bioengineering11070682
crossref_primary_10_1364_OE_575920
crossref_primary_10_3390_rs15215168
crossref_primary_10_1002_ima_70207
crossref_primary_10_1109_ACCESS_2023_3344813
crossref_primary_10_1002_ima_22926
crossref_primary_10_1016_j_conbuildmat_2023_134134
crossref_primary_10_1002_ima_22929
crossref_primary_10_1016_j_jksuci_2023_101838
crossref_primary_10_1109_ACCESS_2024_3426518
crossref_primary_10_1109_TIM_2024_3420348
crossref_primary_10_1109_TIM_2024_3421436
crossref_primary_10_3390_s25103035
crossref_primary_10_1016_j_biosystemseng_2024_05_011
crossref_primary_10_1109_TGRS_2024_3439401
crossref_primary_10_1007_s10489_024_05507_w
crossref_primary_10_1016_j_ultrasmedbio_2024_05_027
crossref_primary_10_1109_TCSVT_2023_3260025
crossref_primary_10_1186_s40494_023_01009_z
crossref_primary_10_1016_j_eswa_2025_126690
crossref_primary_10_1016_j_snb_2025_137800
crossref_primary_10_1049_ipr2_12475
crossref_primary_10_1109_TASLP_2023_3313442
crossref_primary_10_1016_j_cageo_2025_105999
crossref_primary_10_3390_app14114724
crossref_primary_10_1121_10_0024348
crossref_primary_10_1016_j_patcog_2022_109166
crossref_primary_10_3389_fmars_2022_1003568
crossref_primary_10_3390_s25072207
crossref_primary_10_1016_j_knosys_2025_114127
crossref_primary_10_1109_TGRS_2024_3362836
crossref_primary_10_1155_2024_1866665
crossref_primary_10_3390_rs14112611
crossref_primary_10_3390_app13095430
crossref_primary_10_1007_s00371_024_03639_1
crossref_primary_10_1109_TIP_2022_3232209
crossref_primary_10_1007_s11263_024_02020_y
crossref_primary_10_1016_j_isprsjprs_2022_11_009
crossref_primary_10_1016_j_patcog_2022_109170
crossref_primary_10_1016_j_cmpb_2025_109065
crossref_primary_10_1016_j_eswa_2024_123903
crossref_primary_10_3390_app13052975
crossref_primary_10_1109_TGRS_2024_3359684
crossref_primary_10_1016_j_compag_2025_110270
crossref_primary_10_1109_JSTARS_2024_3422793
crossref_primary_10_1007_s00530_024_01509_3
crossref_primary_10_1007_s11760_025_04639_x
crossref_primary_10_3103_S1060992X24700899
crossref_primary_10_1145_3528223_3530068
crossref_primary_10_3390_app13169402
crossref_primary_10_1227_ons_0000000000001023
crossref_primary_10_1177_20552076241307573
crossref_primary_10_3390_universe10100381
crossref_primary_10_1007_s12274_023_6104_1
crossref_primary_10_1109_ACCESS_2022_3197752
crossref_primary_10_1007_s10586_024_04292_y
crossref_primary_10_1016_j_engappai_2025_110300
crossref_primary_10_1016_j_atech_2023_100383
crossref_primary_10_1016_j_bspc_2023_105833
crossref_primary_10_1088_1361_6560_ad1210
crossref_primary_10_1109_ACCESS_2024_3387413
crossref_primary_10_1088_1742_6596_3072_1_012004
crossref_primary_10_1177_14759217221140976
crossref_primary_10_3390_electronics13040680
crossref_primary_10_1002_acm2_14390
crossref_primary_10_1016_j_bspc_2024_107074
crossref_primary_10_1016_j_patrec_2023_12_025
crossref_primary_10_1109_JSEN_2024_3484468
crossref_primary_10_1016_j_ijleo_2022_169944
crossref_primary_10_1109_TCSVT_2022_3212088
crossref_primary_10_3390_f15010127
crossref_primary_10_1007_s12559_022_10094_4
crossref_primary_10_3389_fcomp_2024_1420965
crossref_primary_10_1016_j_neunet_2023_09_041
crossref_primary_10_1016_j_engappai_2025_110550
crossref_primary_10_1109_LRA_2023_3281906
crossref_primary_10_3390_rs17142359
crossref_primary_10_1109_ACCESS_2025_3532505
crossref_primary_10_3390_s23198337
crossref_primary_10_1007_s00371_025_03958_x
crossref_primary_10_1155_aa_3232269
crossref_primary_10_1109_TGRS_2021_3131221
crossref_primary_10_32604_cmes_2022_020428
crossref_primary_10_1145_3711869
crossref_primary_10_1016_j_neucom_2022_03_006
crossref_primary_10_1016_j_bbe_2024_04_001
crossref_primary_10_1038_s41598_024_84575_x
crossref_primary_10_1007_s00259_024_06618_9
crossref_primary_10_32604_cmes_2023_043832
crossref_primary_10_1109_JSEN_2024_3471175
crossref_primary_10_1016_j_neunet_2025_107207
crossref_primary_10_1016_j_cageo_2024_105628
crossref_primary_10_1007_s10916_021_01751_6
crossref_primary_10_1007_s11042_024_19503_2
crossref_primary_10_1109_TCSVT_2023_3286405
crossref_primary_10_1109_TPAMI_2024_3519674
crossref_primary_10_1016_j_measurement_2024_114371
crossref_primary_10_1016_j_heliyon_2024_e33892
crossref_primary_10_3390_rs13183707
crossref_primary_10_1016_j_ndteint_2024_103053
crossref_primary_10_1109_JBHI_2025_3535579
crossref_primary_10_1364_AO_426189
crossref_primary_10_1016_j_eswa_2023_120370
crossref_primary_10_1049_ipr2_13136
crossref_primary_10_1016_j_jvcir_2025_104522
crossref_primary_10_1109_TIM_2023_3323004
crossref_primary_10_1063_5_0216945
crossref_primary_10_1002_mp_17854
crossref_primary_10_3390_electronics12143009
crossref_primary_10_1371_journal_pone_0299471
crossref_primary_10_3390_s25175324
crossref_primary_10_1109_TAI_2024_3357437
crossref_primary_10_1109_LGRS_2022_3168391
crossref_primary_10_1109_LSP_2023_3313444
crossref_primary_10_1029_2024JH000355
crossref_primary_10_1016_j_cie_2025_111139
crossref_primary_10_1109_LSP_2022_3188178
crossref_primary_10_1109_TMM_2025_3535369
crossref_primary_10_3390_rs14030661
crossref_primary_10_1109_ACCESS_2022_3203405
crossref_primary_10_3390_bioengineering11060595
crossref_primary_10_34133_plantphenomics_0218
crossref_primary_10_3390_math12070940
crossref_primary_10_3390_s24051708
crossref_primary_10_1109_TGRS_2022_3197149
crossref_primary_10_1109_TMM_2022_3210366
crossref_primary_10_1007_s00521_022_07069_9
crossref_primary_10_1109_ACCESS_2024_3504399
crossref_primary_10_1016_j_engappai_2024_108277
crossref_primary_10_1016_j_imavis_2024_105039
crossref_primary_10_1016_j_softx_2024_101857
crossref_primary_10_1016_j_bspc_2025_107815
crossref_primary_10_1109_TPAMI_2022_3166451
crossref_primary_10_1186_s12880_025_01661_w
crossref_primary_10_3390_jcm12010055
crossref_primary_10_1109_TGRS_2025_3562185
crossref_primary_10_3389_fonc_2021_717039
crossref_primary_10_1109_TGRS_2024_3480122
crossref_primary_10_3390_rs15174353
crossref_primary_10_1109_ACCESS_2022_3210190
crossref_primary_10_1038_s41598_025_85632_9
crossref_primary_10_1016_j_matchar_2024_114003
crossref_primary_10_3390_app13084842
crossref_primary_10_1109_TMM_2024_3414669
crossref_primary_10_1016_j_inffus_2023_02_019
crossref_primary_10_1016_j_bspc_2024_106223
crossref_primary_10_1007_s00521_023_08916_z
crossref_primary_10_1049_itr2_12562
crossref_primary_10_1061_JAEIED_AEENG_1936
crossref_primary_10_1109_JSTARS_2024_3365729
crossref_primary_10_1109_TCSVT_2024_3471875
crossref_primary_10_1109_LGRS_2022_3218688
crossref_primary_10_1016_j_dsp_2023_103924
crossref_primary_10_1016_j_radonc_2024_110699
crossref_primary_10_1038_s41598_022_24660_1
crossref_primary_10_3390_app15158681
crossref_primary_10_1109_TPAMI_2022_3179526
crossref_primary_10_1007_s00371_025_03970_1
crossref_primary_10_1007_s11042_023_15217_z
crossref_primary_10_1016_j_inffus_2025_103707
crossref_primary_10_1109_JBHI_2024_3447689
crossref_primary_10_1007_s11467_024_1394_7
crossref_primary_10_1016_j_cviu_2023_103751
crossref_primary_10_1002_cpe_7127
crossref_primary_10_1109_TIM_2024_3381277
crossref_primary_10_3389_fbioe_2023_1133090
crossref_primary_10_1016_j_istruc_2024_106863
crossref_primary_10_1016_j_jcis_2023_12_092
crossref_primary_10_3389_fmars_2024_1411527
crossref_primary_10_1016_j_engappai_2025_110880
crossref_primary_10_1038_s41598_024_84901_3
crossref_primary_10_1016_j_imavis_2024_105292
crossref_primary_10_1016_j_compag_2024_108866
crossref_primary_10_1177_1088467X251344933
crossref_primary_10_1177_03611981251329046
crossref_primary_10_1016_j_eswa_2024_123620
crossref_primary_10_3390_rs15174337
crossref_primary_10_1016_j_isprsjprs_2023_07_026
crossref_primary_10_1109_TVCG_2021_3109460
crossref_primary_10_1007_s11042_023_17517_w
crossref_primary_10_1016_j_jag_2025_104387
crossref_primary_10_3389_fphys_2023_1296185
crossref_primary_10_3389_fpls_2022_964058
crossref_primary_10_1364_AO_504482
crossref_primary_10_3390_s25072158
crossref_primary_10_1016_j_dsp_2022_103841
crossref_primary_10_1016_j_cja_2023_10_015
crossref_primary_10_1016_j_measurement_2024_115092
crossref_primary_10_1017_qpb_2024_11
crossref_primary_10_1016_j_neucom_2023_127105
crossref_primary_10_3390_s23146450
crossref_primary_10_1016_j_cj_2023_04_012
crossref_primary_10_3389_fonc_2022_901475
crossref_primary_10_5753_jbcs_2025_4278
crossref_primary_10_3390_f15101711
crossref_primary_10_1016_j_media_2024_103307
crossref_primary_10_1109_TITS_2023_3293822
crossref_primary_10_1016_j_isprsjprs_2022_12_026
crossref_primary_10_1016_j_knosys_2021_106753
crossref_primary_10_1007_s10489_022_03604_2
crossref_primary_10_1109_TGRS_2025_3544549
crossref_primary_10_1109_TSM_2025_3546296
crossref_primary_10_32604_cmc_2023_035716
crossref_primary_10_1007_s11042_024_20542_y
crossref_primary_10_1109_JSEN_2025_3593256
crossref_primary_10_1109_TGRS_2023_3340244
crossref_primary_10_1109_ACCESS_2024_3416450
crossref_primary_10_1109_LSP_2025_3545005
crossref_primary_10_1007_s00371_024_03713_8
crossref_primary_10_1016_j_bspc_2022_103813
crossref_primary_10_1016_j_eswa_2025_129477
crossref_primary_10_1111_age_13303
crossref_primary_10_1016_j_bspc_2025_107850
crossref_primary_10_1109_JSEN_2024_3416436
crossref_primary_10_1016_j_knosys_2024_112648
crossref_primary_10_1109_TMM_2024_3402620
crossref_primary_10_1016_j_ecoinf_2023_102215
crossref_primary_10_1088_1361_6560_acccd0
crossref_primary_10_1016_j_cviu_2023_103917
crossref_primary_10_1109_TIM_2024_3497186
crossref_primary_10_1016_j_rsase_2024_101221
crossref_primary_10_1016_j_cviu_2023_103915
crossref_primary_10_1371_journal_pone_0307206
crossref_primary_10_1007_s00259_022_06053_8
crossref_primary_10_1109_ACCESS_2024_3441837
crossref_primary_10_1109_TIP_2023_3318959
crossref_primary_10_1016_j_oceaneng_2023_115123
crossref_primary_10_1002_mp_15600
crossref_primary_10_1007_s00371_025_04070_w
crossref_primary_10_1007_s13534_024_00439_3
crossref_primary_10_1002_acm2_13912
crossref_primary_10_1109_ACCESS_2025_3577221
crossref_primary_10_1007_s10845_023_02317_8
crossref_primary_10_3390_horticulturae11050451
crossref_primary_10_1016_j_compbiomed_2023_106698
crossref_primary_10_1109_TGRS_2021_3093977
crossref_primary_10_1177_20552076241289007
crossref_primary_10_3389_fphy_2024_1257512
crossref_primary_10_1016_j_measurement_2024_115067
crossref_primary_10_1109_TGRS_2021_3091312
crossref_primary_10_1109_TIP_2022_3228497
crossref_primary_10_3390_horticulturae8020145
crossref_primary_10_1088_2631_8695_ad5e36
crossref_primary_10_3390_agronomy14102325
crossref_primary_10_1016_j_autcon_2025_106403
crossref_primary_10_1007_s42044_025_00286_0
crossref_primary_10_1016_j_engappai_2025_111708
crossref_primary_10_1016_j_isprsjprs_2024_01_022
crossref_primary_10_1109_TMM_2024_3369870
crossref_primary_10_3390_jof7100850
crossref_primary_10_1109_TETCI_2023_3309626
crossref_primary_10_1016_j_ghm_2024_01_001
crossref_primary_10_1007_s11042_025_20731_3
crossref_primary_10_1109_TGRS_2024_3400868
crossref_primary_10_3389_fbioe_2021_696251
crossref_primary_10_3390_app15147770
crossref_primary_10_15625_2615_9783_23027
crossref_primary_10_1109_TIM_2024_3375414
crossref_primary_10_3389_feart_2023_1182145
crossref_primary_10_1016_j_specom_2024_103150
crossref_primary_10_7717_peerj_cs_2494
crossref_primary_10_1016_j_engappai_2023_107094
crossref_primary_10_1049_ipr2_12558
crossref_primary_10_3390_a17030109
crossref_primary_10_3390_rs14235911
crossref_primary_10_1016_j_displa_2025_103102
crossref_primary_10_3389_fphy_2025_1579280
crossref_primary_10_1016_j_compbiolchem_2025_108572
crossref_primary_10_1109_TASE_2025_3547613
crossref_primary_10_1109_TIM_2023_3267365
crossref_primary_10_1016_j_bspc_2024_106851
crossref_primary_10_1088_1361_6560_acdbb4
crossref_primary_10_1016_j_compbiomed_2023_107326
crossref_primary_10_1016_j_neucom_2024_128784
crossref_primary_10_1016_j_jmst_2025_04_045
crossref_primary_10_1049_cvi2_12093
crossref_primary_10_1109_TCSVT_2023_3241196
crossref_primary_10_1080_02564602_2023_2238683
crossref_primary_10_1109_ACCESS_2023_3241250
crossref_primary_10_1016_j_imavis_2023_104748
crossref_primary_10_14358_PERS_21_00081R2
crossref_primary_10_1016_j_ejmp_2025_104969
crossref_primary_10_1016_j_eswa_2023_122093
crossref_primary_10_1007_s10032_024_00476_9
crossref_primary_10_1002_int_23018
crossref_primary_10_3390_rs16050803
crossref_primary_10_1016_j_patrec_2024_03_020
crossref_primary_10_3390_a17100429
crossref_primary_10_1109_TIM_2023_3267355
crossref_primary_10_1117_1_JEI_31_6_063040
crossref_primary_10_3390_ai5020030
crossref_primary_10_1016_j_cmpb_2025_108635
crossref_primary_10_1007_s12145_023_01050_3
crossref_primary_10_1080_09540091_2024_2306962
crossref_primary_10_1016_j_compbiomed_2023_107578
crossref_primary_10_1016_j_patcog_2022_108625
crossref_primary_10_1038_s41598_024_84680_x
crossref_primary_10_1109_TASLP_2024_3459430
crossref_primary_10_1109_TGRS_2024_3469992
crossref_primary_10_3390_app132011350
crossref_primary_10_1186_s40658_022_00472_0
crossref_primary_10_1109_TMI_2024_3474028
crossref_primary_10_1002_sdtp_14635
crossref_primary_10_1002_suco_70155
crossref_primary_10_1364_OE_559651
crossref_primary_10_1007_s11548_023_02879_1
crossref_primary_10_1109_JBHI_2024_3467256
crossref_primary_10_1049_sil2_6606572
crossref_primary_10_1007_s11042_024_19796_3
crossref_primary_10_1109_TIM_2023_3343788
crossref_primary_10_1109_ACCESS_2025_3602064
crossref_primary_10_3390_rs17122053
crossref_primary_10_1109_TIP_2025_3558674
crossref_primary_10_1186_s12859_023_05196_1
crossref_primary_10_1016_j_imavis_2022_104442
crossref_primary_10_1016_j_scitotenv_2024_169992
crossref_primary_10_1016_j_eswa_2024_123222
crossref_primary_10_3390_s23208511
crossref_primary_10_1007_s00445_023_01695_4
crossref_primary_10_1109_JBHI_2023_3237875
crossref_primary_10_1109_ACCESS_2023_3272352
crossref_primary_10_1109_JOE_2024_3503664
crossref_primary_10_1109_ACCESS_2025_3584647
crossref_primary_10_3390_app131910583
crossref_primary_10_3390_buildings15132207
crossref_primary_10_1016_j_cmpb_2024_108353
crossref_primary_10_3390_math11061389
crossref_primary_10_1109_TGRS_2024_3400032
crossref_primary_10_1109_TCSVT_2021_3104226
crossref_primary_10_1007_s11042_024_18163_6
crossref_primary_10_1007_s12559_022_10036_0
crossref_primary_10_1007_s10845_024_02434_y
crossref_primary_10_1109_ACCESS_2023_3300895
crossref_primary_10_1186_s13059_025_03648_w
crossref_primary_10_32604_cmes_2022_022143
crossref_primary_10_1016_j_measurement_2025_117176
crossref_primary_10_3389_fonc_2023_1177788
crossref_primary_10_1109_TMI_2023_3294248
crossref_primary_10_1016_j_ijrmms_2024_105820
crossref_primary_10_1016_j_jag_2025_104812
crossref_primary_10_1007_s12559_025_10410_8
crossref_primary_10_1016_j_jag_2023_103326
crossref_primary_10_3390_buildings13123114
crossref_primary_10_1016_j_engappai_2023_106168
crossref_primary_10_1007_s13349_024_00798_6
crossref_primary_10_1016_j_compbiomed_2024_108503
crossref_primary_10_1109_TMM_2024_3413529
crossref_primary_10_1109_TMM_2024_3521715
crossref_primary_10_1016_j_compbiomed_2021_104774
crossref_primary_10_1016_j_indcrop_2025_121308
crossref_primary_10_3390_rs14092207
crossref_primary_10_3390_drones8090445
crossref_primary_10_1088_1361_6560_acf3c9
crossref_primary_10_3390_electronics10243103
crossref_primary_10_1109_TITS_2024_3436015
crossref_primary_10_1364_OE_567001
crossref_primary_10_1016_j_jag_2023_103556
crossref_primary_10_1016_j_media_2023_102747
crossref_primary_10_1016_j_patcog_2024_110903
crossref_primary_10_1016_j_patcog_2021_108364
crossref_primary_10_1016_j_rineng_2025_105304
crossref_primary_10_1109_TCE_2024_3367790
crossref_primary_10_3390_app122311967
crossref_primary_10_1109_TCSVT_2021_3102268
crossref_primary_10_1109_TUFFC_2023_3263514
crossref_primary_10_1007_s10489_022_04212_w
crossref_primary_10_3390_sym14061081
crossref_primary_10_3390_rs15245744
crossref_primary_10_1109_JOE_2023_3344154
crossref_primary_10_1007_s12204_023_2614_y
crossref_primary_10_1109_JSTARS_2024_3374290
crossref_primary_10_1109_ACCESS_2025_3584832
crossref_primary_10_1109_LSP_2024_3400055
crossref_primary_10_1109_TITS_2024_3404654
crossref_primary_10_1109_TMM_2023_3347094
crossref_primary_10_1109_TRS_2025_3591065
crossref_primary_10_1016_j_compbiomed_2024_109617
crossref_primary_10_3390_rs16091525
crossref_primary_10_1007_s42947_025_00574_9
crossref_primary_10_1016_j_engappai_2024_109984
crossref_primary_10_1177_01617346231162925
crossref_primary_10_3390_drones7030189
crossref_primary_10_1088_1361_6501_acf23a
crossref_primary_10_1016_j_neunet_2023_11_028
crossref_primary_10_1109_ACCESS_2025_3538978
crossref_primary_10_1007_s11227_022_04661_7
crossref_primary_10_1109_TITS_2023_3258480
crossref_primary_10_32604_cmc_2024_058063
crossref_primary_10_1186_s13636_024_00341_x
crossref_primary_10_1109_JBHI_2023_3236989
crossref_primary_10_1109_TIV_2022_3216734
crossref_primary_10_1109_TETCI_2022_3174868
crossref_primary_10_3390_electronics11244200
crossref_primary_10_1016_j_aei_2025_103641
crossref_primary_10_1016_j_asoc_2025_112891
crossref_primary_10_1016_j_physleta_2024_129839
crossref_primary_10_3389_fonc_2024_1461542
crossref_primary_10_1007_s00500_024_09700_4
crossref_primary_10_1016_j_asoc_2025_113975
Cites_doi 10.1016/j.patcog.2017.11.024
10.1109/TIP.2016.2602079
10.1016/j.patcog.2019.03.023
10.1016/j.patcog.2016.10.025
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2020.107404
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2020_107404
S0031320320302077
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c236t-ebcba0947d065f10bce5d79e9762a1dd00c9df0f43b80431af552e65c141ef273
ISICitedReferencesCount 1614
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541777200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 21:51:59 EST 2025
Sat Nov 29 07:25:19 EST 2025
Fri Feb 23 02:47:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nested U-structure
Network architecture design
Salient object detection
Convolutional neural network
Multi-scale feature extraction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-ebcba0947d065f10bce5d79e9762a1dd00c9df0f43b80431af552e65c141ef273
ORCID 0000-0003-2811-6008
0000-0002-9042-7192
ParticipantIDs crossref_primary_10_1016_j_patcog_2020_107404
crossref_citationtrail_10_1016_j_patcog_2020_107404
elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107404
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deng, Hu, Zhu, Xu, Qin, Han, Heng (bib0005) 2018
Krizhevsky, Sutskever, Hinton (bib0006) 2012
Lu, Tan, Lim (bib0018) 2013; 36
Feng, Lu, Ding (bib0034) 2019
Lu, Lim (bib0019) 2012
Hou, Cheng, Hu, Borji, Tu, Torr (bib0024) 2017
Long, Shelhamer, Darrell (bib0001) 2015
Zhang, Dai, Lu, He, Wang (bib0021) 2018
Ronneberger, Fischer, Brox (bib0035) 2015
Zhang, Huo, Liu, Pan, Shan, Han (bib0017) 2019; 92
Qin, Zhang, Huang, Gao, Dehghan, Jagersand (bib0014) 2019
Yang, Zhang, Lu, Ruan, Yang (bib0037) 2013
Margolin, Zelnik-Manor, Tal (bib0041) 2014
He, Zhang, Ren, Sun (bib0008) 2016
Zhao, Shi, Qi, Wang, Jia (bib0029) 2017
Li, Yu (bib0002) 2016; 25
Chen, Tan, Wang, Hu (bib0025) 2018
Huang, Liu, van der Maaten, Weinberger (bib0010) 2017
Zeng, Zhuge, Lu, Zhang, Qian, Yu (bib0033) 2019
Newell, Yang, Deng (bib0043) 2016
Wang, Zhang, Wang, Lu, Yang, Ruan, Borji (bib0004) 2018
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition
Xie, Girshick, Dollár, Tu, He (bib0009) 2017
Zhang, Wang, Lu, Wang, Ruan (bib0022) 2017
Zhang, Wang, Qi, Lu, Wang (bib0030) 2018
Liu, Han, Yang (bib0031) 2018
Zhang, Wang, Lu, Wang, Yin (bib0023) 2017
Li, Hou, Koch, Rehg, Yuille (bib0038) 2014
(2014).
Wang, Borji, Zhang, Zhang, Lu (bib0028) 2017
Liu, Hou, Cheng, Feng, Jiang (bib0013) 2019
Zhang, Ehinger, Wei, Zhang, Yang (bib0015) 2017; 64
Wu, Su, Huang (bib0027) 2019
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0011) 2009
Achanta, Hemami, Estrada, Susstrunk (bib0040) 2009
Wu, Feng, Guan, Wang, Lu, Ding (bib0026) 2019
Luo, Mishra, Achkar, Eichel, Li, Jodoin (bib0003) 2017
Liang, Zhou, Tong, Bai, Wang (bib0016) 2018; 76
Xie, Tu (bib0020) 2015
Zhang, Zhang, Lin, Lu, He (bib0032) 2019
Wang, Lu, Wang, Feng, Wang, Yin, Ruan (bib0036) 2017
Movahedi, Elder (bib0039) 2010
Tang, Peng, Geng, Wu, Zhang, Metaxas (bib0044) 2018
Yan, Xu, Shi, Jia (bib0012) 2013
Fan, Cheng, Liu, Li, Borji (bib0042) 2017
He (10.1016/j.patcog.2020.107404_bib0008) 2016
Huang (10.1016/j.patcog.2020.107404_bib0010) 2017
Wu (10.1016/j.patcog.2020.107404_bib0027) 2019
Movahedi (10.1016/j.patcog.2020.107404_bib0039) 2010
Luo (10.1016/j.patcog.2020.107404_bib0003) 2017
Hou (10.1016/j.patcog.2020.107404_bib0024) 2017
Lu (10.1016/j.patcog.2020.107404_bib0019) 2012
Zhang (10.1016/j.patcog.2020.107404_bib0021) 2018
Wang (10.1016/j.patcog.2020.107404_bib0004) 2018
Achanta (10.1016/j.patcog.2020.107404_bib0040) 2009
Tang (10.1016/j.patcog.2020.107404_bib0044) 2018
Qin (10.1016/j.patcog.2020.107404_bib0014) 2019
Zeng (10.1016/j.patcog.2020.107404_bib0033) 2019
Xie (10.1016/j.patcog.2020.107404_bib0009) 2017
Zhang (10.1016/j.patcog.2020.107404_bib0015) 2017; 64
Zhang (10.1016/j.patcog.2020.107404_bib0023) 2017
Ronneberger (10.1016/j.patcog.2020.107404_bib0035) 2015
Wang (10.1016/j.patcog.2020.107404_bib0036) 2017
Fan (10.1016/j.patcog.2020.107404_bib0042) 2017
Krizhevsky (10.1016/j.patcog.2020.107404_bib0006) 2012
Li (10.1016/j.patcog.2020.107404_bib0038) 2014
Wu (10.1016/j.patcog.2020.107404_bib0026) 2019
Liu (10.1016/j.patcog.2020.107404_bib0013) 2019
Wang (10.1016/j.patcog.2020.107404_bib0028) 2017
Li (10.1016/j.patcog.2020.107404_bib0002) 2016; 25
Long (10.1016/j.patcog.2020.107404_bib0001) 2015
Zhao (10.1016/j.patcog.2020.107404_bib0029) 2017
Yang (10.1016/j.patcog.2020.107404_bib0037) 2013
Newell (10.1016/j.patcog.2020.107404_bib0043) 2016
Chen (10.1016/j.patcog.2020.107404_bib0025) 2018
Zhang (10.1016/j.patcog.2020.107404_bib0030) 2018
Deng (10.1016/j.patcog.2020.107404_bib0011) 2009
Zhang (10.1016/j.patcog.2020.107404_bib0017) 2019; 92
Margolin (10.1016/j.patcog.2020.107404_bib0041) 2014
Liang (10.1016/j.patcog.2020.107404_bib0016) 2018; 76
10.1016/j.patcog.2020.107404_bib0007
Zhang (10.1016/j.patcog.2020.107404_bib0022) 2017
Deng (10.1016/j.patcog.2020.107404_bib0005) 2018
Lu (10.1016/j.patcog.2020.107404_bib0018) 2013; 36
Feng (10.1016/j.patcog.2020.107404_bib0034) 2019
Xie (10.1016/j.patcog.2020.107404_bib0020) 2015
Yan (10.1016/j.patcog.2020.107404_bib0012) 2013
Zhang (10.1016/j.patcog.2020.107404_bib0032) 2019
Liu (10.1016/j.patcog.2020.107404_bib0031) 2018
References_xml – start-page: 6024
  year: 2019
  end-page: 6033
  ident: bib0032
  article-title: CapSal: leveraging captioning to boost semantics for salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1741
  year: 2018
  end-page: 1750
  ident: bib0021
  article-title: A bi-directional message passing model for salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 202
  year: 2017
  end-page: 211
  ident: bib0022
  article-title: Amulet: aggregating multi-level convolutional features for salient object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: (2014).
– start-page: 280
  year: 2014
  end-page: 287
  ident: bib0038
  article-title: The secrets of salient object segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3907
  year: 2019
  end-page: 3916
  ident: bib0027
  article-title: Cascaded partial decoder for fast and accurate salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition,
– start-page: 1597
  year: 2009
  end-page: 1604
  ident: bib0040
  article-title: Frequency-tuned salient region detection
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 8150
  year: 2019
  end-page: 8159
  ident: bib0026
  article-title: A mutual learning method for salient object detection with intertwined multi-supervision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 6593
  year: 2017
  end-page: 6601
  ident: bib0003
  article-title: Non-local deep features for salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 64
  start-page: 39
  year: 2017
  end-page: 50
  ident: bib0015
  article-title: A novel graph-based optimization framework for salient object detection
  publication-title: Pattern Recognit.
– start-page: 6074
  year: 2019
  end-page: 6083
  ident: bib0033
  article-title: Multi-source weak supervision for saliency detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0035
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 234
  year: 2018
  end-page: 250
  ident: bib0025
  article-title: Reverse attention for salient object detection
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 3089
  year: 2018
  end-page: 3098
  ident: bib0031
  article-title: PiCANet: learning pixel-wise contextual attention for saliency detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 483
  year: 2016
  end-page: 499
  ident: bib0043
  article-title: Stacked hourglass networks for human pose estimation
  publication-title: European Conference on Computer Vision
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0011
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 339
  year: 2018
  end-page: 354
  ident: bib0044
  article-title: Quantized densely connected U-Nets for efficient landmark localization
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 136
  year: 2017
  end-page: 145
  ident: bib0036
  article-title: Learning to detect salient objects with image-level supervision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0001
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and pattern Recognition
– start-page: 4548
  year: 2017
  end-page: 4557
  ident: bib0042
  article-title: Structure-measure: a new way to evaluate foreground maps
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 5987
  year: 2017
  end-page: 5995
  ident: bib0009
  article-title: Aggregated residual transformations for deep neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1395
  year: 2015
  end-page: 1403
  ident: bib0020
  article-title: Holistically-nested edge detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 212
  year: 2017
  end-page: 221
  ident: bib0023
  article-title: Learning uncertain convolutional features for accurate saliency detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0006
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 49
  year: 2010
  end-page: 56
  ident: bib0039
  article-title: Design and perceptual validation of performance measures for salient object segmentation
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops
– start-page: 4039
  year: 2017
  end-page: 4048
  ident: bib0028
  article-title: A stagewise refinement model for detecting salient objects in images
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 2881
  year: 2017
  end-page: 2890
  ident: bib0029
  article-title: Pyramid scene parsing network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3917
  year: 2019
  end-page: 3926
  ident: bib0013
  article-title: A simple pooling-based design for real-time salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 76
  start-page: 476
  year: 2018
  end-page: 490
  ident: bib0016
  article-title: Material based salient object detection from hyperspectral images
  publication-title: Pattern Recognit.
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib0010
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1155
  year: 2013
  end-page: 1162
  ident: bib0012
  article-title: Hierarchical saliency detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 92
  start-page: 119
  year: 2019
  end-page: 134
  ident: bib0017
  article-title: Salient object detection employing a local tree-structured low-rank representation and foreground consistency
  publication-title: Pattern Recognit.
– start-page: 248
  year: 2014
  end-page: 255
  ident: bib0041
  article-title: How to evaluate foreground maps
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 7479
  year: 2019
  end-page: 7489
  ident: bib0014
  article-title: BASNet: boundary-aware salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 25
  start-page: 5012
  year: 2016
  end-page: 5024
  ident: bib0002
  article-title: Visual saliency detection based on multiscale deep CNN features
  publication-title: IEEE Trans. Image Process.
– start-page: 1623
  year: 2019
  end-page: 1632
  ident: bib0034
  article-title: Attentive feedback network for boundary-aware salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3166
  year: 2013
  end-page: 3173
  ident: bib0037
  article-title: Saliency detection via graph-based manifold ranking
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 5300
  year: 2017
  end-page: 5309
  ident: bib0024
  article-title: Deeply supervised salient object detection with short connections
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 714
  year: 2018
  end-page: 722
  ident: bib0030
  article-title: Progressive attention guided recurrent network for salient object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0008
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 321
  year: 2012
  end-page: 332
  ident: bib0019
  article-title: Saliency modeling from image histograms
  publication-title: European Conference on Computer Vision
– start-page: 3127
  year: 2018
  end-page: 3135
  ident: bib0004
  article-title: Detect globally, refine locally: a novel approach to saliency detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 684
  year: 2018
  end-page: 690
  ident: bib0005
  article-title: R3net: recurrent residual refinement network for saliency detection
  publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
– volume: 36
  start-page: 195
  year: 2013
  end-page: 201
  ident: bib0018
  article-title: Robust and efficient saliency modeling from image co-occurrence histograms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1155
  year: 2013
  ident: 10.1016/j.patcog.2020.107404_bib0012
  article-title: Hierarchical saliency detection
– start-page: 339
  year: 2018
  ident: 10.1016/j.patcog.2020.107404_bib0044
  article-title: Quantized densely connected U-Nets for efficient landmark localization
– start-page: 684
  year: 2018
  ident: 10.1016/j.patcog.2020.107404_bib0005
  article-title: R3net: recurrent residual refinement network for saliency detection
– start-page: 714
  year: 2018
  ident: 10.1016/j.patcog.2020.107404_bib0030
  article-title: Progressive attention guided recurrent network for salient object detection
– start-page: 1623
  year: 2019
  ident: 10.1016/j.patcog.2020.107404_bib0034
  article-title: Attentive feedback network for boundary-aware salient object detection
– start-page: 8150
  year: 2019
  ident: 10.1016/j.patcog.2020.107404_bib0026
  article-title: A mutual learning method for salient object detection with intertwined multi-supervision
– volume: 76
  start-page: 476
  year: 2018
  ident: 10.1016/j.patcog.2020.107404_bib0016
  article-title: Material based salient object detection from hyperspectral images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.11.024
– start-page: 136
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0036
  article-title: Learning to detect salient objects with image-level supervision
– start-page: 483
  year: 2016
  ident: 10.1016/j.patcog.2020.107404_bib0043
  article-title: Stacked hourglass networks for human pose estimation
– start-page: 280
  year: 2014
  ident: 10.1016/j.patcog.2020.107404_bib0038
  article-title: The secrets of salient object segmentation
– start-page: 3907
  year: 2019
  ident: 10.1016/j.patcog.2020.107404_bib0027
  article-title: Cascaded partial decoder for fast and accurate salient object detection
– volume: 25
  start-page: 5012
  issue: 11
  year: 2016
  ident: 10.1016/j.patcog.2020.107404_bib0002
  article-title: Visual saliency detection based on multiscale deep CNN features
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2602079
– start-page: 248
  year: 2009
  ident: 10.1016/j.patcog.2020.107404_bib0011
  article-title: ImageNet: a large-scale hierarchical image database
– start-page: 6593
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0003
  article-title: Non-local deep features for salient object detection
– start-page: 234
  year: 2018
  ident: 10.1016/j.patcog.2020.107404_bib0025
  article-title: Reverse attention for salient object detection
– volume: 92
  start-page: 119
  year: 2019
  ident: 10.1016/j.patcog.2020.107404_bib0017
  article-title: Salient object detection employing a local tree-structured low-rank representation and foreground consistency
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.03.023
– start-page: 5987
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0009
  article-title: Aggregated residual transformations for deep neural networks
– start-page: 5300
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0024
  article-title: Deeply supervised salient object detection with short connections
– volume: 36
  start-page: 195
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2020.107404_bib0018
  article-title: Robust and efficient saliency modeling from image co-occurrence histograms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3127
  year: 2018
  ident: 10.1016/j.patcog.2020.107404_bib0004
  article-title: Detect globally, refine locally: a novel approach to saliency detection
– start-page: 1741
  year: 2018
  ident: 10.1016/j.patcog.2020.107404_bib0021
  article-title: A bi-directional message passing model for salient object detection
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2020.107404_bib0008
  article-title: Deep residual learning for image recognition
– start-page: 234
  year: 2015
  ident: 10.1016/j.patcog.2020.107404_bib0035
  article-title: U-Net: convolutional networks for biomedical image segmentation
– start-page: 1597
  year: 2009
  ident: 10.1016/j.patcog.2020.107404_bib0040
  article-title: Frequency-tuned salient region detection
– start-page: 2881
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0029
  article-title: Pyramid scene parsing network
– start-page: 3089
  year: 2018
  ident: 10.1016/j.patcog.2020.107404_bib0031
  article-title: PiCANet: learning pixel-wise contextual attention for saliency detection
– start-page: 3166
  year: 2013
  ident: 10.1016/j.patcog.2020.107404_bib0037
  article-title: Saliency detection via graph-based manifold ranking
– start-page: 6074
  year: 2019
  ident: 10.1016/j.patcog.2020.107404_bib0033
  article-title: Multi-source weak supervision for saliency detection
– volume: 64
  start-page: 39
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0015
  article-title: A novel graph-based optimization framework for salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.10.025
– start-page: 1395
  year: 2015
  ident: 10.1016/j.patcog.2020.107404_bib0020
  article-title: Holistically-nested edge detection
– start-page: 7479
  year: 2019
  ident: 10.1016/j.patcog.2020.107404_bib0014
  article-title: BASNet: boundary-aware salient object detection
– start-page: 3431
  year: 2015
  ident: 10.1016/j.patcog.2020.107404_bib0001
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 3917
  year: 2019
  ident: 10.1016/j.patcog.2020.107404_bib0013
  article-title: A simple pooling-based design for real-time salient object detection
– start-page: 321
  year: 2012
  ident: 10.1016/j.patcog.2020.107404_bib0019
  article-title: Saliency modeling from image histograms
– start-page: 2261
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0010
  article-title: Densely connected convolutional networks
– start-page: 212
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0023
  article-title: Learning uncertain convolutional features for accurate saliency detection
– start-page: 4548
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0042
  article-title: Structure-measure: a new way to evaluate foreground maps
– start-page: 4039
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0028
  article-title: A stagewise refinement model for detecting salient objects in images
– start-page: 49
  year: 2010
  ident: 10.1016/j.patcog.2020.107404_bib0039
  article-title: Design and perceptual validation of performance measures for salient object segmentation
– start-page: 248
  year: 2014
  ident: 10.1016/j.patcog.2020.107404_bib0041
  article-title: How to evaluate foreground maps
– start-page: 1097
  year: 2012
  ident: 10.1016/j.patcog.2020.107404_bib0006
  article-title: ImageNet classification with deep convolutional neural networks
– ident: 10.1016/j.patcog.2020.107404_bib0007
– start-page: 202
  year: 2017
  ident: 10.1016/j.patcog.2020.107404_bib0022
  article-title: Amulet: aggregating multi-level convolutional features for salient object detection
– start-page: 6024
  year: 2019
  ident: 10.1016/j.patcog.2020.107404_bib0032
  article-title: CapSal: leveraging captioning to boost semantics for salient object detection
SSID ssj0017142
Score 2.7402358
Snippet •A novel ReSidual U-block (RSU) is designed to capture multi-scale deep features.•A nested U-structure, called U2-Net, that uses RSU is developed for salient...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107404
SubjectTerms Convolutional neural network
Multi-scale feature extraction
Nested U-structure
Network architecture design
Salient object detection
Title U2-Net: Going deeper with nested U-structure for salient object detection
URI https://dx.doi.org/10.1016/j.patcog.2020.107404
Volume 106
WOSCitedRecordID wos000541777200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6K85AM35JUdJ-uEW1UVKBKrInWlFZfIj3EfQtlVd0Hl3zN-JLulqNADlyiyYifKfBp_Hn-eIeSNt6UCKRyDAiQrnZbMOODMGOTWtS1q4XksNqEmk3o2aw5zQH8ZywmorqsvLprFfzU1tqGxw9HZG5h7GBQb8B6Njlc0O17_yfDTgk0gBvw-zEMcwAEs4DwFXLsY3Xw7ZSltbNg8CDLDJZLxqAkwISqDPVZRoNVtMtfDmIgzHH7JiqP1_v2XlIdg9h3M6dA4RKK_BrFpt4ZPbt7Dxp86z5uBScPJ8UmKxn7Wy1zCvo9H4OKzV7YNPlYKJgsuL_lYvuklgwg0FR2-4sBTLOFstMCJaH48Ci8YrR-_nC_7t3lsUBf2wrWzNo3ShlHaNMptsl2oqkH_t717sD_7NOw4KVGmzPL56_tjllELePVr_kxjNqjJ0QNyL68p6G7CwkNyC7pH5H5fr4Nm9_2YHCRovKMRGDQBgwZg0AQMugEMisCgGRg0AYMOwHhCpu_3j_Y-slxKg9lCjlcMjDUaV_LKIeX0ghsLlVMNIBkttHCOc9s4z30pTR3SLWlfVQWMKytKAR4p7lOy1c07eEYoGK9kIUtZK126ptJOV67BVf7Yay242yGy_zOtzXnmQ7mTb-11dtkhbOi1SHlW_vK86n96m7li4oAtIunans9v-KYX5O4a5i_JFpoBXpE79sfqdHn-OsPoF6vvi9s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=U2-Net%3A+Going+deeper+with+nested+U-structure+for+salient+object+detection&rft.jtitle=Pattern+recognition&rft.au=Qin%2C+Xuebin&rft.au=Zhang%2C+Zichen&rft.au=Huang%2C+Chenyang&rft.au=Dehghan%2C+Masood&rft.date=2020-10-01&rft.issn=0031-3203&rft.volume=106&rft.spage=107404&rft_id=info:doi/10.1016%2Fj.patcog.2020.107404&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon