Community hiding using a graph autoencoder
Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy problems such as the disclosure of individual or group information amongst community members, which goes against the hidden wishes of individu...
Saved in:
| Published in: | Knowledge-based systems Vol. 253; p. 109495 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
11.10.2022
|
| Subjects: | |
| ISSN: | 0950-7051 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy problems such as the disclosure of individual or group information amongst community members, which goes against the hidden wishes of individuals and groups. Therefore, community hiding has received increasingly more attention in recent years. However, the network generation mechanism has not been considered in previous studies on community hiding. Generation models can reflect the generation process of the network and show the strength of the connection between nodes. To this end, we propose a new graph autoencoder for the community hiding algorithm, namely, GCH, which not only hides the community structure but also embodies the generation mechanism of the network. It uses the rules of the generation process from underfitting to overfitting in the community network to select the connections that have the greatest impact on the community structure for rewiring. After analyzing the essence of community detection algorithms and graph neural networks, an improved graph autoencoder is used to reconstruct the probabilistic adjacency matrix; and under the constraint of an ”invisible perturbation” of the network structure, the existing mainstream community detection algorithm is attacked, which greatly reduces the accuracy of community detection results. For the verification of model effectiveness, two widely used indicators NMI and AE are used to compare the performance of our attack on the community detection algorithm with other baselines under different dimension settings. Compared with several baseline algorithms, extensive experimental results are obtained. |
|---|---|
| AbstractList | Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy problems such as the disclosure of individual or group information amongst community members, which goes against the hidden wishes of individuals and groups. Therefore, community hiding has received increasingly more attention in recent years. However, the network generation mechanism has not been considered in previous studies on community hiding. Generation models can reflect the generation process of the network and show the strength of the connection between nodes. To this end, we propose a new graph autoencoder for the community hiding algorithm, namely, GCH, which not only hides the community structure but also embodies the generation mechanism of the network. It uses the rules of the generation process from underfitting to overfitting in the community network to select the connections that have the greatest impact on the community structure for rewiring. After analyzing the essence of community detection algorithms and graph neural networks, an improved graph autoencoder is used to reconstruct the probabilistic adjacency matrix; and under the constraint of an ”invisible perturbation” of the network structure, the existing mainstream community detection algorithm is attacked, which greatly reduces the accuracy of community detection results. For the verification of model effectiveness, two widely used indicators NMI and AE are used to compare the performance of our attack on the community detection algorithm with other baselines under different dimension settings. Compared with several baseline algorithms, extensive experimental results are obtained. |
| ArticleNumber | 109495 |
| Author | Chang, Zhengchao Yang, Guoliang Chen, Enhong Liu, Dong |
| Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0003-4346-9565 surname: Liu fullname: Liu, Dong email: liudong@htu.edu.cn organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453000, Henan, China – sequence: 2 givenname: Zhengchao surname: Chang fullname: Chang, Zhengchao email: czhengchao@gmail.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453000, Henan, China – sequence: 3 givenname: Guoliang surname: Yang fullname: Yang, Guoliang email: leo@zzwwjj.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453000, Henan, China – sequence: 4 givenname: Enhong surname: Chen fullname: Chen, Enhong email: cheneh@ustc.edu.cn organization: School of Computer Science, University of Science and Technology of China, Hefei, 230000, Anhui, China |
| BookMark | eNqFj01LAzEURbOoYFv9By5mLcz4kkkyrQtBil9QcKPrEJM3bWqblCQV5t87w7hyoZv34F7OhTMjEx88EnJFoaJA5c2u-vQhdaliwFgfLflSTMgUlgLKBgQ9J7OUdgB9SxdTcr0Kh8PJu9wVW2ed3xSnNFxdbKI-bgt9ygG9CRbjBTlr9T7h5c-fk_fHh7fVc7l-fXpZ3a9Lw2qZS5S2RuCafVjeLgChsUJCn1krtRTCaMpZg1K0FBhttawXNSKtKafacs7rOeHjrokhpYitOkZ30LFTFNTgqHZqdFSDoxode-z2F2Zc1tkFn6N2-__guxHGXuzLYVTJuN4brYtosrLB_T3wDYlMc6M |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2025_113767 crossref_primary_10_1109_TSMC_2023_3240765 crossref_primary_10_1016_j_ins_2024_120235 crossref_primary_10_3390_sym16101272 crossref_primary_10_1016_j_ins_2024_120665 crossref_primary_10_1016_j_knosys_2022_109939 crossref_primary_10_1007_s13369_024_09947_x crossref_primary_10_3390_sym14112328 |
| Cites_doi | 10.1080/14697680902882420 10.1073/pnas.0601602103 10.1109/TKDE.2018.2801854 10.1109/TCYB.2017.2696998 10.1145/3041021.3054725 10.1109/TITS.2017.2713808 10.1142/S0217979214502087 10.1109/TKDE.2017.2776133 10.1016/0378-8733(83)90021-7 10.1073/pnas.122653799 10.1088/1742-5468/2005/09/P09008 10.1103/PhysRevE.83.016107 10.1103/PhysRevE.76.036106 10.1145/3038912.3052608 10.1016/j.is.2020.101522 10.1016/j.engappai.2019.08.003 10.1016/j.physrep.2016.09.002 10.1109/TCSS.2019.2912801 10.1109/TCSS.2021.3054115 10.1038/nature09182 10.1109/ACCESS.2018.2838568 10.1209/0295-5075/98/28004 10.1142/S0217979216500375 10.1038/s41562-017-0290-3 10.1007/s10462-019-09684-w 10.1145/3366423.3380171 10.1146/annurev.soc.27.1.415 10.1140/epjb/e2004-00124-y 10.1109/TCSS.2019.2891582 10.1145/1273496.1273595 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2022.109495 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_knosys_2022_109495 S0950705122007493 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c236t-e6d3e04a2bd4f80e07d560d3edd6a655ca1427e65f1021fa6383ee13141ad4443 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889091500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 07:07:25 EST 2025 Tue Nov 18 22:35:34 EST 2025 Sun Apr 06 06:54:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Community detection Graph autoencoder Community hiding Adversarial attack |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c236t-e6d3e04a2bd4f80e07d560d3edd6a655ca1427e65f1021fa6383ee13141ad4443 |
| ORCID | 0000-0003-4346-9565 |
| ParticipantIDs | crossref_primary_10_1016_j_knosys_2022_109495 crossref_citationtrail_10_1016_j_knosys_2022_109495 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109495 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-11 |
| PublicationDateYYYYMMDD | 2022-10-11 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Newman (b35) 2006; 103 C. Ding, F. Xia, G. Gopalakrishnan, W. Qian, A. Zhou, TeamGen: an interactive team formation system based on professional social network, in: Proceedings of the 26th International Conference on World Wide Web Companion, 2017, pp. 195–199. Liu, Bai, Li, Wang (b14) 2014; 28 Waniek, Michalak, Wooldridge, Rahwan (b22) 2018; 2 Xuan, Zhang, Fu, Hu, Filkov (b5) 2017; 48 Shokeen, Rana (b11) 2020; 53 Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b30) 2017 Kipf, Welling (b32) 2016 McPherson, Smith-Lovin, Cook (b37) 2001; 27 Fortunato, Hric (b12) 2016; 659 Okuda, Satoh, Sato, Kidawara (b38) 2019; 43 Goldenberg, Zheng, Fienberg, Airoldi (b41) 2010 Cai, Li, Hasan Haldar, Mian, Yearwood, Sellis (b19) 2020 M.J. Rattigan, M. Maier, D. Jensen, Graph clustering with network structure indices, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 783–790. Fionda, Pirro (b23) 2017; 30 Xu, Hu, Leskovec, Jegelka (b31) 2018 Fan, Xu, Liu, Ru (b16) 2018; 6 Liu, Liu, Zhang, Zhu, Li (b25) 2019; 32 Danon, Diaz-Guilera, Duch, Arenas (b45) 2005; 2005 An, Chiu, Hu, Chen (b8) 2017; 19 Liu, Duan, Sui, Song (b13) 2015; 2015 Lim, Kim, Lee (b39) 2016 Wang, Zhang, Zhou (b44) 2012; 98 Girvan, Newman (b1) 2002; 99 Nagaraja (b21) 2010 Ahn, Bagrow, Lehmann (b6) 2010; 466 Schiavo, Reyes, Fagiolo (b7) 2010; 10 Liu, Bai, Li, Wang (b15) 2014; 28 Li, Cai, Deng, Wang, Sellis, Xia (b18) 2020; 92 Hamilton, Ying, Leskovec (b29) 2017 Chen, Chen, Chen, Zhao, Xuan (b26) 2020 Moscato, Picariello, Sperlí (b40) 2019; 85 Fu, Zhao, Fan, Chen, Chen, Wu, Xia, Xuan (b4) 2018; 30 Yang, Yuan, Wu, Ma, Du (b9) 2019; 6 Holland, Laskey, Leinhardt (b42) 1983; 5 Karrer, Newman (b43) 2011; 83 Newman (b33) 2004; 38 Chen, Jiang, Li, Ma, Yu (b20) 2021; 8 Kipf, Welling (b28) 2016 W. Chen, S.-H. Teng, Interplay between social influence and network centrality: a comparative study on shapley centrality and single-node-influence centrality, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 967–976. Wasserman, Faust (b10) 1994 J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, J. Huang, Adversarial attack on community detection by hiding individuals, in: Proceedings of the Web Conference 2020, 2020, pp. 917–927. Raghavan, Albert, Kumara (b36) 2007; 76 Liu, Wang, Jing (b17) 2016; 30 Chen, Chen, Chen, Zhao, Yu, Xuan, Yang (b24) 2019; 6 Fu (10.1016/j.knosys.2022.109495_b4) 2018; 30 Newman (10.1016/j.knosys.2022.109495_b33) 2004; 38 Kipf (10.1016/j.knosys.2022.109495_b28) 2016 McPherson (10.1016/j.knosys.2022.109495_b37) 2001; 27 Fan (10.1016/j.knosys.2022.109495_b16) 2018; 6 Liu (10.1016/j.knosys.2022.109495_b17) 2016; 30 Hamilton (10.1016/j.knosys.2022.109495_b29) 2017 Ahn (10.1016/j.knosys.2022.109495_b6) 2010; 466 An (10.1016/j.knosys.2022.109495_b8) 2017; 19 Holland (10.1016/j.knosys.2022.109495_b42) 1983; 5 Fionda (10.1016/j.knosys.2022.109495_b23) 2017; 30 Liu (10.1016/j.knosys.2022.109495_b14) 2014; 28 Cai (10.1016/j.knosys.2022.109495_b19) 2020 Wasserman (10.1016/j.knosys.2022.109495_b10) 1994 Wang (10.1016/j.knosys.2022.109495_b44) 2012; 98 Xuan (10.1016/j.knosys.2022.109495_b5) 2017; 48 Liu (10.1016/j.knosys.2022.109495_b13) 2015; 2015 Newman (10.1016/j.knosys.2022.109495_b35) 2006; 103 Girvan (10.1016/j.knosys.2022.109495_b1) 2002; 99 Chen (10.1016/j.knosys.2022.109495_b20) 2021; 8 Li (10.1016/j.knosys.2022.109495_b18) 2020; 92 Okuda (10.1016/j.knosys.2022.109495_b38) 2019; 43 Lim (10.1016/j.knosys.2022.109495_b39) 2016 Xu (10.1016/j.knosys.2022.109495_b31) 2018 Schiavo (10.1016/j.knosys.2022.109495_b7) 2010; 10 Moscato (10.1016/j.knosys.2022.109495_b40) 2019; 85 Fortunato (10.1016/j.knosys.2022.109495_b12) 2016; 659 Goldenberg (10.1016/j.knosys.2022.109495_b41) 2010 Veličković (10.1016/j.knosys.2022.109495_b30) 2017 Kipf (10.1016/j.knosys.2022.109495_b32) 2016 Liu (10.1016/j.knosys.2022.109495_b25) 2019; 32 Chen (10.1016/j.knosys.2022.109495_b24) 2019; 6 10.1016/j.knosys.2022.109495_b34 Yang (10.1016/j.knosys.2022.109495_b9) 2019; 6 Karrer (10.1016/j.knosys.2022.109495_b43) 2011; 83 10.1016/j.knosys.2022.109495_b27 10.1016/j.knosys.2022.109495_b3 10.1016/j.knosys.2022.109495_b2 Liu (10.1016/j.knosys.2022.109495_b15) 2014; 28 Raghavan (10.1016/j.knosys.2022.109495_b36) 2007; 76 Nagaraja (10.1016/j.knosys.2022.109495_b21) 2010 Waniek (10.1016/j.knosys.2022.109495_b22) 2018; 2 Danon (10.1016/j.knosys.2022.109495_b45) 2005; 2005 Chen (10.1016/j.knosys.2022.109495_b26) 2020 Shokeen (10.1016/j.knosys.2022.109495_b11) 2020; 53 |
| References_xml | – year: 2016 ident: b32 article-title: Variational graph auto-encoders – volume: 6 start-page: 117 year: 2019 end-page: 126 ident: b9 article-title: Maximizing activity profit in social networks publication-title: IEEE Trans. Comput. Soc. Syst. – year: 2016 ident: b28 article-title: Semi-supervised classification with graph convolutional networks – reference: J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, J. Huang, Adversarial attack on community detection by hiding individuals, in: Proceedings of the Web Conference 2020, 2020, pp. 917–927. – reference: C. Ding, F. Xia, G. Gopalakrishnan, W. Qian, A. Zhou, TeamGen: an interactive team formation system based on professional social network, in: Proceedings of the 26th International Conference on World Wide Web Companion, 2017, pp. 195–199. – year: 2017 ident: b29 article-title: Inductive representation learning on large graphs – volume: 76 year: 2007 ident: b36 article-title: Near linear time algorithm to detect community structures in large-scale networks publication-title: Phys. Rev. E – volume: 2015 year: 2015 ident: b13 article-title: Effective semisupervised community detection using negative information publication-title: Math. Probl. Eng. – volume: 5 start-page: 109 year: 1983 end-page: 137 ident: b42 article-title: Stochastic blockmodels: First steps publication-title: Social Networks – volume: 466 start-page: 761 year: 2010 end-page: 764 ident: b6 article-title: Link communities reveal multiscale complexity in networks publication-title: Nature – start-page: 25 year: 2016 end-page: 36 ident: b39 article-title: Blackhole: Robust community detection inspired by graph drawing publication-title: 2016 IEEE 32nd International Conference on Data Engineering – reference: W. Chen, S.-H. Teng, Interplay between social influence and network centrality: a comparative study on shapley centrality and single-node-influence centrality, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 967–976. – volume: 53 start-page: 965 year: 2020 end-page: 988 ident: b11 article-title: A study on features of social recommender systems publication-title: Artif. Intell. Rev. – volume: 43 start-page: 89 year: 2019 end-page: 103 ident: b38 article-title: Community detection using restrained random-walk similarity publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 30 year: 2016 ident: b17 article-title: Estimating the optimal number of communities by cluster analysis publication-title: Internat. J. Modern Phys. B – volume: 92 year: 2020 ident: b18 article-title: Community-diversified influence maximization in social networks publication-title: Inf. Syst. – volume: 85 start-page: 773 year: 2019 end-page: 782 ident: b40 article-title: Community detection based on game theory publication-title: Eng. Appl. Artif. Intell. – volume: 28 year: 2014 ident: b14 article-title: Semi-supervised community detection using label propagation publication-title: Internat. J. Modern Phys. B – year: 2018 ident: b31 article-title: How powerful are graph neural networks? – volume: 8 start-page: 704 year: 2021 end-page: 715 ident: b20 article-title: Community hiding by link perturbation in social networks publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 2005 start-page: P09008 year: 2005 ident: b45 article-title: Comparing community structure identification publication-title: J. Stat. Mech. Theory Exp. – year: 2010 ident: b41 article-title: A Survey of Statistical Network Models – volume: 98 start-page: 28004 year: 2012 ident: b44 article-title: Evaluating network models: A likelihood analysis publication-title: Europhys. Lett. – volume: 38 start-page: 321 year: 2004 end-page: 330 ident: b33 article-title: Detecting community structure in networks publication-title: Eur. Phys. J. B – reference: M.J. Rattigan, M. Maier, D. Jensen, Graph clustering with network structure indices, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 783–790. – volume: 103 start-page: 8577 year: 2006 end-page: 8582 ident: b35 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. – volume: 6 start-page: 491 year: 2019 end-page: 503 ident: b24 article-title: GA-based Q-attack on community detection publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 30 start-page: 1507 year: 2018 end-page: 1518 ident: b4 article-title: Link weight prediction using supervised learning methods and its application to yelp layered network publication-title: IEEE Trans. Knowl. Data Eng. – volume: 19 start-page: 1130 year: 2017 end-page: 1139 ident: b8 article-title: A network partitioning algorithmic approach for macroscopic fundamental diagram-based hierarchical traffic network management publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 10 start-page: 389 year: 2010 end-page: 399 ident: b7 article-title: International trade and financial integration: A weighted network analysis publication-title: Quant. Finance – volume: 2 start-page: 139 year: 2018 end-page: 147 ident: b22 article-title: Hiding individuals and communities in a social network publication-title: Nat. Hum. Behav. – year: 2017 ident: b30 article-title: Graph attention networks – volume: 27 start-page: 415 year: 2001 end-page: 444 ident: b37 article-title: Birds of a feather: Homophily in social networks publication-title: Annu. Rev. Sociol. – year: 1994 ident: b10 article-title: Social Network Analysis: Methods and Applications – volume: 32 start-page: 12938 year: 2019 end-page: 12948 ident: b25 article-title: REM: From structural entropy to community structure deception publication-title: Adv. Neural Inf. Process. Syst. – start-page: 409 year: 2020 end-page: 420 ident: b19 article-title: Anchored vertex exploration for community engagement in social networks publication-title: 2020 IEEE 36th International Conference on Data Engineering (ICDE) – start-page: 253 year: 2010 end-page: 272 ident: b21 article-title: The impact of unlinkability on adversarial community detection: effects and countermeasures publication-title: International Symposium on Privacy Enhancing Technologies Symposium – volume: 48 start-page: 1420 year: 2017 end-page: 1431 ident: b5 article-title: Social synchrony on complex networks publication-title: IEEE Trans. Cybern. – volume: 659 start-page: 1 year: 2016 end-page: 44 ident: b12 article-title: Community detection in networks: A user guide publication-title: Phys. Rep. – volume: 28 year: 2014 ident: b15 article-title: Semi-supervised community detection using label propagation publication-title: Internat. J. Modern Phys. B – volume: 83 year: 2011 ident: b43 article-title: Stochastic blockmodels and community structure in networks publication-title: Phys. Rev. E – volume: 99 start-page: 7821 year: 2002 end-page: 7826 ident: b1 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. – volume: 6 start-page: 37261 year: 2018 end-page: 37271 ident: b16 article-title: Semi-supervised community detection based on distance dynamics publication-title: IEEE Access – volume: 30 start-page: 660 year: 2017 end-page: 673 ident: b23 article-title: Community deception or: How to stop fearing community detection algorithms publication-title: IEEE Trans. Knowl. Data Eng. – year: 2020 ident: b26 article-title: Multiscale evolutionary perturbation attack on community detection publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 10 start-page: 389 issue: 4 year: 2010 ident: 10.1016/j.knosys.2022.109495_b7 article-title: International trade and financial integration: A weighted network analysis publication-title: Quant. Finance doi: 10.1080/14697680902882420 – year: 1994 ident: 10.1016/j.knosys.2022.109495_b10 – volume: 32 start-page: 12938 year: 2019 ident: 10.1016/j.knosys.2022.109495_b25 article-title: REM: From structural entropy to community structure deception publication-title: Adv. Neural Inf. Process. Syst. – volume: 103 start-page: 8577 issue: 23 year: 2006 ident: 10.1016/j.knosys.2022.109495_b35 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0601602103 – volume: 30 start-page: 1507 issue: 8 year: 2018 ident: 10.1016/j.knosys.2022.109495_b4 article-title: Link weight prediction using supervised learning methods and its application to yelp layered network publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2801854 – volume: 48 start-page: 1420 issue: 5 year: 2017 ident: 10.1016/j.knosys.2022.109495_b5 article-title: Social synchrony on complex networks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2696998 – ident: 10.1016/j.knosys.2022.109495_b3 doi: 10.1145/3041021.3054725 – year: 2018 ident: 10.1016/j.knosys.2022.109495_b31 – volume: 19 start-page: 1130 issue: 4 year: 2017 ident: 10.1016/j.knosys.2022.109495_b8 article-title: A network partitioning algorithmic approach for macroscopic fundamental diagram-based hierarchical traffic network management publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2713808 – volume: 28 issue: 29 year: 2014 ident: 10.1016/j.knosys.2022.109495_b14 article-title: Semi-supervised community detection using label propagation publication-title: Internat. J. Modern Phys. B doi: 10.1142/S0217979214502087 – volume: 30 start-page: 660 issue: 4 year: 2017 ident: 10.1016/j.knosys.2022.109495_b23 article-title: Community deception or: How to stop fearing community detection algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2776133 – volume: 28 issue: 29 year: 2014 ident: 10.1016/j.knosys.2022.109495_b15 article-title: Semi-supervised community detection using label propagation publication-title: Internat. J. Modern Phys. B doi: 10.1142/S0217979214502087 – start-page: 409 year: 2020 ident: 10.1016/j.knosys.2022.109495_b19 article-title: Anchored vertex exploration for community engagement in social networks – volume: 5 start-page: 109 issue: 2 year: 1983 ident: 10.1016/j.knosys.2022.109495_b42 article-title: Stochastic blockmodels: First steps publication-title: Social Networks doi: 10.1016/0378-8733(83)90021-7 – volume: 99 start-page: 7821 issue: 12 year: 2002 ident: 10.1016/j.knosys.2022.109495_b1 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.122653799 – volume: 2005 start-page: P09008 issue: 09 year: 2005 ident: 10.1016/j.knosys.2022.109495_b45 article-title: Comparing community structure identification publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2005/09/P09008 – year: 2016 ident: 10.1016/j.knosys.2022.109495_b28 – volume: 83 issue: 1 year: 2011 ident: 10.1016/j.knosys.2022.109495_b43 article-title: Stochastic blockmodels and community structure in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.016107 – volume: 76 issue: 3 year: 2007 ident: 10.1016/j.knosys.2022.109495_b36 article-title: Near linear time algorithm to detect community structures in large-scale networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.76.036106 – ident: 10.1016/j.knosys.2022.109495_b2 doi: 10.1145/3038912.3052608 – volume: 92 year: 2020 ident: 10.1016/j.knosys.2022.109495_b18 article-title: Community-diversified influence maximization in social networks publication-title: Inf. Syst. doi: 10.1016/j.is.2020.101522 – volume: 85 start-page: 773 year: 2019 ident: 10.1016/j.knosys.2022.109495_b40 article-title: Community detection based on game theory publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.003 – volume: 659 start-page: 1 year: 2016 ident: 10.1016/j.knosys.2022.109495_b12 article-title: Community detection in networks: A user guide publication-title: Phys. Rep. doi: 10.1016/j.physrep.2016.09.002 – volume: 6 start-page: 491 issue: 3 year: 2019 ident: 10.1016/j.knosys.2022.109495_b24 article-title: GA-based Q-attack on community detection publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2019.2912801 – volume: 8 start-page: 704 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.109495_b20 article-title: Community hiding by link perturbation in social networks publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2021.3054115 – volume: 466 start-page: 761 issue: 7307 year: 2010 ident: 10.1016/j.knosys.2022.109495_b6 article-title: Link communities reveal multiscale complexity in networks publication-title: Nature doi: 10.1038/nature09182 – volume: 6 start-page: 37261 year: 2018 ident: 10.1016/j.knosys.2022.109495_b16 article-title: Semi-supervised community detection based on distance dynamics publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2838568 – year: 2017 ident: 10.1016/j.knosys.2022.109495_b30 – start-page: 253 year: 2010 ident: 10.1016/j.knosys.2022.109495_b21 article-title: The impact of unlinkability on adversarial community detection: effects and countermeasures – volume: 98 start-page: 28004 issue: 2 year: 2012 ident: 10.1016/j.knosys.2022.109495_b44 article-title: Evaluating network models: A likelihood analysis publication-title: Europhys. Lett. doi: 10.1209/0295-5075/98/28004 – volume: 30 issue: 8 year: 2016 ident: 10.1016/j.knosys.2022.109495_b17 article-title: Estimating the optimal number of communities by cluster analysis publication-title: Internat. J. Modern Phys. B doi: 10.1142/S0217979216500375 – volume: 2 start-page: 139 issue: 2 year: 2018 ident: 10.1016/j.knosys.2022.109495_b22 article-title: Hiding individuals and communities in a social network publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-017-0290-3 – start-page: 25 year: 2016 ident: 10.1016/j.knosys.2022.109495_b39 article-title: Blackhole: Robust community detection inspired by graph drawing – volume: 53 start-page: 965 issue: 2 year: 2020 ident: 10.1016/j.knosys.2022.109495_b11 article-title: A study on features of social recommender systems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09684-w – year: 2010 ident: 10.1016/j.knosys.2022.109495_b41 – year: 2020 ident: 10.1016/j.knosys.2022.109495_b26 article-title: Multiscale evolutionary perturbation attack on community detection publication-title: IEEE Trans. Comput. Soc. Syst. – ident: 10.1016/j.knosys.2022.109495_b27 doi: 10.1145/3366423.3380171 – volume: 27 start-page: 415 issue: 1 year: 2001 ident: 10.1016/j.knosys.2022.109495_b37 article-title: Birds of a feather: Homophily in social networks publication-title: Annu. Rev. Sociol. doi: 10.1146/annurev.soc.27.1.415 – volume: 2015 year: 2015 ident: 10.1016/j.knosys.2022.109495_b13 article-title: Effective semisupervised community detection using negative information publication-title: Math. Probl. Eng. – volume: 43 start-page: 89 issue: 1 year: 2019 ident: 10.1016/j.knosys.2022.109495_b38 article-title: Community detection using restrained random-walk similarity publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2016 ident: 10.1016/j.knosys.2022.109495_b32 – volume: 38 start-page: 321 issue: 2 year: 2004 ident: 10.1016/j.knosys.2022.109495_b33 article-title: Detecting community structure in networks publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2004-00124-y – volume: 6 start-page: 117 issue: 1 year: 2019 ident: 10.1016/j.knosys.2022.109495_b9 article-title: Maximizing activity profit in social networks publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2019.2891582 – year: 2017 ident: 10.1016/j.knosys.2022.109495_b29 – ident: 10.1016/j.knosys.2022.109495_b34 doi: 10.1145/1273496.1273595 |
| SSID | ssj0002218 |
| Score | 2.405195 |
| Snippet | Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109495 |
| SubjectTerms | Adversarial attack Community detection Community hiding Graph autoencoder |
| Title | Community hiding using a graph autoencoder |
| URI | https://dx.doi.org/10.1016/j.knosys.2022.109495 |
| Volume | 253 |
| WOSCitedRecordID | wos000889091500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002218 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXK0gMXSksrPtoqh56KvEpiO06OqKKlLUIcqLTiEnlju7uAEsRu0P58xvYkLFDRcujFipx4EueNxs-j8Qwhn7TKjDHKBbfmhnLJxhS0JKMmZxXLQQus8lVLjuTxcT4aFSdYbXTmywnIus4Xi-Lqv0INfQC2Ozr7DLh7odAB1wA6tAA7tP8EPB75AHI9mfoTK613B6g9n5t6T7XzxiWv1BiWi8T0Z-dbo25d05jhuSfcR9M20G1c6EJAQLATZxNT_64mquktCN741jbOibI0Ar099aSTg_4G2Kq68I3knuMwpjLGNLFoQ1PBlqxgAnvGUDrzkYEOvoLz4UXdwESG7gXDu8fv58N-sE710YNdYNp5GaSUTkoZpKyQ1VSKIh-Q1f3vB6Mf_aqcpt7X2399d4zSx_o9_po_05Ql6nG6QdZxzxDtB6xfkxemfkNedfU4IjTPm-RzD30UoI889JGKPPTREvRvya-vB6dfDinWwqBVyrI5NZlmJuYqHWtu89jEUgNXhT6tM5UJUamEp9Jkwrpa7VaBWWXGJCzhidKcc_aODOqmNlskKsZWVCK1prCwXR3zIlc2YZYJkCQyabcJ66ZeVpgo3tUruSyf-vHbhPajrkKilL88L7u_WiLZCySuBFV5cuTOM9-0S9bu9Pg9GcyvW_OBvKxu5tPZ9UfUk1tpy3aV |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+hiding+using+a+graph+autoencoder&rft.jtitle=Knowledge-based+systems&rft.au=Liu%2C+Dong&rft.au=Chang%2C+Zhengchao&rft.au=Yang%2C+Guoliang&rft.au=Chen%2C+Enhong&rft.date=2022-10-11&rft.issn=0950-7051&rft.volume=253&rft.spage=109495&rft_id=info:doi/10.1016%2Fj.knosys.2022.109495&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2022_109495 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |