Community hiding using a graph autoencoder

Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy problems such as the disclosure of individual or group information amongst community members, which goes against the hidden wishes of individu...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 253; p. 109495
Main Authors: Liu, Dong, Chang, Zhengchao, Yang, Guoliang, Chen, Enhong
Format: Journal Article
Language:English
Published: Elsevier B.V 11.10.2022
Subjects:
ISSN:0950-7051
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy problems such as the disclosure of individual or group information amongst community members, which goes against the hidden wishes of individuals and groups. Therefore, community hiding has received increasingly more attention in recent years. However, the network generation mechanism has not been considered in previous studies on community hiding. Generation models can reflect the generation process of the network and show the strength of the connection between nodes. To this end, we propose a new graph autoencoder for the community hiding algorithm, namely, GCH, which not only hides the community structure but also embodies the generation mechanism of the network. It uses the rules of the generation process from underfitting to overfitting in the community network to select the connections that have the greatest impact on the community structure for rewiring. After analyzing the essence of community detection algorithms and graph neural networks, an improved graph autoencoder is used to reconstruct the probabilistic adjacency matrix; and under the constraint of an ”invisible perturbation” of the network structure, the existing mainstream community detection algorithm is attacked, which greatly reduces the accuracy of community detection results. For the verification of model effectiveness, two widely used indicators NMI and AE are used to compare the performance of our attack on the community detection algorithm with other baselines under different dimension settings. Compared with several baseline algorithms, extensive experimental results are obtained.
AbstractList Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy problems such as the disclosure of individual or group information amongst community members, which goes against the hidden wishes of individuals and groups. Therefore, community hiding has received increasingly more attention in recent years. However, the network generation mechanism has not been considered in previous studies on community hiding. Generation models can reflect the generation process of the network and show the strength of the connection between nodes. To this end, we propose a new graph autoencoder for the community hiding algorithm, namely, GCH, which not only hides the community structure but also embodies the generation mechanism of the network. It uses the rules of the generation process from underfitting to overfitting in the community network to select the connections that have the greatest impact on the community structure for rewiring. After analyzing the essence of community detection algorithms and graph neural networks, an improved graph autoencoder is used to reconstruct the probabilistic adjacency matrix; and under the constraint of an ”invisible perturbation” of the network structure, the existing mainstream community detection algorithm is attacked, which greatly reduces the accuracy of community detection results. For the verification of model effectiveness, two widely used indicators NMI and AE are used to compare the performance of our attack on the community detection algorithm with other baselines under different dimension settings. Compared with several baseline algorithms, extensive experimental results are obtained.
ArticleNumber 109495
Author Chang, Zhengchao
Yang, Guoliang
Chen, Enhong
Liu, Dong
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0003-4346-9565
  surname: Liu
  fullname: Liu, Dong
  email: liudong@htu.edu.cn
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453000, Henan, China
– sequence: 2
  givenname: Zhengchao
  surname: Chang
  fullname: Chang, Zhengchao
  email: czhengchao@gmail.com
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453000, Henan, China
– sequence: 3
  givenname: Guoliang
  surname: Yang
  fullname: Yang, Guoliang
  email: leo@zzwwjj.com
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453000, Henan, China
– sequence: 4
  givenname: Enhong
  surname: Chen
  fullname: Chen, Enhong
  email: cheneh@ustc.edu.cn
  organization: School of Computer Science, University of Science and Technology of China, Hefei, 230000, Anhui, China
BookMark eNqFj01LAzEURbOoYFv9By5mLcz4kkkyrQtBil9QcKPrEJM3bWqblCQV5t87w7hyoZv34F7OhTMjEx88EnJFoaJA5c2u-vQhdaliwFgfLflSTMgUlgLKBgQ9J7OUdgB9SxdTcr0Kh8PJu9wVW2ed3xSnNFxdbKI-bgt9ygG9CRbjBTlr9T7h5c-fk_fHh7fVc7l-fXpZ3a9Lw2qZS5S2RuCafVjeLgChsUJCn1krtRTCaMpZg1K0FBhttawXNSKtKafacs7rOeHjrokhpYitOkZ30LFTFNTgqHZqdFSDoxode-z2F2Zc1tkFn6N2-__guxHGXuzLYVTJuN4brYtosrLB_T3wDYlMc6M
CitedBy_id crossref_primary_10_1016_j_asoc_2025_113767
crossref_primary_10_1109_TSMC_2023_3240765
crossref_primary_10_1016_j_ins_2024_120235
crossref_primary_10_3390_sym16101272
crossref_primary_10_1016_j_ins_2024_120665
crossref_primary_10_1016_j_knosys_2022_109939
crossref_primary_10_1007_s13369_024_09947_x
crossref_primary_10_3390_sym14112328
Cites_doi 10.1080/14697680902882420
10.1073/pnas.0601602103
10.1109/TKDE.2018.2801854
10.1109/TCYB.2017.2696998
10.1145/3041021.3054725
10.1109/TITS.2017.2713808
10.1142/S0217979214502087
10.1109/TKDE.2017.2776133
10.1016/0378-8733(83)90021-7
10.1073/pnas.122653799
10.1088/1742-5468/2005/09/P09008
10.1103/PhysRevE.83.016107
10.1103/PhysRevE.76.036106
10.1145/3038912.3052608
10.1016/j.is.2020.101522
10.1016/j.engappai.2019.08.003
10.1016/j.physrep.2016.09.002
10.1109/TCSS.2019.2912801
10.1109/TCSS.2021.3054115
10.1038/nature09182
10.1109/ACCESS.2018.2838568
10.1209/0295-5075/98/28004
10.1142/S0217979216500375
10.1038/s41562-017-0290-3
10.1007/s10462-019-09684-w
10.1145/3366423.3380171
10.1146/annurev.soc.27.1.415
10.1140/epjb/e2004-00124-y
10.1109/TCSS.2019.2891582
10.1145/1273496.1273595
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2022.109495
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2022_109495
S0950705122007493
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
ID FETCH-LOGICAL-c236t-e6d3e04a2bd4f80e07d560d3edd6a655ca1427e65f1021fa6383ee13141ad4443
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889091500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:07:25 EST 2025
Tue Nov 18 22:35:34 EST 2025
Sun Apr 06 06:54:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Community detection
Graph autoencoder
Community hiding
Adversarial attack
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-e6d3e04a2bd4f80e07d560d3edd6a655ca1427e65f1021fa6383ee13141ad4443
ORCID 0000-0003-4346-9565
ParticipantIDs crossref_primary_10_1016_j_knosys_2022_109495
crossref_citationtrail_10_1016_j_knosys_2022_109495
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109495
PublicationCentury 2000
PublicationDate 2022-10-11
PublicationDateYYYYMMDD 2022-10-11
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-11
  day: 11
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Newman (b35) 2006; 103
C. Ding, F. Xia, G. Gopalakrishnan, W. Qian, A. Zhou, TeamGen: an interactive team formation system based on professional social network, in: Proceedings of the 26th International Conference on World Wide Web Companion, 2017, pp. 195–199.
Liu, Bai, Li, Wang (b14) 2014; 28
Waniek, Michalak, Wooldridge, Rahwan (b22) 2018; 2
Xuan, Zhang, Fu, Hu, Filkov (b5) 2017; 48
Shokeen, Rana (b11) 2020; 53
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b30) 2017
Kipf, Welling (b32) 2016
McPherson, Smith-Lovin, Cook (b37) 2001; 27
Fortunato, Hric (b12) 2016; 659
Okuda, Satoh, Sato, Kidawara (b38) 2019; 43
Goldenberg, Zheng, Fienberg, Airoldi (b41) 2010
Cai, Li, Hasan Haldar, Mian, Yearwood, Sellis (b19) 2020
M.J. Rattigan, M. Maier, D. Jensen, Graph clustering with network structure indices, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 783–790.
Fionda, Pirro (b23) 2017; 30
Xu, Hu, Leskovec, Jegelka (b31) 2018
Fan, Xu, Liu, Ru (b16) 2018; 6
Liu, Liu, Zhang, Zhu, Li (b25) 2019; 32
Danon, Diaz-Guilera, Duch, Arenas (b45) 2005; 2005
An, Chiu, Hu, Chen (b8) 2017; 19
Liu, Duan, Sui, Song (b13) 2015; 2015
Lim, Kim, Lee (b39) 2016
Wang, Zhang, Zhou (b44) 2012; 98
Girvan, Newman (b1) 2002; 99
Nagaraja (b21) 2010
Ahn, Bagrow, Lehmann (b6) 2010; 466
Schiavo, Reyes, Fagiolo (b7) 2010; 10
Liu, Bai, Li, Wang (b15) 2014; 28
Li, Cai, Deng, Wang, Sellis, Xia (b18) 2020; 92
Hamilton, Ying, Leskovec (b29) 2017
Chen, Chen, Chen, Zhao, Xuan (b26) 2020
Moscato, Picariello, Sperlí (b40) 2019; 85
Fu, Zhao, Fan, Chen, Chen, Wu, Xia, Xuan (b4) 2018; 30
Yang, Yuan, Wu, Ma, Du (b9) 2019; 6
Holland, Laskey, Leinhardt (b42) 1983; 5
Karrer, Newman (b43) 2011; 83
Newman (b33) 2004; 38
Chen, Jiang, Li, Ma, Yu (b20) 2021; 8
Kipf, Welling (b28) 2016
W. Chen, S.-H. Teng, Interplay between social influence and network centrality: a comparative study on shapley centrality and single-node-influence centrality, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 967–976.
Wasserman, Faust (b10) 1994
J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, J. Huang, Adversarial attack on community detection by hiding individuals, in: Proceedings of the Web Conference 2020, 2020, pp. 917–927.
Raghavan, Albert, Kumara (b36) 2007; 76
Liu, Wang, Jing (b17) 2016; 30
Chen, Chen, Chen, Zhao, Yu, Xuan, Yang (b24) 2019; 6
Fu (10.1016/j.knosys.2022.109495_b4) 2018; 30
Newman (10.1016/j.knosys.2022.109495_b33) 2004; 38
Kipf (10.1016/j.knosys.2022.109495_b28) 2016
McPherson (10.1016/j.knosys.2022.109495_b37) 2001; 27
Fan (10.1016/j.knosys.2022.109495_b16) 2018; 6
Liu (10.1016/j.knosys.2022.109495_b17) 2016; 30
Hamilton (10.1016/j.knosys.2022.109495_b29) 2017
Ahn (10.1016/j.knosys.2022.109495_b6) 2010; 466
An (10.1016/j.knosys.2022.109495_b8) 2017; 19
Holland (10.1016/j.knosys.2022.109495_b42) 1983; 5
Fionda (10.1016/j.knosys.2022.109495_b23) 2017; 30
Liu (10.1016/j.knosys.2022.109495_b14) 2014; 28
Cai (10.1016/j.knosys.2022.109495_b19) 2020
Wasserman (10.1016/j.knosys.2022.109495_b10) 1994
Wang (10.1016/j.knosys.2022.109495_b44) 2012; 98
Xuan (10.1016/j.knosys.2022.109495_b5) 2017; 48
Liu (10.1016/j.knosys.2022.109495_b13) 2015; 2015
Newman (10.1016/j.knosys.2022.109495_b35) 2006; 103
Girvan (10.1016/j.knosys.2022.109495_b1) 2002; 99
Chen (10.1016/j.knosys.2022.109495_b20) 2021; 8
Li (10.1016/j.knosys.2022.109495_b18) 2020; 92
Okuda (10.1016/j.knosys.2022.109495_b38) 2019; 43
Lim (10.1016/j.knosys.2022.109495_b39) 2016
Xu (10.1016/j.knosys.2022.109495_b31) 2018
Schiavo (10.1016/j.knosys.2022.109495_b7) 2010; 10
Moscato (10.1016/j.knosys.2022.109495_b40) 2019; 85
Fortunato (10.1016/j.knosys.2022.109495_b12) 2016; 659
Goldenberg (10.1016/j.knosys.2022.109495_b41) 2010
Veličković (10.1016/j.knosys.2022.109495_b30) 2017
Kipf (10.1016/j.knosys.2022.109495_b32) 2016
Liu (10.1016/j.knosys.2022.109495_b25) 2019; 32
Chen (10.1016/j.knosys.2022.109495_b24) 2019; 6
10.1016/j.knosys.2022.109495_b34
Yang (10.1016/j.knosys.2022.109495_b9) 2019; 6
Karrer (10.1016/j.knosys.2022.109495_b43) 2011; 83
10.1016/j.knosys.2022.109495_b27
10.1016/j.knosys.2022.109495_b3
10.1016/j.knosys.2022.109495_b2
Liu (10.1016/j.knosys.2022.109495_b15) 2014; 28
Raghavan (10.1016/j.knosys.2022.109495_b36) 2007; 76
Nagaraja (10.1016/j.knosys.2022.109495_b21) 2010
Waniek (10.1016/j.knosys.2022.109495_b22) 2018; 2
Danon (10.1016/j.knosys.2022.109495_b45) 2005; 2005
Chen (10.1016/j.knosys.2022.109495_b26) 2020
Shokeen (10.1016/j.knosys.2022.109495_b11) 2020; 53
References_xml – year: 2016
  ident: b32
  article-title: Variational graph auto-encoders
– volume: 6
  start-page: 117
  year: 2019
  end-page: 126
  ident: b9
  article-title: Maximizing activity profit in social networks
  publication-title: IEEE Trans. Comput. Soc. Syst.
– year: 2016
  ident: b28
  article-title: Semi-supervised classification with graph convolutional networks
– reference: J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, J. Huang, Adversarial attack on community detection by hiding individuals, in: Proceedings of the Web Conference 2020, 2020, pp. 917–927.
– reference: C. Ding, F. Xia, G. Gopalakrishnan, W. Qian, A. Zhou, TeamGen: an interactive team formation system based on professional social network, in: Proceedings of the 26th International Conference on World Wide Web Companion, 2017, pp. 195–199.
– year: 2017
  ident: b29
  article-title: Inductive representation learning on large graphs
– volume: 76
  year: 2007
  ident: b36
  article-title: Near linear time algorithm to detect community structures in large-scale networks
  publication-title: Phys. Rev. E
– volume: 2015
  year: 2015
  ident: b13
  article-title: Effective semisupervised community detection using negative information
  publication-title: Math. Probl. Eng.
– volume: 5
  start-page: 109
  year: 1983
  end-page: 137
  ident: b42
  article-title: Stochastic blockmodels: First steps
  publication-title: Social Networks
– volume: 466
  start-page: 761
  year: 2010
  end-page: 764
  ident: b6
  article-title: Link communities reveal multiscale complexity in networks
  publication-title: Nature
– start-page: 25
  year: 2016
  end-page: 36
  ident: b39
  article-title: Blackhole: Robust community detection inspired by graph drawing
  publication-title: 2016 IEEE 32nd International Conference on Data Engineering
– reference: W. Chen, S.-H. Teng, Interplay between social influence and network centrality: a comparative study on shapley centrality and single-node-influence centrality, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 967–976.
– volume: 53
  start-page: 965
  year: 2020
  end-page: 988
  ident: b11
  article-title: A study on features of social recommender systems
  publication-title: Artif. Intell. Rev.
– volume: 43
  start-page: 89
  year: 2019
  end-page: 103
  ident: b38
  article-title: Community detection using restrained random-walk similarity
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 30
  year: 2016
  ident: b17
  article-title: Estimating the optimal number of communities by cluster analysis
  publication-title: Internat. J. Modern Phys. B
– volume: 92
  year: 2020
  ident: b18
  article-title: Community-diversified influence maximization in social networks
  publication-title: Inf. Syst.
– volume: 85
  start-page: 773
  year: 2019
  end-page: 782
  ident: b40
  article-title: Community detection based on game theory
  publication-title: Eng. Appl. Artif. Intell.
– volume: 28
  year: 2014
  ident: b14
  article-title: Semi-supervised community detection using label propagation
  publication-title: Internat. J. Modern Phys. B
– year: 2018
  ident: b31
  article-title: How powerful are graph neural networks?
– volume: 8
  start-page: 704
  year: 2021
  end-page: 715
  ident: b20
  article-title: Community hiding by link perturbation in social networks
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 2005
  start-page: P09008
  year: 2005
  ident: b45
  article-title: Comparing community structure identification
  publication-title: J. Stat. Mech. Theory Exp.
– year: 2010
  ident: b41
  article-title: A Survey of Statistical Network Models
– volume: 98
  start-page: 28004
  year: 2012
  ident: b44
  article-title: Evaluating network models: A likelihood analysis
  publication-title: Europhys. Lett.
– volume: 38
  start-page: 321
  year: 2004
  end-page: 330
  ident: b33
  article-title: Detecting community structure in networks
  publication-title: Eur. Phys. J. B
– reference: M.J. Rattigan, M. Maier, D. Jensen, Graph clustering with network structure indices, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 783–790.
– volume: 103
  start-page: 8577
  year: 2006
  end-page: 8582
  ident: b35
  article-title: Modularity and community structure in networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 6
  start-page: 491
  year: 2019
  end-page: 503
  ident: b24
  article-title: GA-based Q-attack on community detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 30
  start-page: 1507
  year: 2018
  end-page: 1518
  ident: b4
  article-title: Link weight prediction using supervised learning methods and its application to yelp layered network
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 19
  start-page: 1130
  year: 2017
  end-page: 1139
  ident: b8
  article-title: A network partitioning algorithmic approach for macroscopic fundamental diagram-based hierarchical traffic network management
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 10
  start-page: 389
  year: 2010
  end-page: 399
  ident: b7
  article-title: International trade and financial integration: A weighted network analysis
  publication-title: Quant. Finance
– volume: 2
  start-page: 139
  year: 2018
  end-page: 147
  ident: b22
  article-title: Hiding individuals and communities in a social network
  publication-title: Nat. Hum. Behav.
– year: 2017
  ident: b30
  article-title: Graph attention networks
– volume: 27
  start-page: 415
  year: 2001
  end-page: 444
  ident: b37
  article-title: Birds of a feather: Homophily in social networks
  publication-title: Annu. Rev. Sociol.
– year: 1994
  ident: b10
  article-title: Social Network Analysis: Methods and Applications
– volume: 32
  start-page: 12938
  year: 2019
  end-page: 12948
  ident: b25
  article-title: REM: From structural entropy to community structure deception
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 409
  year: 2020
  end-page: 420
  ident: b19
  article-title: Anchored vertex exploration for community engagement in social networks
  publication-title: 2020 IEEE 36th International Conference on Data Engineering (ICDE)
– start-page: 253
  year: 2010
  end-page: 272
  ident: b21
  article-title: The impact of unlinkability on adversarial community detection: effects and countermeasures
  publication-title: International Symposium on Privacy Enhancing Technologies Symposium
– volume: 48
  start-page: 1420
  year: 2017
  end-page: 1431
  ident: b5
  article-title: Social synchrony on complex networks
  publication-title: IEEE Trans. Cybern.
– volume: 659
  start-page: 1
  year: 2016
  end-page: 44
  ident: b12
  article-title: Community detection in networks: A user guide
  publication-title: Phys. Rep.
– volume: 28
  year: 2014
  ident: b15
  article-title: Semi-supervised community detection using label propagation
  publication-title: Internat. J. Modern Phys. B
– volume: 83
  year: 2011
  ident: b43
  article-title: Stochastic blockmodels and community structure in networks
  publication-title: Phys. Rev. E
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 7826
  ident: b1
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 6
  start-page: 37261
  year: 2018
  end-page: 37271
  ident: b16
  article-title: Semi-supervised community detection based on distance dynamics
  publication-title: IEEE Access
– volume: 30
  start-page: 660
  year: 2017
  end-page: 673
  ident: b23
  article-title: Community deception or: How to stop fearing community detection algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2020
  ident: b26
  article-title: Multiscale evolutionary perturbation attack on community detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 10
  start-page: 389
  issue: 4
  year: 2010
  ident: 10.1016/j.knosys.2022.109495_b7
  article-title: International trade and financial integration: A weighted network analysis
  publication-title: Quant. Finance
  doi: 10.1080/14697680902882420
– year: 1994
  ident: 10.1016/j.knosys.2022.109495_b10
– volume: 32
  start-page: 12938
  year: 2019
  ident: 10.1016/j.knosys.2022.109495_b25
  article-title: REM: From structural entropy to community structure deception
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 103
  start-page: 8577
  issue: 23
  year: 2006
  ident: 10.1016/j.knosys.2022.109495_b35
  article-title: Modularity and community structure in networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0601602103
– volume: 30
  start-page: 1507
  issue: 8
  year: 2018
  ident: 10.1016/j.knosys.2022.109495_b4
  article-title: Link weight prediction using supervised learning methods and its application to yelp layered network
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2801854
– volume: 48
  start-page: 1420
  issue: 5
  year: 2017
  ident: 10.1016/j.knosys.2022.109495_b5
  article-title: Social synchrony on complex networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2696998
– ident: 10.1016/j.knosys.2022.109495_b3
  doi: 10.1145/3041021.3054725
– year: 2018
  ident: 10.1016/j.knosys.2022.109495_b31
– volume: 19
  start-page: 1130
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2022.109495_b8
  article-title: A network partitioning algorithmic approach for macroscopic fundamental diagram-based hierarchical traffic network management
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2713808
– volume: 28
  issue: 29
  year: 2014
  ident: 10.1016/j.knosys.2022.109495_b14
  article-title: Semi-supervised community detection using label propagation
  publication-title: Internat. J. Modern Phys. B
  doi: 10.1142/S0217979214502087
– volume: 30
  start-page: 660
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2022.109495_b23
  article-title: Community deception or: How to stop fearing community detection algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2776133
– volume: 28
  issue: 29
  year: 2014
  ident: 10.1016/j.knosys.2022.109495_b15
  article-title: Semi-supervised community detection using label propagation
  publication-title: Internat. J. Modern Phys. B
  doi: 10.1142/S0217979214502087
– start-page: 409
  year: 2020
  ident: 10.1016/j.knosys.2022.109495_b19
  article-title: Anchored vertex exploration for community engagement in social networks
– volume: 5
  start-page: 109
  issue: 2
  year: 1983
  ident: 10.1016/j.knosys.2022.109495_b42
  article-title: Stochastic blockmodels: First steps
  publication-title: Social Networks
  doi: 10.1016/0378-8733(83)90021-7
– volume: 99
  start-page: 7821
  issue: 12
  year: 2002
  ident: 10.1016/j.knosys.2022.109495_b1
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.122653799
– volume: 2005
  start-page: P09008
  issue: 09
  year: 2005
  ident: 10.1016/j.knosys.2022.109495_b45
  article-title: Comparing community structure identification
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2005/09/P09008
– year: 2016
  ident: 10.1016/j.knosys.2022.109495_b28
– volume: 83
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2022.109495_b43
  article-title: Stochastic blockmodels and community structure in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.016107
– volume: 76
  issue: 3
  year: 2007
  ident: 10.1016/j.knosys.2022.109495_b36
  article-title: Near linear time algorithm to detect community structures in large-scale networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.76.036106
– ident: 10.1016/j.knosys.2022.109495_b2
  doi: 10.1145/3038912.3052608
– volume: 92
  year: 2020
  ident: 10.1016/j.knosys.2022.109495_b18
  article-title: Community-diversified influence maximization in social networks
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2020.101522
– volume: 85
  start-page: 773
  year: 2019
  ident: 10.1016/j.knosys.2022.109495_b40
  article-title: Community detection based on game theory
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.003
– volume: 659
  start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2022.109495_b12
  article-title: Community detection in networks: A user guide
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2016.09.002
– volume: 6
  start-page: 491
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2022.109495_b24
  article-title: GA-based Q-attack on community detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2019.2912801
– volume: 8
  start-page: 704
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2022.109495_b20
  article-title: Community hiding by link perturbation in social networks
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2021.3054115
– volume: 466
  start-page: 761
  issue: 7307
  year: 2010
  ident: 10.1016/j.knosys.2022.109495_b6
  article-title: Link communities reveal multiscale complexity in networks
  publication-title: Nature
  doi: 10.1038/nature09182
– volume: 6
  start-page: 37261
  year: 2018
  ident: 10.1016/j.knosys.2022.109495_b16
  article-title: Semi-supervised community detection based on distance dynamics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2838568
– year: 2017
  ident: 10.1016/j.knosys.2022.109495_b30
– start-page: 253
  year: 2010
  ident: 10.1016/j.knosys.2022.109495_b21
  article-title: The impact of unlinkability on adversarial community detection: effects and countermeasures
– volume: 98
  start-page: 28004
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2022.109495_b44
  article-title: Evaluating network models: A likelihood analysis
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/98/28004
– volume: 30
  issue: 8
  year: 2016
  ident: 10.1016/j.knosys.2022.109495_b17
  article-title: Estimating the optimal number of communities by cluster analysis
  publication-title: Internat. J. Modern Phys. B
  doi: 10.1142/S0217979216500375
– volume: 2
  start-page: 139
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2022.109495_b22
  article-title: Hiding individuals and communities in a social network
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-017-0290-3
– start-page: 25
  year: 2016
  ident: 10.1016/j.knosys.2022.109495_b39
  article-title: Blackhole: Robust community detection inspired by graph drawing
– volume: 53
  start-page: 965
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2022.109495_b11
  article-title: A study on features of social recommender systems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09684-w
– year: 2010
  ident: 10.1016/j.knosys.2022.109495_b41
– year: 2020
  ident: 10.1016/j.knosys.2022.109495_b26
  article-title: Multiscale evolutionary perturbation attack on community detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
– ident: 10.1016/j.knosys.2022.109495_b27
  doi: 10.1145/3366423.3380171
– volume: 27
  start-page: 415
  issue: 1
  year: 2001
  ident: 10.1016/j.knosys.2022.109495_b37
  article-title: Birds of a feather: Homophily in social networks
  publication-title: Annu. Rev. Sociol.
  doi: 10.1146/annurev.soc.27.1.415
– volume: 2015
  year: 2015
  ident: 10.1016/j.knosys.2022.109495_b13
  article-title: Effective semisupervised community detection using negative information
  publication-title: Math. Probl. Eng.
– volume: 43
  start-page: 89
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2022.109495_b38
  article-title: Community detection using restrained random-walk similarity
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2016
  ident: 10.1016/j.knosys.2022.109495_b32
– volume: 38
  start-page: 321
  issue: 2
  year: 2004
  ident: 10.1016/j.knosys.2022.109495_b33
  article-title: Detecting community structure in networks
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2004-00124-y
– volume: 6
  start-page: 117
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2022.109495_b9
  article-title: Maximizing activity profit in social networks
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2019.2891582
– year: 2017
  ident: 10.1016/j.knosys.2022.109495_b29
– ident: 10.1016/j.knosys.2022.109495_b34
  doi: 10.1145/1273496.1273595
SSID ssj0002218
Score 2.405195
Snippet Community detection can reveal real social relations and enable great economic benefits for enterprises and organizations; however, it can also cause privacy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109495
SubjectTerms Adversarial attack
Community detection
Community hiding
Graph autoencoder
Title Community hiding using a graph autoencoder
URI https://dx.doi.org/10.1016/j.knosys.2022.109495
Volume 253
WOSCitedRecordID wos000889091500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXK0gMXSksrPtoqh56KvEpiO06OqKKlLUIcqLTiEnlju7uAEsRu0P58xvYkLFDRcujFipx4EueNxs-j8Qwhn7TKjDHKBbfmhnLJxhS0JKMmZxXLQQus8lVLjuTxcT4aFSdYbXTmywnIus4Xi-Lqv0INfQC2Ozr7DLh7odAB1wA6tAA7tP8EPB75AHI9mfoTK613B6g9n5t6T7XzxiWv1BiWi8T0Z-dbo25d05jhuSfcR9M20G1c6EJAQLATZxNT_64mquktCN741jbOibI0Ar099aSTg_4G2Kq68I3knuMwpjLGNLFoQ1PBlqxgAnvGUDrzkYEOvoLz4UXdwESG7gXDu8fv58N-sE710YNdYNp5GaSUTkoZpKyQ1VSKIh-Q1f3vB6Mf_aqcpt7X2399d4zSx_o9_po_05Ql6nG6QdZxzxDtB6xfkxemfkNedfU4IjTPm-RzD30UoI889JGKPPTREvRvya-vB6dfDinWwqBVyrI5NZlmJuYqHWtu89jEUgNXhT6tM5UJUamEp9Jkwrpa7VaBWWXGJCzhidKcc_aODOqmNlskKsZWVCK1prCwXR3zIlc2YZYJkCQyabcJ66ZeVpgo3tUruSyf-vHbhPajrkKilL88L7u_WiLZCySuBFV5cuTOM9-0S9bu9Pg9GcyvW_OBvKxu5tPZ9UfUk1tpy3aV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+hiding+using+a+graph+autoencoder&rft.jtitle=Knowledge-based+systems&rft.au=Liu%2C+Dong&rft.au=Chang%2C+Zhengchao&rft.au=Yang%2C+Guoliang&rft.au=Chen%2C+Enhong&rft.date=2022-10-11&rft.issn=0950-7051&rft.volume=253&rft.spage=109495&rft_id=info:doi/10.1016%2Fj.knosys.2022.109495&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2022_109495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon