GARLSched: Generative adversarial deep reinforcement learning task scheduling optimization for large-scale high performance computing systems
Efficient task scheduling has become increasingly complex as the number and type of tasks proliferate and the size of computing resource grows in large-scale distributed high-performance computing (HPC) systems. At present, deep reinforcement learning (DRL) methods have achieved certain success in s...
Uloženo v:
| Vydáno v: | Future generation computer systems Ročník 135; s. 259 - 269 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.10.2022
|
| Témata: | |
| ISSN: | 0167-739X, 1872-7115 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!