A lightweight propagation path aggregating network with neural topic model for rumor detection

The structure information associated with message propagation has been proved to be effective to distinguish false and true rumors. However, existing methods lack an efficient way to learn the representation of the whole rumors which captures the intrinsic mechanism of rumor propagation structures a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 458; S. 468 - 477
Hauptverfasser: Zhang, Pengfei, Ran, Hongyan, Jia, Caiyan, Li, Xuanya, Han, Xueming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 11.10.2021
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The structure information associated with message propagation has been proved to be effective to distinguish false and true rumors. However, existing methods lack an efficient way to learn the representation of the whole rumors which captures the intrinsic mechanism of rumor propagation structures and semantics. In this study, we propose a lightweight propagation path aggregating (PPA) neural network for rumor embedding and classification. In the network, we first model the propagation structure of each rumor as an independent set of propagation paths in which each path represents the source post in a different talking context. We then aggregate all paths to obtain the representation of the whole propagation structure. Besides, we utilize a neural topic model in the Wasserstein autoencoder (WAE) framework to capture event insensitive stance patterns in response propagation trees where no source post is included. Empirical studies demonstrate that 1) PPA achieves the state-of-the-art performance with much less parameters and training time, 2) PPA can further benefit from the pre-trained neural topic model which enables to fully use unlabeled data, thus improves the performance of PPA especially when labeled samples are limited or rumors are spreading at early stage. Meanwhile, this topic model offers an explicit interpretation of stance patterns in the form of topics, consequently improves interpretability of the PPA network. The source code can be available at https://github.com/zperfet/PathFakeGit.
AbstractList The structure information associated with message propagation has been proved to be effective to distinguish false and true rumors. However, existing methods lack an efficient way to learn the representation of the whole rumors which captures the intrinsic mechanism of rumor propagation structures and semantics. In this study, we propose a lightweight propagation path aggregating (PPA) neural network for rumor embedding and classification. In the network, we first model the propagation structure of each rumor as an independent set of propagation paths in which each path represents the source post in a different talking context. We then aggregate all paths to obtain the representation of the whole propagation structure. Besides, we utilize a neural topic model in the Wasserstein autoencoder (WAE) framework to capture event insensitive stance patterns in response propagation trees where no source post is included. Empirical studies demonstrate that 1) PPA achieves the state-of-the-art performance with much less parameters and training time, 2) PPA can further benefit from the pre-trained neural topic model which enables to fully use unlabeled data, thus improves the performance of PPA especially when labeled samples are limited or rumors are spreading at early stage. Meanwhile, this topic model offers an explicit interpretation of stance patterns in the form of topics, consequently improves interpretability of the PPA network. The source code can be available at https://github.com/zperfet/PathFakeGit.
Author Jia, Caiyan
Li, Xuanya
Zhang, Pengfei
Ran, Hongyan
Han, Xueming
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Zhang
  fullname: Zhang, Pengfei
  organization: School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Hongyan
  surname: Ran
  fullname: Ran, Hongyan
  organization: School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China
– sequence: 3
  givenname: Caiyan
  surname: Jia
  fullname: Jia, Caiyan
  email: cyjia@bjtu.edu.cn
  organization: School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China
– sequence: 4
  givenname: Xuanya
  surname: Li
  fullname: Li, Xuanya
  email: lixuanya@baidu.com
  organization: Baidu Inc., , Beijing 100085, China
– sequence: 5
  givenname: Xueming
  surname: Han
  fullname: Han, Xueming
  organization: School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China
BookMark eNqFUEFOwzAQtFCRaAs_4OAPJNhOE6cckKoKClIlLnDFsjbr1CWJI8el4vc4lBMHkFa70uzOrGZmZNK5Dgm55izljBc3-7TDA7g2FUzwlBWxxBmZ8lKKpBRlMSFTthR5IjIuLshsGPaMccnFckreVrSx9S4ccey0967XtQ7WdbTXYUd1XXscga6mHYaj8-_0aOMifvS6ocH1FmjrKmyocZ76Qxt7hQFhFLkk50Y3A179zDl5fbh_WT8m2-fN03q1TUBkRUg0apTIKyGz3ABqFidCkS9KAIlZhdGlQKh0wQ0zpYwnpcxzCRARwU02J4uTLng3DB6N6r1ttf9UnKkxI7VXp4zUmJFiRSwRabe_aGDDt_vgtW3-I9-dyBiNfVj0agCLHWBlfXSvKmf_FvgCNrSKpQ
CitedBy_id crossref_primary_10_1109_TCSS_2024_3443275
crossref_primary_10_1016_j_jnca_2024_104084
crossref_primary_10_3389_fphy_2022_1056207
crossref_primary_10_1016_j_jksuci_2024_102087
crossref_primary_10_1007_s10489_022_03833_5
crossref_primary_10_1007_s11227_024_05953_w
crossref_primary_10_1007_s11063_023_11229_w
crossref_primary_10_7717_peerj_cs_1659
crossref_primary_10_1371_journal_pone_0312240
crossref_primary_10_1007_s10489_022_03592_3
crossref_primary_10_1016_j_ins_2024_121055
crossref_primary_10_1145_3672074
crossref_primary_10_1016_j_ipm_2025_104341
crossref_primary_10_1007_s12530_025_09672_2
crossref_primary_10_1016_j_neucom_2023_02_044
crossref_primary_10_1016_j_neucom_2024_129034
crossref_primary_10_1016_j_ins_2022_01_036
crossref_primary_10_1007_s10614_025_11072_2
crossref_primary_10_1016_j_knosys_2023_110807
crossref_primary_10_1109_TCSS_2023_3289031
crossref_primary_10_1007_s00521_025_11101_z
crossref_primary_10_1007_s11227_024_06549_0
crossref_primary_10_1109_ACCESS_2023_3284308
crossref_primary_10_1016_j_neucom_2024_128314
crossref_primary_10_1016_j_eswa_2025_129786
crossref_primary_10_1016_j_eswa_2025_128798
crossref_primary_10_3390_app14083532
Cites_doi 10.1609/aaai.v34i01.5393
10.1145/2350190.2350203
10.1109/ICDM.2019.00090
10.1609/aaai.v34i05.6405
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.06.062
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 477
ExternalDocumentID 10_1016_j_neucom_2021_06_062
S0925231221009863
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c236t-aeae7e1d2735fcea0735ec6548cc7e3de0162ecda61f0f87cea87557cca6121f3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691561400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:16:17 EST 2025
Tue Nov 18 22:31:11 EST 2025
Fri Feb 23 02:43:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wasserstein autoencoder
Rumor detection
Propagation structure
Lightweight
Neural topic model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-aeae7e1d2735fcea0735ec6548cc7e3de0162ecda61f0f87cea87557cca6121f3
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_neucom_2021_06_062
crossref_citationtrail_10_1016_j_neucom_2021_06_062
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_06_062
PublicationCentury 2000
PublicationDate 2021-10-11
PublicationDateYYYYMMDD 2021-10-11
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-11
  day: 11
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kingma, Welling (b0115) 2013
J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling (2014).
Zubiaga, Aker, Bontcheva, Liakata, Procter (b0015) 2018; 51
Castillo, Mendoza, Poblete (b0035) 2011
Ma, Gao, Wei, Lu, Wong (b0160) 2015
Ding, Nallapati, Xiang (b0110) 2018
Miao, Yu, Blunsom (b0100) 2016
J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional transformers for language understanding, in: J. Burstein, C. Doran, T. Solorio (Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1 (Long and Short Papers), Association for Computational Linguistics, 2019, pp. 4171–4186.
Kumar, Carley (b0030) 2019
Tolstikhin, Bousquet, Gelly, Schoelkopf (b0135) 2018
Liu, Wu (b0060) 2018
Wu, Yang, Zhu (b0075) 2015
Gururangan, Dang, Card, Smith (b0125) 2019
G.D. Fensterer, Planning and assessing stability operations: a proposed value focus thinking approach, Ph.D. thesis, 2012.
Gretton, Borgwardt, Rasch, Scholkopf, Smola (b0140) 2012; 13
Nan, Ding, Nallapati, Xiang (b0120) 2019
Pennington, Socher, Manning (b0170) 2014
Ma, Gao, Mitra, Kwon, Jansen, Wong, Cha (b0055) 2016
Blei, Ng, Jordan (b0095) 2003; 3
C. Yuan, Q. Ma, W. Zhou, J. Han, S. Hu, Jointly embedding the local and global relations of heterogeneous graph for rumor detection, CoRR abs/1909.04465 (2019).
Ma, Gao, Wong (b0005) 2018
Duchi, Hazan, Singer (b0165) 2011
Zhao, Resnick, Mei (b0020) 2015
F. Yang, Y. Liu, X. Yu, M. Yang, Automatic detection of rumor on sina weibo, In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics (2012) 13.
Srivastava, Sutton (b0105) 2017
L.M.S. Khoo, H.L. Chieu, Z. Qian, J. Jiang, Interpretable rumor detection in microblogs by attending to user interactions, CoRR abs/2001.10667 (2020).
T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, J. Huang, Rumor detection on social media with bi-directional graph convolutional networks, CoRR abs/2001.06362 (2020).
Kwon, Cha, Jung (b0045) 2013
Ruchansky, Seo, Liu (b0065) 2017
Ma, Gao, Wong (b0025) 2018
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0085) 2017
Mikolov, Chen, Corrado, Dean (b0175) 2013
Lebanon, Lafferty (b0145) 2002
Ma, Gao, Wong (b0050) 2017
Ma, Gao, Mitra, Kwon, Jansen, Wong, Cha (b0155) 2016
Srivastava (10.1016/j.neucom.2021.06.062_b0105) 2017
Nan (10.1016/j.neucom.2021.06.062_b0120) 2019
Gretton (10.1016/j.neucom.2021.06.062_b0140) 2012; 13
Tolstikhin (10.1016/j.neucom.2021.06.062_b0135) 2018
Gururangan (10.1016/j.neucom.2021.06.062_b0125) 2019
Kwon (10.1016/j.neucom.2021.06.062_b0045) 2013
Ma (10.1016/j.neucom.2021.06.062_b0055) 2016
Ruchansky (10.1016/j.neucom.2021.06.062_b0065) 2017
10.1016/j.neucom.2021.06.062_b0080
Ma (10.1016/j.neucom.2021.06.062_b0025) 2018
10.1016/j.neucom.2021.06.062_b0040
Kingma (10.1016/j.neucom.2021.06.062_b0115) 2013
Miao (10.1016/j.neucom.2021.06.062_b0100) 2016
Ma (10.1016/j.neucom.2021.06.062_b0155) 2016
Blei (10.1016/j.neucom.2021.06.062_b0095) 2003; 3
Lebanon (10.1016/j.neucom.2021.06.062_b0145) 2002
Ding (10.1016/j.neucom.2021.06.062_b0110) 2018
Zubiaga (10.1016/j.neucom.2021.06.062_b0015) 2018; 51
Kumar (10.1016/j.neucom.2021.06.062_b0030) 2019
Duchi (10.1016/j.neucom.2021.06.062_b0165) 2011
Pennington (10.1016/j.neucom.2021.06.062_b0170) 2014
10.1016/j.neucom.2021.06.062_b0070
10.1016/j.neucom.2021.06.062_b0090
10.1016/j.neucom.2021.06.062_b0130
Wu (10.1016/j.neucom.2021.06.062_b0075) 2015
10.1016/j.neucom.2021.06.062_b0150
Castillo (10.1016/j.neucom.2021.06.062_b0035) 2011
Zhao (10.1016/j.neucom.2021.06.062_b0020) 2015
10.1016/j.neucom.2021.06.062_b0010
Vaswani (10.1016/j.neucom.2021.06.062_b0085) 2017
Ma (10.1016/j.neucom.2021.06.062_b0160) 2015
Ma (10.1016/j.neucom.2021.06.062_b0005) 2018
Mikolov (10.1016/j.neucom.2021.06.062_b0175) 2013
Ma (10.1016/j.neucom.2021.06.062_b0050) 2017
Liu (10.1016/j.neucom.2021.06.062_b0060) 2018
References_xml – start-page: 354
  year: 2018
  end-page: 361
  ident: b0060
  article-title: Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks
  publication-title: Proceedings of the 34th Conference on Artificial Intelligence
– year: 2013
  ident: b0115
  article-title: Auto-encoding variational bayes
  publication-title: Proceedings of the 2th International Conference on Learning Representations
– start-page: 1532
  year: 2014
  end-page: 1543
  ident: b0170
  article-title: Glove: Global vectors for word representation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
– start-page: 6345
  year: 2019
  end-page: 6381
  ident: b0120
  article-title: Topic modeling with wasserstein autoencoders
  publication-title: Proceedings of the 57th Conference of the Association for Computational Linguistics
– start-page: 1727
  year: 2016
  end-page: 1736
  ident: b0100
  article-title: Neural variational inference for text processing
  publication-title: Proceedings of the 33nd International Conference on Machine Learning
– start-page: 1980
  year: 2018
  end-page: 1989
  ident: b0005
  article-title: Rumor detection on twitter with tree-structured recursive neural networks
  publication-title: Proceedings of the 56th Conference of the Association for Computational Linguistics
– reference: T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, J. Huang, Rumor detection on social media with bi-directional graph convolutional networks, CoRR abs/2001.06362 (2020).
– start-page: 675
  year: 2011
  end-page: 684
  ident: b0035
  article-title: Information credibility on twitter
  publication-title: Proceedings of the 20th International Conference on World Wide Web
– reference: C. Yuan, Q. Ma, W. Zhou, J. Han, S. Hu, Jointly embedding the local and global relations of heterogeneous graph for rumor detection, CoRR abs/1909.04465 (2019).
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: b0140
  article-title: A kernel two-sample test
  publication-title: Journal of Machine Learning Research
– start-page: 585
  year: 2018
  end-page: 593
  ident: b0025
  article-title: Detect rumor and stance jointly by neural multi-task learning
  publication-title: Proceedings of the 27th International Conference on World Wide Web
– start-page: 391
  year: 2002
  end-page: 398
  ident: b0145
  article-title: Information diffusion kernels
  publication-title: Proceedings of the 15th Annual Conference on Neural Information Processing Systems
– year: 2013
  ident: b0175
  article-title: Efficient estimation of word representations in vector space
  publication-title: Proceedings of the 1th International Conference on Learning Representations
– start-page: 1103
  year: 2013
  end-page: 1108
  ident: b0045
  article-title: Prominent features of rumor propagation in online social media
  publication-title: Proceedings of the 13th International Conference on Data Mining
– start-page: 651
  year: 2015
  end-page: 662
  ident: b0075
  article-title: False rumors detection on sina weibo by propagation structures
  publication-title: Proceedings of the 31st International Conference on Data Engineering
– start-page: 797
  year: 2017
  end-page: 806
  ident: b0065
  article-title: Csi: a hybrid deep model for fake news detection
  publication-title: Proceedings of the 26th Conference on Information and Knowledge Management
– start-page: 2121
  year: 2011
  end-page: 2159
  ident: b0165
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: Journal of Machine Learning Research
– start-page: 5047
  year: 2019
  end-page: 5058
  ident: b0030
  article-title: Tree lstms with convolution units to predict stance and rumor veracity in social media conversations
  publication-title: Proceedings of the 57th Conference of the Association for Computational Linguistics
– start-page: 1751
  year: 2015
  end-page: 1754
  ident: b0160
  article-title: Detect rumors using time series of social context information on microblogging websites
  publication-title: Proceedings of the 24th International Conference on Information and Knowledge Management
– start-page: 3818
  year: 2016
  end-page: 3824
  ident: b0155
  article-title: Detecting rumors from microblogs with recurrent neural networks
  publication-title: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: b0095
  article-title: Latent dirichlet allocation
  publication-title: Journal of Machine Learning Research
– start-page: 5880
  year: 2019
  end-page: 5894
  ident: b0125
  article-title: Variational pretraining for semi-supervised text classification
  publication-title: Proceedings of the 57th Conference of the Association for Computational Linguistics
– reference: J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling (2014).
– start-page: 708
  year: 2017
  end-page: 717
  ident: b0050
  article-title: Detect rumors in microblog posts using propagation structure via kernel learning
  publication-title: Proceedings of the 55th Conference of the Association for Computational Linguistics
– reference: L.M.S. Khoo, H.L. Chieu, Z. Qian, J. Jiang, Interpretable rumor detection in microblogs by attending to user interactions, CoRR abs/2001.10667 (2020).
– start-page: 830
  year: 2018
  end-page: 836
  ident: b0110
  article-title: Coherence-aware neural topic modeling
  publication-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: b0085
  article-title: Attention is all you need
  publication-title: Proceedings of the 30th Annual Conference on Neural Information Processing Systems
– year: 2018
  ident: b0135
  article-title: Wasserstein auto-encoders
  publication-title: Proceedings of the 6th International Conference on Learning Representations
– year: 2017
  ident: b0105
  article-title: Autoencoding variational inference for topic models
  publication-title: Proceedings of the 5th International Conference on Learning Representations
– reference: F. Yang, Y. Liu, X. Yu, M. Yang, Automatic detection of rumor on sina weibo, In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics (2012) 13.
– reference: J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional transformers for language understanding, in: J. Burstein, C. Doran, T. Solorio (Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1 (Long and Short Papers), Association for Computational Linguistics, 2019, pp. 4171–4186.
– reference: G.D. Fensterer, Planning and assessing stability operations: a proposed value focus thinking approach, Ph.D. thesis, 2012.
– start-page: 3818
  year: 2016
  end-page: 3824
  ident: b0055
  article-title: Detecting rumors from microblogs with recurrent neural networks
  publication-title: Proceedings of the 25th International Joint Conference on Artificial Intelligence
– volume: 51
  start-page: 32:1
  year: 2018
  end-page: 32:36
  ident: b0015
  article-title: Detection and resolution of rumours in social media: a survey
  publication-title: ACM Computing Surveys
– start-page: 1395
  year: 2015
  end-page: 1405
  ident: b0020
  article-title: Enquiring minds: early detection of rumors in social media from enquiry posts
  publication-title: Proceedings of the 24th International Conference on World Wide Web
– volume: 51
  start-page: 32:1
  year: 2018
  ident: 10.1016/j.neucom.2021.06.062_b0015
  article-title: Detection and resolution of rumours in social media: a survey
  publication-title: ACM Computing Surveys
– year: 2017
  ident: 10.1016/j.neucom.2021.06.062_b0105
  article-title: Autoencoding variational inference for topic models
– start-page: 1751
  year: 2015
  ident: 10.1016/j.neucom.2021.06.062_b0160
  article-title: Detect rumors using time series of social context information on microblogging websites
– ident: 10.1016/j.neucom.2021.06.062_b0150
– start-page: 354
  year: 2018
  ident: 10.1016/j.neucom.2021.06.062_b0060
  article-title: Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks
– start-page: 830
  year: 2018
  ident: 10.1016/j.neucom.2021.06.062_b0110
  article-title: Coherence-aware neural topic modeling
– start-page: 2121
  year: 2011
  ident: 10.1016/j.neucom.2021.06.062_b0165
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: Journal of Machine Learning Research
– year: 2013
  ident: 10.1016/j.neucom.2021.06.062_b0115
  article-title: Auto-encoding variational bayes
– start-page: 651
  year: 2015
  ident: 10.1016/j.neucom.2021.06.062_b0075
  article-title: False rumors detection on sina weibo by propagation structures
– ident: 10.1016/j.neucom.2021.06.062_b0090
  doi: 10.1609/aaai.v34i01.5393
– start-page: 708
  year: 2017
  ident: 10.1016/j.neucom.2021.06.062_b0050
  article-title: Detect rumors in microblog posts using propagation structure via kernel learning
– start-page: 6345
  year: 2019
  ident: 10.1016/j.neucom.2021.06.062_b0120
  article-title: Topic modeling with wasserstein autoencoders
– start-page: 5998
  year: 2017
  ident: 10.1016/j.neucom.2021.06.062_b0085
  article-title: Attention is all you need
– ident: 10.1016/j.neucom.2021.06.062_b0040
  doi: 10.1145/2350190.2350203
– start-page: 5880
  year: 2019
  ident: 10.1016/j.neucom.2021.06.062_b0125
  article-title: Variational pretraining for semi-supervised text classification
– year: 2013
  ident: 10.1016/j.neucom.2021.06.062_b0175
  article-title: Efficient estimation of word representations in vector space
– start-page: 1727
  year: 2016
  ident: 10.1016/j.neucom.2021.06.062_b0100
  article-title: Neural variational inference for text processing
– year: 2018
  ident: 10.1016/j.neucom.2021.06.062_b0135
  article-title: Wasserstein auto-encoders
– ident: 10.1016/j.neucom.2021.06.062_b0130
– start-page: 1980
  year: 2018
  ident: 10.1016/j.neucom.2021.06.062_b0005
  article-title: Rumor detection on twitter with tree-structured recursive neural networks
– start-page: 1532
  year: 2014
  ident: 10.1016/j.neucom.2021.06.062_b0170
  article-title: Glove: Global vectors for word representation
– volume: 13
  start-page: 723
  year: 2012
  ident: 10.1016/j.neucom.2021.06.062_b0140
  article-title: A kernel two-sample test
  publication-title: Journal of Machine Learning Research
– start-page: 1395
  year: 2015
  ident: 10.1016/j.neucom.2021.06.062_b0020
  article-title: Enquiring minds: early detection of rumors in social media from enquiry posts
– start-page: 675
  year: 2011
  ident: 10.1016/j.neucom.2021.06.062_b0035
  article-title: Information credibility on twitter
– ident: 10.1016/j.neucom.2021.06.062_b0070
  doi: 10.1109/ICDM.2019.00090
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.1016/j.neucom.2021.06.062_b0095
  article-title: Latent dirichlet allocation
  publication-title: Journal of Machine Learning Research
– start-page: 585
  year: 2018
  ident: 10.1016/j.neucom.2021.06.062_b0025
  article-title: Detect rumor and stance jointly by neural multi-task learning
– start-page: 3818
  year: 2016
  ident: 10.1016/j.neucom.2021.06.062_b0155
  article-title: Detecting rumors from microblogs with recurrent neural networks
– ident: 10.1016/j.neucom.2021.06.062_b0010
– start-page: 391
  year: 2002
  ident: 10.1016/j.neucom.2021.06.062_b0145
  article-title: Information diffusion kernels
– start-page: 1103
  year: 2013
  ident: 10.1016/j.neucom.2021.06.062_b0045
  article-title: Prominent features of rumor propagation in online social media
– start-page: 5047
  year: 2019
  ident: 10.1016/j.neucom.2021.06.062_b0030
  article-title: Tree lstms with convolution units to predict stance and rumor veracity in social media conversations
– start-page: 3818
  year: 2016
  ident: 10.1016/j.neucom.2021.06.062_b0055
  article-title: Detecting rumors from microblogs with recurrent neural networks
– ident: 10.1016/j.neucom.2021.06.062_b0080
  doi: 10.1609/aaai.v34i05.6405
– start-page: 797
  year: 2017
  ident: 10.1016/j.neucom.2021.06.062_b0065
  article-title: Csi: a hybrid deep model for fake news detection
SSID ssj0017129
Score 2.478471
Snippet The structure information associated with message propagation has been proved to be effective to distinguish false and true rumors. However, existing methods...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 468
SubjectTerms Lightweight
Neural topic model
Propagation structure
Rumor detection
Wasserstein autoencoder
Title A lightweight propagation path aggregating network with neural topic model for rumor detection
URI https://dx.doi.org/10.1016/j.neucom.2021.06.062
Volume 458
WOSCitedRecordID wos000691561400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZptode-i59o0NvwcWWbMs-mmXLdlmWhW4hpxpZlkKWrBLSZLv9Gf3HnZFkxyWlL-jFBGElsubLaGb8zQwhb2SZxawxSaSb3ERpWbSR5IpHjJtWJYVUkrtE4VNxdlZMp-X5aPSty4W5Xghri5ubcvVfRQ1jIGxMnf0LcfdfCgPwGYQOVxA7XP9I8NVkgQ73FxfzRP4VqAwvZew-PJEz8LBxwM4m1nPAfTAWK1si83y5mivfIMdRENfbqyU2Ed84zpYdGrOusIdybSFCwKG6wroLLYKsDzD0IelzbWdGz3dvlpzCO17a2dcdRE88efdQzgeDp45yMN2C4pLDMAVzPLlkF6bYz5_xQUiWASwCkVp7FVwI5pLbhzo69fXdg5ZNfSeecGCnvg_M3lngwxKXb2H7kBiEi3KlWoP2_7HK9gdcCq4EXOC4LHJ-ixwwkZXFmBxU74-mJ_2rKZEwX8AxLL3Lx3Skwf3f-rm9M7BhLu6Tu8H5oJUHzQMy0vYhudc19qBBzz8inyo6wBAdYIgihugAQzRgiCKGqMcQdRiiDkMUMEQdhmiPocfk47uji8PjKDTiiBTj-SaSWmqhkxZM3cwoLeFYyLTKwdlVSmjeanh4plUr88TEphBwC7jBmQDtgAXqDH9CxnZp9VNCjYpb7Glg0iJOJZwG4O-mDS9TUTayydkzwrvtqlWoUo_NUhZ1R0e8rP0m17jJNbIycVbUz1r5Ki2_uV90kqiDpektyBrA88uZz_955gtyZ_e_eEnGm_VWvyK31fVm_nn9OqDsOxRzqMA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lightweight+propagation+path+aggregating+network+with+neural+topic+model+for+rumor+detection&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Pengfei&rft.au=Ran%2C+Hongyan&rft.au=Jia%2C+Caiyan&rft.au=Li%2C+Xuanya&rft.date=2021-10-11&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=458&rft.spage=468&rft.epage=477&rft_id=info:doi/10.1016%2Fj.neucom.2021.06.062&rft.externalDocID=S0925231221009863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon