Critical evaluation of parameters affecting Cu nanoparticles formation and their activity in dimethyl adipate hydrogenolysis

Supported copper catalysts are promising alternative to replace CuCr catalysts in ester hydrogenolysis and decrease the environmental footprint of the process. However, the effect of the support properties on the Cu nanoparticles formation and, consequently, on the final hydrogenolysis performance h...

Full description

Saved in:
Bibliographic Details
Published in:Catalysis today Vol. 387; pp. 61 - 71
Main Authors: Aubrecht, Jaroslav, Pospelova, Violetta, Kikhtyanin, Oleg, Veselý, Martin, Kubička, David
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2022
Subjects:
ISSN:0920-5861, 1873-4308
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Supported copper catalysts are promising alternative to replace CuCr catalysts in ester hydrogenolysis and decrease the environmental footprint of the process. However, the effect of the support properties on the Cu nanoparticles formation and, consequently, on the final hydrogenolysis performance has not been investigated in detail. Therefore, we have selected 10 supports with different textural-structural properties and impregnated them by incipient wetness impregnation to achieve 8 wt% Cu loading. Although the silica-based supports provided much larger surface area to deposit Cu compared to ZnO, MgO, or TiO2, the final Cu dispersion was similar for these catalysts due to the insufficient electrostatic attraction. A significant improvement was observed when using ZrO2 as a support, while the best Cu dispersion was achieved using alumina-based supports. The reduced catalysts were tested in dimethyl adipate (DMA) hydrogenolysis to obtain hexane-1,6-diol (HDOL). Due to the good Cu dispersion ensured by ZrO2 and alumina supports, they outperformed the rest of the catalysts reaching the highest DMA conversion of 36 and 22–25%, respectively. Moreover, Cu-ZrO2 reached the highest hydrogenolysis activity (TOFH) due to a good copper-zirconia interaction. The maximum HDOL selectivity of about 8% was obtained over alumina-based catalysts. The increasing number of acid-base sites was found to be responsible for decreasing HDOL selectivity. Over these sites, a large amount of transesterification by-products (<80%) and other side products were formed. Although the larger support surface area may ensure a better Cu dispersion, the acid-base sites or electrostatic attraction during impregnation play a key role by affecting the Cu nanoparticle formation and, consequently, the final catalyst performance. [Display omitted] •Cu-ZrO2 is the most active catalyst in dimethyl adipate hydrogenolysis.•Al2O3 ensures the best Cu dispersion.•IWI is not efficient method to deposit Cu on SiO2, ZnO, MgO and TiO2 supports.•Acid-base properties and point of zero charge affect the Cu dispersion.
AbstractList Supported copper catalysts are promising alternative to replace CuCr catalysts in ester hydrogenolysis and decrease the environmental footprint of the process. However, the effect of the support properties on the Cu nanoparticles formation and, consequently, on the final hydrogenolysis performance has not been investigated in detail. Therefore, we have selected 10 supports with different textural-structural properties and impregnated them by incipient wetness impregnation to achieve 8 wt% Cu loading. Although the silica-based supports provided much larger surface area to deposit Cu compared to ZnO, MgO, or TiO2, the final Cu dispersion was similar for these catalysts due to the insufficient electrostatic attraction. A significant improvement was observed when using ZrO2 as a support, while the best Cu dispersion was achieved using alumina-based supports. The reduced catalysts were tested in dimethyl adipate (DMA) hydrogenolysis to obtain hexane-1,6-diol (HDOL). Due to the good Cu dispersion ensured by ZrO2 and alumina supports, they outperformed the rest of the catalysts reaching the highest DMA conversion of 36 and 22–25%, respectively. Moreover, Cu-ZrO2 reached the highest hydrogenolysis activity (TOFH) due to a good copper-zirconia interaction. The maximum HDOL selectivity of about 8% was obtained over alumina-based catalysts. The increasing number of acid-base sites was found to be responsible for decreasing HDOL selectivity. Over these sites, a large amount of transesterification by-products (<80%) and other side products were formed. Although the larger support surface area may ensure a better Cu dispersion, the acid-base sites or electrostatic attraction during impregnation play a key role by affecting the Cu nanoparticle formation and, consequently, the final catalyst performance. [Display omitted] •Cu-ZrO2 is the most active catalyst in dimethyl adipate hydrogenolysis.•Al2O3 ensures the best Cu dispersion.•IWI is not efficient method to deposit Cu on SiO2, ZnO, MgO and TiO2 supports.•Acid-base properties and point of zero charge affect the Cu dispersion.
Author Pospelova, Violetta
Aubrecht, Jaroslav
Kubička, David
Veselý, Martin
Kikhtyanin, Oleg
Author_xml – sequence: 1
  givenname: Jaroslav
  orcidid: 0000-0002-2730-7040
  surname: Aubrecht
  fullname: Aubrecht, Jaroslav
  email: aubrechj@vscht.cz
  organization: Department of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
– sequence: 2
  givenname: Violetta
  surname: Pospelova
  fullname: Pospelova, Violetta
  organization: Department of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
– sequence: 3
  givenname: Oleg
  surname: Kikhtyanin
  fullname: Kikhtyanin, Oleg
  organization: Technopark Kralupy, University of Chemistry and Technology Prague, Náměstí G. Karse 7/2, 278 01 Kralupy nad Vltavou, Czech Republic
– sequence: 4
  givenname: Martin
  orcidid: 0000-0002-3147-4941
  surname: Veselý
  fullname: Veselý, Martin
  organization: Department of Organic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
– sequence: 5
  givenname: David
  surname: Kubička
  fullname: Kubička, David
  organization: Department of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
BookMark eNqFkM2KFDEUhYPMgD0_bzCLvECVNz9VlXIhSKOjMOBG1-F25WY6TXXSJJmGAh_eGtuVC13dxbnfgfPdsKuYIjH2IKAVIPp3h3bCWpNrJUjRwtiCGN6wjTCDarQCc8U2MEpoOtOLt-ymlAMAGKPlhv3c5lDDhDOnM84vWEOKPHl-woxHqpQLR-9pqiE-8-0LjxjTmq3ITIX7lI8XBKPjdU8hc1x_z6EuPETuwtqxX2aOLpywEt8vLqdnimleSih37NrjXOj-z71lPz5_-r790jx9e_y6_fjUTFL1tUEpgYwcpUIhvULVOz2A6XcChr4zGnZdj53Xahx2424YjXLamd4NvtMD6U7dMn3pnXIqJZO3pxyOmBcrwL4atAd7MWhfDVoY7Wpwxd7_hU2h_p5bM4b5f_CHC0zrsHOgbMsUKE7kQl51WpfCvwt-AQg_lAg
CitedBy_id crossref_primary_10_3390_catal11111417
crossref_primary_10_1016_j_cattod_2022_07_011
crossref_primary_10_1016_j_apcata_2022_118811
crossref_primary_10_1039_D4CY00686K
crossref_primary_10_1021_acscatal_5c03855
crossref_primary_10_1016_j_apcata_2024_119889
Cites_doi 10.1016/j.apcata.2015.10.006
10.1016/j.cattod.2008.06.026
10.1021/j100242a034
10.1016/j.catcom.2013.06.034
10.1039/c3ra42348d
10.1126/science.279.5350.548
10.1016/j.cattod.2005.07.113
10.1116/1.4983273
10.1039/C6EE02974D
10.1002/aoc.5644
10.1021/cs3008347
10.1135/cccc19891514
10.1039/C2DT32454G
10.1016/j.molcata.2013.02.026
10.1080/01614949408013931
10.1016/j.apcata.2008.07.031
10.1016/j.cej.2016.02.069
10.1039/C7SE00199A
10.1016/0926-860X(92)85141-W
10.1021/cr500486u
10.1039/c0cc00581a
10.1016/S0926-860X(99)00106-4
10.1016/j.apcata.2008.12.029
10.1039/c2cy20222k
10.1039/a801603h
10.1021/acs.oprd.6b00110
10.1016/j.jcat.2008.09.023
10.1021/ja01145a126
10.3390/catal6050072
10.1006/jcat.1997.1475
10.1021/acs.iecr.8b00366
10.1016/0920-5861(92)80122-4
10.1039/C5RA04389A
10.1002/cssc.201901198
10.1002/aic.13998
10.1021/cs500791w
10.1016/j.apcatb.2012.08.033
10.1016/j.cattod.2007.06.020
10.1016/j.apcata.2012.10.027
10.1016/j.apcatb.2019.02.042
10.1039/C8CY00608C
10.1002/cctc.201900334
10.1016/j.catcom.2006.05.001
10.1016/0021-9517(87)90094-7
10.1016/j.catcom.2018.03.006
10.1002/sia.1606
10.1002/cssc.201100380
10.1021/ja01269a023
10.1016/0021-9517(84)90227-6
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cattod.2021.09.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4308
EndPage 71
ExternalDocumentID 10_1016_j_cattod_2021_09_017
S092058612100420X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSZ
T5K
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
XPP
~HD
ID FETCH-LOGICAL-c236t-a220e82923a12f3a36d47086b10765840b56a5f4397b9b7983d4d86d7f547e453
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753605400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5861
IngestDate Sat Nov 29 07:19:30 EST 2025
Tue Nov 18 21:45:25 EST 2025
Fri Feb 23 02:40:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cu dispersion
Dimethyl adipate
Ester hydrogenolysis
Supported copper catalyst
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-a220e82923a12f3a36d47086b10765840b56a5f4397b9b7983d4d86d7f547e453
ORCID 0000-0002-2730-7040
0000-0002-3147-4941
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_cattod_2021_09_017
crossref_citationtrail_10_1016_j_cattod_2021_09_017
elsevier_sciencedirect_doi_10_1016_j_cattod_2021_09_017
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Catalysis today
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pospelova, Aubrecht, Kikhtyanin, Pacultová, Kubička (bib38) 2019; 11
Thakur, Roberts, Sullivan, Vichek (bib10) 1994
Deng, Yan, Li, Fu (bib17) 2019; 12
Aubrecht J., Pospelova V., Kikhtyanin O., Lhotka M., Kubička D., Understanding of the key properties of supported Cu-based catalysts and their influence on ester hydrogenolysis, Catal. Today (in press doi.org/10.1016/j.cattod.2021.09.039).
Cui, Meng, Zhang, Wang, Xu, Ye, Tang, Wang, Zhu, Wei, Evans, Duan (bib61) 2019; 248
Finger, Osmari, Cabral, Bueno, Gallo (bib14) 2020
Ma, Yang, Liu, Tan, Ge (bib29) 2015; 5
Dvorak, Hudec, Pasek (bib39) 1989; 54
Chen, Guo, Zhu, Qiao, Shen, Xu, Fan (bib15) 2009; 356
Kikhtyanin, Aubrecht, Pospelova, Kubička (bib30) 2020; 606
Yuan, Liu, Hu, Sun, Liu (bib63) 2010; 100
Soled, Wachter, Wo (bib55) 2010
Pacchioni (bib65) 2014; 4
Wang, Li, Xu, Wang (bib9) 2011
Rui, Huang, Zheng, Ji, Yu (bib43) 2013; 372
Adiram-Filiba, Schremer, Ohaion, Nadav-Tsubery, Lublin-Tennenbaum, Keinan-Adamsky, Goobes (bib57) 2017; 12
Lin, Pan, Sun, Qin, Yang, Yang, Yao, Zhou (bib7) 2015
Kasinathan, Hwang, Lee, Hwang, Chang (bib16) 2013; 41
Witoon, Chalorngtham, Dumrongbunditkul, Chareonpanich, Limtrakul (bib2) 2016; 293
Yang, Cai, Zhao, Xie, Xie, Hu, Zhang (bib44) 2003; 35
Munnik, de Jongh, de Jong (bib22) 2015; 115
Turek, Trimm (bib3) 1994; 36
Okamoto, Fukino, Imanaka, Teranishi (bib35) 1983; 87
Ye, Lin, Li, Zhou, Wang, Russell, Adidharma, Xu, Yao, Fan (bib4) 2018; 8
Ding, Zhang, Zhang, Liu, Xiao, Kong, Chen (bib26) 2015; 508
Zhao, Feng, Huo, Melosh, Fredrickson, Chmelka, Stucky (bib41) 1998; 279
Schneider, Kochloefl, Maletz (bib6) 1991
Yin, Guo, Dai, Fan (bib60) 2010; 46
Aubrecht, Pospelova, Kikhtyanin, Dubnová, Kubička (bib31) 2020; 608
Waugh (bib11) 1992; 15
D’Souza, Barnes, Regalbuto (bib24) 2016; 6
Wu, Gao, Sun, Long, Li (bib18) 2017; 7
Osman, Abu-Dahrieh, Rooney, Halawy, Mohamed, Abdelkader (bib33) 2012; 127
Pradhan, Reddy, Devi, Chilukuri (bib12) 2009; 141
Zaccheria, Scotti, Marelli, Psaro, Ravasio (bib54) 2013; 42
Kubička, Aubrecht, Pospelova, Tomášek, Šimáček, Kikhtyanin (bib34) 2018; 111
Upare, Lee, Hwang, Hwang, Lee, Halligudi, Hwang, Chang (bib59) 2011; 4
downloaded on 22.03.2021.
Thomas, Wehrli, Wainwright, Trimm, Cant (bib25) 1992; 86
Chinchen, Hay, Vandervell, Waugh (bib40) 1987; 103
Shozi, Dasireddy, Singh, Mohlala, Morgan, Iqbal, Friedrich (bib48) 2017; 1
Kasinathan, Yoon, Hwang, Lee, Hwang, Hwang, Chang (bib20) 2013; 451
Jiao, Regalbuto (bib56) 2008; 260
Barrett, Joyner, Halenda (bib37) 1951; 73
G.V. Research
Huang, Zhu, Zheng, Du, Li (bib21) 2008; 349
Sun, Ohkubo, Asami, Katori, Yamada, Sato (bib27) 2017; 437
Pandhare, Pudi, Biswas, Sinha (bib50) 2016; 20
Mane, Yamaguchi, Malawadkar, Shirai, Rode (bib58) 2013; 3
Yahiro, Murawaki, Saiki, Yamamoto, Yamaura (bib13) 2007; 126
Haller, Resasco (bib62) 1989
Boccuzzi, Chiorino, Martra, Gargano, Ravasio, Carrozzini (bib52) 1997; 165
Xu, Dong, Chen (bib45) 1998; 94
Delk, Vāvere (bib46) 1984; 85
Zhu, Cho, Pasupong, Regalbuto, Dry (bib23) 2013; 3
Yan, Fu, Zhao, Wang, Narkhede, Zheng, Zhang, Li (bib51) 2020; 34
Brands, Poels, Bliek (bib5) 1999; 184
Docao, Koirala, Kim, Hwang, Song, Yoon (bib47) 2017; 10
Ma, Chi, Yue, Zhao, Xu, Lv, Wang, Gong (bib53) 2013; 59
Huang, Wang, Zhao, Wang, Wang, Wu, Zhang, Huang (bib42) 2006; 7
Zhang, Pei, Chen, Chen, Hou, Lu, Ouyang, Fu (bib19) 2018; 57
Marella, Prasad Neeli, Rao Kamaraju, Burri (bib49) 2012; 2
Lin, Cheng, Ding (bib8) 2003
Figueiredo, Jordao, Carvalho (bib64) 2005; 08
Yao, Wu, Gutiérrez, Ji, Jin, Wang, Xu, Zhao, Wang, Ma (bib28) 2020; 267
Brunauer, Emmett, Teller (bib36) 1938; 60
Pradhan (10.1016/j.cattod.2021.09.017_bib12) 2009; 141
Jiao (10.1016/j.cattod.2021.09.017_bib56) 2008; 260
Cui (10.1016/j.cattod.2021.09.017_bib61) 2019; 248
Osman (10.1016/j.cattod.2021.09.017_bib33) 2012; 127
Yahiro (10.1016/j.cattod.2021.09.017_bib13) 2007; 126
10.1016/j.cattod.2021.09.017_bib1
Barrett (10.1016/j.cattod.2021.09.017_bib37) 1951; 73
Munnik (10.1016/j.cattod.2021.09.017_bib22) 2015; 115
Turek (10.1016/j.cattod.2021.09.017_bib3) 1994; 36
Thakur (10.1016/j.cattod.2021.09.017_bib10) 1994
Huang (10.1016/j.cattod.2021.09.017_bib42) 2006; 7
Lin (10.1016/j.cattod.2021.09.017_bib8) 2003
Kubička (10.1016/j.cattod.2021.09.017_bib34) 2018; 111
Schneider (10.1016/j.cattod.2021.09.017_bib6) 1991
Upare (10.1016/j.cattod.2021.09.017_bib59) 2011; 4
Ding (10.1016/j.cattod.2021.09.017_bib26) 2015; 508
Deng (10.1016/j.cattod.2021.09.017_bib17) 2019; 12
Rui (10.1016/j.cattod.2021.09.017_bib43) 2013; 372
Wu (10.1016/j.cattod.2021.09.017_bib18) 2017; 7
Ma (10.1016/j.cattod.2021.09.017_bib53) 2013; 59
Haller (10.1016/j.cattod.2021.09.017_bib62) 1989
Kasinathan (10.1016/j.cattod.2021.09.017_bib20) 2013; 451
Zhao (10.1016/j.cattod.2021.09.017_bib41) 1998; 279
Brunauer (10.1016/j.cattod.2021.09.017_bib36) 1938; 60
Soled (10.1016/j.cattod.2021.09.017_bib55) 2010
Yuan (10.1016/j.cattod.2021.09.017_bib63) 2010; 100
Wang (10.1016/j.cattod.2021.09.017_bib9) 2011
Witoon (10.1016/j.cattod.2021.09.017_bib2) 2016; 293
Ma (10.1016/j.cattod.2021.09.017_bib29) 2015; 5
Finger (10.1016/j.cattod.2021.09.017_bib14) 2020
Zhang (10.1016/j.cattod.2021.09.017_bib19) 2018; 57
Yang (10.1016/j.cattod.2021.09.017_bib44) 2003; 35
D’Souza (10.1016/j.cattod.2021.09.017_bib24) 2016; 6
Pandhare (10.1016/j.cattod.2021.09.017_bib50) 2016; 20
Figueiredo (10.1016/j.cattod.2021.09.017_bib64) 2005; 08
Zhu (10.1016/j.cattod.2021.09.017_bib23) 2013; 3
Huang (10.1016/j.cattod.2021.09.017_bib21) 2008; 349
Brands (10.1016/j.cattod.2021.09.017_bib5) 1999; 184
Thomas (10.1016/j.cattod.2021.09.017_bib25) 1992; 86
Kikhtyanin (10.1016/j.cattod.2021.09.017_bib30) 2020; 606
Boccuzzi (10.1016/j.cattod.2021.09.017_bib52) 1997; 165
Pospelova (10.1016/j.cattod.2021.09.017_bib38) 2019; 11
Yan (10.1016/j.cattod.2021.09.017_bib51) 2020; 34
Lin (10.1016/j.cattod.2021.09.017_bib7) 2015
Kasinathan (10.1016/j.cattod.2021.09.017_bib16) 2013; 41
Docao (10.1016/j.cattod.2021.09.017_bib47) 2017; 10
Chen (10.1016/j.cattod.2021.09.017_bib15) 2009; 356
Delk (10.1016/j.cattod.2021.09.017_bib46) 1984; 85
Yin (10.1016/j.cattod.2021.09.017_bib60) 2010; 46
Okamoto (10.1016/j.cattod.2021.09.017_bib35) 1983; 87
Marella (10.1016/j.cattod.2021.09.017_bib49) 2012; 2
Yao (10.1016/j.cattod.2021.09.017_bib28) 2020; 267
Mane (10.1016/j.cattod.2021.09.017_bib58) 2013; 3
Aubrecht (10.1016/j.cattod.2021.09.017_bib31) 2020; 608
Pacchioni (10.1016/j.cattod.2021.09.017_bib65) 2014; 4
Chinchen (10.1016/j.cattod.2021.09.017_bib40) 1987; 103
Waugh (10.1016/j.cattod.2021.09.017_bib11) 1992; 15
Sun (10.1016/j.cattod.2021.09.017_bib27) 2017; 437
Zaccheria (10.1016/j.cattod.2021.09.017_bib54) 2013; 42
Dvorak (10.1016/j.cattod.2021.09.017_bib39) 1989; 54
10.1016/j.cattod.2021.09.017_bib32
Shozi (10.1016/j.cattod.2021.09.017_bib48) 2017; 1
Xu (10.1016/j.cattod.2021.09.017_bib45) 1998; 94
Adiram-Filiba (10.1016/j.cattod.2021.09.017_bib57) 2017; 12
Ye (10.1016/j.cattod.2021.09.017_bib4) 2018; 8
References_xml – volume: 127
  start-page: 307
  year: 2012
  end-page: 315
  ident: bib33
  article-title: Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether
  publication-title: Appl. Catal. B Environ.
– year: 2020
  ident: bib14
  article-title: Direct synthesis of Cu supported on mesoporous silica: tailoring the Cu loading and the activity for ethanol dehydrogenation
  publication-title: Catal. Today
– volume: 12
  start-page: 02D414
  year: 2017
  end-page: 402D414
  ident: bib57
  article-title: Ubiquitin immobilized on mesoporous MCM41 silica surfaces - Analysis by solid-state NMR with biophysical and surface characterization
  publication-title: Biointerphases
– volume: 85
  start-page: 380
  year: 1984
  end-page: 388
  ident: bib46
  article-title: Anomalous metal-support interactions in CuTiO
  publication-title: J. Catal.
– volume: 86
  start-page: 101
  year: 1992
  end-page: 114
  ident: bib25
  article-title: Hydrogenolysis of diethyl oxalate over copper-based catalysts
  publication-title: Appl. Catal. A
– volume: 606
  year: 2020
  ident: bib30
  article-title: On the origin of the transesterification reaction route during dimethyl adipate hydrogenolysis
  publication-title: Appl. Catal. A Gen.
– volume: 451
  start-page: 236
  year: 2013
  end-page: 242
  ident: bib20
  article-title: Vapor-phase hydrogenation of ethyl lactate over copper–silica nanocomposites
  publication-title: Appl. Catal. A
– volume: 12
  start-page: 3837
  year: 2019
  end-page: 3848
  ident: bib17
  article-title: Continuous hydrogenation of ethyl levulinate to 1,4-Pentanediol over 2.8Cu-3.5Fe/SBA-15 catalyst at low loading: the effect of Fe doping
  publication-title: ChemSusChem
– volume: 248
  start-page: 394
  year: 2019
  end-page: 404
  ident: bib61
  article-title: Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid−base sites
  publication-title: Appl. Catal. B: Environ.
– volume: 3
  start-page: 625
  year: 2013
  end-page: 630
  ident: bib23
  article-title: Impregnation: a simple way to improve the preparation of supported metal catalysts
  publication-title: ACS Catal.
– volume: 6
  start-page: 72
  year: 2016
  ident: bib24
  article-title: The simple, effective synthesis of highly dispersed pd/c and copd/c heterogeneous catalysts via charge-enhanced dry impregnation
  publication-title: Catalysts
– volume: 349
  start-page: 204
  year: 2008
  end-page: 211
  ident: bib21
  article-title: Vapor-phase hydrogenolysis of biomass-derived lactate to 1,2-propanediol over supported metal catalysts
  publication-title: Appl. Catal. A
– volume: 54
  start-page: 1514
  year: 1989
  end-page: 1529
  ident: bib39
  article-title: Measurement of specific copper surface-area by a pulse chromatographic technique
  publication-title: Collect. Czech Chem. Commun.
– volume: 100
  start-page: 427
  year: 2010
  end-page: 439
  ident: bib63
  article-title: Highly efficient Cu–Zn–Al catalyst for the hydrogenation of dimethyl adipate to 1,6-hexanediol: influence of calcination temperature
  publication-title: React. Kinet. Mech. Catal.
– volume: 87
  start-page: 3740
  year: 1983
  end-page: 3747
  ident: bib35
  article-title: Surface characterization of copper (II) oxide-zinc oxide methanol-synthesis catalysts by X-ray photoelectron spectroscopy. 1. Precursor and calcined catalysts
  publication-title: J. Phys. Chem.
– volume: 293
  start-page: 327
  year: 2016
  end-page: 336
  ident: bib2
  article-title: CO
  publication-title: Chem. Eng. J.
– volume: 267
  year: 2020
  ident: bib28
  article-title: Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@ C catalysts
  publication-title: Appl. Catal. B Environ.
– volume: 7
  start-page: 7890
  year: 2017
  end-page: 7901
  ident: bib18
  article-title: Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters, ACS
  publication-title: Catalysis
– volume: 7
  start-page: 1029
  year: 2006
  end-page: 1034
  ident: bib42
  article-title: Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation
  publication-title: Catal. Commun.
– volume: 356
  start-page: 129
  year: 2009
  end-page: 136
  ident: bib15
  article-title: Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol
  publication-title: Appl. Catal. A
– reference: G.V. Research,
– volume: 5
  start-page: 37581
  year: 2015
  end-page: 37584
  ident: bib29
  article-title: Dynamic redox cycle of Cu-0 and Cu+ over Cu/SiO2 catalyst in ester hydrogenation
  publication-title: RSC Adv.
– volume: 184
  start-page: 279
  year: 1999
  end-page: 289
  ident: bib5
  article-title: Ester hydrogenolysis over promoted Cu/SiO2 catalysts
  publication-title: Appl. Catal. A
– volume: 59
  start-page: 2530
  year: 2013
  end-page: 2539
  ident: bib53
  article-title: Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts
  publication-title: AIChE J.
– volume: 73
  start-page: 373
  year: 1951
  end-page: 380
  ident: bib37
  article-title: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms
  publication-title: J. Am. Chem. Soc.
– volume: 508
  start-page: 68
  year: 2015
  end-page: 79
  ident: bib26
  article-title: Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support
  publication-title: Appl. Catal. A
– volume: 372
  start-page: 128
  year: 2013
  end-page: 136
  ident: bib43
  article-title: Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion
  publication-title: J. Mol. Catal. A Chem.
– volume: 4
  start-page: 1749
  year: 2011
  end-page: 1752
  ident: bib59
  article-title: Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts
  publication-title: ChemSusChem
– year: 1991
  ident: bib6
  article-title: Chromium-free catalyst for the selective hydrogenation of organic compounds
  publication-title: EP0552463B1
– reference: Aubrecht J., Pospelova V., Kikhtyanin O., Lhotka M., Kubička D., Understanding of the key properties of supported Cu-based catalysts and their influence on ester hydrogenolysis, Catal. Today (in press doi.org/10.1016/j.cattod.2021.09.039).
– volume: 141
  start-page: 72
  year: 2009
  end-page: 76
  ident: bib12
  article-title: Copper-based catalysts for water gas shift reaction: influence of support on their catalytic activity
  publication-title: Catal. Today
– volume: 36
  start-page: 645
  year: 1994
  end-page: 683
  ident: bib3
  article-title: The catalytic hydrogenolysis of esters to alcohols
  publication-title: Catal. Rev. Sci. Eng.
– year: 2011
  ident: bib9
  article-title: Catalyst used for hydrogenation of 1,6-dialkyl adipate to prepare hexanediol, comprises copper, nickel, boron, metal additive, and porous carrier, in weight ratio of preset range
  publication-title: CN102380389-A CN102380389-B
– year: 2015
  ident: bib7
  article-title: Catalyst used for preparing ethylene glycol by hydrogenating dimethyl oxalate, comprises specified amount of copper, transition metal additive containing lanthanum, cerium, neodymium and samarium, and silicon dioxide as carrier
  publication-title: CN104826633-A
– volume: 126
  start-page: 436
  year: 2007
  end-page: 440
  ident: bib13
  article-title: Study on the supported Cu-based catalysts for the low-temperature water–gas shift reaction
  publication-title: Catal. Today
– volume: 1
  start-page: 1437
  year: 2017
  end-page: 1445
  ident: bib48
  article-title: An investigation of Cu–Re–ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions
  publication-title: Sustain. Energy Fuels
– volume: 11
  start-page: 2169
  year: 2019
  end-page: 2178
  ident: bib38
  article-title: CuZn catalysts superior to adkins catalysts for dimethyl adipate hydrogenolysis
  publication-title: ChemCatChem
– start-page: 101
  year: 2010
  end-page: 107
  ident: bib55
  article-title: Use of zeta potential measurements in catalyst preparation
  publication-title: Stud. Surf. Sci. Catal., Elsevier
– volume: 165
  start-page: 129
  year: 1997
  end-page: 139
  ident: bib52
  article-title: Preparation, Characterization, and Activity of Cu/TiO2Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2
  publication-title: J. Catal.
– volume: 42
  start-page: 1319
  year: 2013
  end-page: 1328
  ident: bib54
  article-title: Unravelling the properties of supported copper oxide: can the particle size induce acidic behaviour?
  publication-title: Dalton Trans.
– volume: 57
  start-page: 4225
  year: 2018
  end-page: 4230
  ident: bib19
  article-title: Catalytic in-situ hydrogenation of furfural over bimetallic Cu–Ni alloy catalysts in isopropanol
  publication-title: Ind. Eng. Chem. Res.
– year: 1994
  ident: bib10
  article-title: Hydrogenation catalyst, process for preparing and process of using said catalyst
  publication-title: US5345005A
– volume: 111
  start-page: 16
  year: 2018
  end-page: 20
  ident: bib34
  article-title: On the importance of transesterification by-products during hydrogenolysis of dimethyl adipate to hexanediol
  publication-title: Catal. Commun.
– start-page: 173
  year: 1989
  end-page: 235
  ident: bib62
  article-title: Metal–Support Interaction: Group VIII Metals and Reducible Oxides
  publication-title: Adv. Catal.
– volume: 4
  start-page: 2874
  year: 2014
  end-page: 2888
  ident: bib65
  article-title: Ketonization of Carboxylic Acids in Biomass Conversion over TiO
  publication-title: ACS Catal.
– volume: 115
  start-page: 6687
  year: 2015
  end-page: 6718
  ident: bib22
  article-title: Recent developments in the synthesis of supported catalysts
  publication-title: Chem. Rev.
– volume: 41
  start-page: 17
  year: 2013
  end-page: 20
  ident: bib16
  article-title: Effect of Cu particle size on hydrogenation of dimethyl succinate over Cu-SiO2 nanocomposite
  publication-title: Catal. Commun.
– volume: 8
  start-page: 3428
  year: 2018
  end-page: 3449
  ident: bib4
  article-title: Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds
  publication-title: Catal. Sci. Technol.
– volume: 103
  start-page: 79
  year: 1987
  end-page: 86
  ident: bib40
  article-title: The measurement of copper surface areas by reactive frontal chromatography
  publication-title: J. Catal.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: bib36
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– volume: 279
  start-page: 548
  year: 1998
  end-page: 552
  ident: bib41
  article-title: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores
  publication-title: Science
– volume: 608
  year: 2020
  ident: bib31
  article-title: Do metal-oxide promoters of Cu hydrogenolysis catalysts affect the Cu intrinsic activity?
  publication-title: Appl. Catal. A Gen.
– volume: 2
  start-page: 1833
  year: 2012
  ident: bib49
  article-title: Highly active Cu/MgO catalysts for selective dehydrogenation of benzyl alcohol into benzaldehyde using neither O2 nor H2 acceptor
  publication-title: Catal. Sci. Technol.
– volume: 20
  start-page: 1059
  year: 2016
  end-page: 1067
  ident: bib50
  article-title: Selective Hydrogenolysis of Glycerol to 1,2-Propanediol over Highly Active and Stable Cu/MgO Catalyst in the Vapor Phase
  publication-title: Org. Process Res. Dev.
– volume: 260
  start-page: 342
  year: 2008
  end-page: 350
  ident: bib56
  article-title: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: II. Mesoporous silica SBA-15
  publication-title: J. Catal.
– year: 2003
  ident: bib8
  article-title: Catalyst and method for preparing 1,6-hexandiol by hydrogenation of 1,6-dimethyl adipate
  publication-title: CN1565729-A
– volume: 437
  start-page: 105
  year: 2017
  end-page: 113
  ident: bib27
  article-title: Vapor-phase hydrogenation of levulinic acid and methyl levulinate to γ-valerolactone over non-noble metal-based catalysts
  publication-title: Mol. Catal.
– volume: 15
  start-page: 51
  year: 1992
  end-page: 75
  ident: bib11
  article-title: Methanol synthesis
  publication-title: Catal. Today
– volume: 08
  start-page: 223
  year: 2005
  end-page: 229
  ident: bib64
  article-title: Dimethyl adipate hydrogenation at presence of Pt based catalysts
  publication-title: Catal. Today, 107-
– volume: 3
  start-page: 16499
  year: 2013
  ident: bib58
  article-title: Active sites in modified copper catalysts for selective liquid phase dehydration of aqueous glycerol to acetol
  publication-title: RSC Adv.
– volume: 35
  start-page: 810
  year: 2003
  end-page: 813
  ident: bib44
  article-title: Studies about the dispersion process and structure of impregnated CuO/ZrO2 systems
  publication-title: Surf. Interface Anal.
– volume: 46
  start-page: 4348
  year: 2010
  end-page: 4350
  ident: bib60
  article-title: High activity and selectivity of Ag/SiO
  publication-title: Chem. Commun.
– volume: 34
  year: 2020
  ident: bib51
  article-title: Highly dispersed Cu supported on mesoporous Al-KIT-6 for oxidative carbonylation of methanol to dimethyl carbonate
  publication-title: Appl. Organomet Chem.
– volume: 10
  start-page: 628
  year: 2017
  end-page: 640
  ident: bib47
  article-title: Solar photochemical–thermal water splitting at 140 °C with Cu-loaded TiO2
  publication-title: Energy Environ. Sci.
– volume: 94
  start-page: 1905
  year: 1998
  end-page: 1909
  ident: bib45
  article-title: Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system
  publication-title: J. Chem. Soc. Faraday Trans.
– reference: , downloaded on 22.03.2021.
– year: 2003
  ident: 10.1016/j.cattod.2021.09.017_bib8
  article-title: Catalyst and method for preparing 1,6-hexandiol by hydrogenation of 1,6-dimethyl adipate
  publication-title: CN1565729-A
– volume: 508
  start-page: 68
  year: 2015
  ident: 10.1016/j.cattod.2021.09.017_bib26
  article-title: Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2015.10.006
– volume: 100
  start-page: 427
  year: 2010
  ident: 10.1016/j.cattod.2021.09.017_bib63
  article-title: Highly efficient Cu–Zn–Al catalyst for the hydrogenation of dimethyl adipate to 1,6-hexanediol: influence of calcination temperature
  publication-title: React. Kinet. Mech. Catal.
– volume: 141
  start-page: 72
  year: 2009
  ident: 10.1016/j.cattod.2021.09.017_bib12
  article-title: Copper-based catalysts for water gas shift reaction: influence of support on their catalytic activity
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.06.026
– volume: 87
  start-page: 3740
  year: 1983
  ident: 10.1016/j.cattod.2021.09.017_bib35
  article-title: Surface characterization of copper (II) oxide-zinc oxide methanol-synthesis catalysts by X-ray photoelectron spectroscopy. 1. Precursor and calcined catalysts
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100242a034
– volume: 437
  start-page: 105
  year: 2017
  ident: 10.1016/j.cattod.2021.09.017_bib27
  article-title: Vapor-phase hydrogenation of levulinic acid and methyl levulinate to γ-valerolactone over non-noble metal-based catalysts
  publication-title: Mol. Catal.
– volume: 41
  start-page: 17
  year: 2013
  ident: 10.1016/j.cattod.2021.09.017_bib16
  article-title: Effect of Cu particle size on hydrogenation of dimethyl succinate over Cu-SiO2 nanocomposite
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2013.06.034
– volume: 3
  start-page: 16499
  year: 2013
  ident: 10.1016/j.cattod.2021.09.017_bib58
  article-title: Active sites in modified copper catalysts for selective liquid phase dehydration of aqueous glycerol to acetol
  publication-title: RSC Adv.
  doi: 10.1039/c3ra42348d
– volume: 279
  start-page: 548
  year: 1998
  ident: 10.1016/j.cattod.2021.09.017_bib41
  article-title: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores
  publication-title: Science
  doi: 10.1126/science.279.5350.548
– volume: 608
  year: 2020
  ident: 10.1016/j.cattod.2021.09.017_bib31
  article-title: Do metal-oxide promoters of Cu hydrogenolysis catalysts affect the Cu intrinsic activity?
  publication-title: Appl. Catal. A Gen.
– year: 2011
  ident: 10.1016/j.cattod.2021.09.017_bib9
  article-title: Catalyst used for hydrogenation of 1,6-dialkyl adipate to prepare hexanediol, comprises copper, nickel, boron, metal additive, and porous carrier, in weight ratio of preset range
  publication-title: CN102380389-A CN102380389-B
– volume: 08
  start-page: 223
  year: 2005
  ident: 10.1016/j.cattod.2021.09.017_bib64
  article-title: Dimethyl adipate hydrogenation at presence of Pt based catalysts
  publication-title: Catal. Today, 107-
  doi: 10.1016/j.cattod.2005.07.113
– volume: 12
  start-page: 02D414
  year: 2017
  ident: 10.1016/j.cattod.2021.09.017_bib57
  article-title: Ubiquitin immobilized on mesoporous MCM41 silica surfaces - Analysis by solid-state NMR with biophysical and surface characterization
  publication-title: Biointerphases
  doi: 10.1116/1.4983273
– volume: 10
  start-page: 628
  year: 2017
  ident: 10.1016/j.cattod.2021.09.017_bib47
  article-title: Solar photochemical–thermal water splitting at 140 °C with Cu-loaded TiO2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02974D
– volume: 34
  year: 2020
  ident: 10.1016/j.cattod.2021.09.017_bib51
  article-title: Highly dispersed Cu supported on mesoporous Al-KIT-6 for oxidative carbonylation of methanol to dimethyl carbonate
  publication-title: Appl. Organomet Chem.
  doi: 10.1002/aoc.5644
– volume: 3
  start-page: 625
  year: 2013
  ident: 10.1016/j.cattod.2021.09.017_bib23
  article-title: Impregnation: a simple way to improve the preparation of supported metal catalysts
  publication-title: ACS Catal.
  doi: 10.1021/cs3008347
– volume: 54
  start-page: 1514
  year: 1989
  ident: 10.1016/j.cattod.2021.09.017_bib39
  article-title: Measurement of specific copper surface-area by a pulse chromatographic technique
  publication-title: Collect. Czech Chem. Commun.
  doi: 10.1135/cccc19891514
– volume: 267
  year: 2020
  ident: 10.1016/j.cattod.2021.09.017_bib28
  article-title: Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@ C catalysts
  publication-title: Appl. Catal. B Environ.
– volume: 42
  start-page: 1319
  year: 2013
  ident: 10.1016/j.cattod.2021.09.017_bib54
  article-title: Unravelling the properties of supported copper oxide: can the particle size induce acidic behaviour?
  publication-title: Dalton Trans.
  doi: 10.1039/C2DT32454G
– volume: 372
  start-page: 128
  year: 2013
  ident: 10.1016/j.cattod.2021.09.017_bib43
  article-title: Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2013.02.026
– ident: 10.1016/j.cattod.2021.09.017_bib1
– volume: 36
  start-page: 645
  year: 1994
  ident: 10.1016/j.cattod.2021.09.017_bib3
  article-title: The catalytic hydrogenolysis of esters to alcohols
  publication-title: Catal. Rev. Sci. Eng.
  doi: 10.1080/01614949408013931
– volume: 7
  start-page: 7890
  year: 2017
  ident: 10.1016/j.cattod.2021.09.017_bib18
  article-title: Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters, ACS
  publication-title: Catalysis
– volume: 349
  start-page: 204
  year: 2008
  ident: 10.1016/j.cattod.2021.09.017_bib21
  article-title: Vapor-phase hydrogenolysis of biomass-derived lactate to 1,2-propanediol over supported metal catalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2008.07.031
– volume: 293
  start-page: 327
  year: 2016
  ident: 10.1016/j.cattod.2021.09.017_bib2
  article-title: CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.02.069
– volume: 1
  start-page: 1437
  year: 2017
  ident: 10.1016/j.cattod.2021.09.017_bib48
  article-title: An investigation of Cu–Re–ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C7SE00199A
– volume: 86
  start-page: 101
  year: 1992
  ident: 10.1016/j.cattod.2021.09.017_bib25
  article-title: Hydrogenolysis of diethyl oxalate over copper-based catalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/0926-860X(92)85141-W
– volume: 115
  start-page: 6687
  year: 2015
  ident: 10.1016/j.cattod.2021.09.017_bib22
  article-title: Recent developments in the synthesis of supported catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/cr500486u
– volume: 46
  start-page: 4348
  year: 2010
  ident: 10.1016/j.cattod.2021.09.017_bib60
  article-title: High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00581a
– volume: 184
  start-page: 279
  year: 1999
  ident: 10.1016/j.cattod.2021.09.017_bib5
  article-title: Ester hydrogenolysis over promoted Cu/SiO2 catalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(99)00106-4
– volume: 606
  year: 2020
  ident: 10.1016/j.cattod.2021.09.017_bib30
  article-title: On the origin of the transesterification reaction route during dimethyl adipate hydrogenolysis
  publication-title: Appl. Catal. A Gen.
– volume: 356
  start-page: 129
  year: 2009
  ident: 10.1016/j.cattod.2021.09.017_bib15
  article-title: Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2008.12.029
– year: 2020
  ident: 10.1016/j.cattod.2021.09.017_bib14
  article-title: Direct synthesis of Cu supported on mesoporous silica: tailoring the Cu loading and the activity for ethanol dehydrogenation
  publication-title: Catal. Today
– volume: 2
  start-page: 1833
  year: 2012
  ident: 10.1016/j.cattod.2021.09.017_bib49
  article-title: Highly active Cu/MgO catalysts for selective dehydrogenation of benzyl alcohol into benzaldehyde using neither O2 nor H2 acceptor
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c2cy20222k
– volume: 94
  start-page: 1905
  year: 1998
  ident: 10.1016/j.cattod.2021.09.017_bib45
  article-title: Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/a801603h
– volume: 20
  start-page: 1059
  year: 2016
  ident: 10.1016/j.cattod.2021.09.017_bib50
  article-title: Selective Hydrogenolysis of Glycerol to 1,2-Propanediol over Highly Active and Stable Cu/MgO Catalyst in the Vapor Phase
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.6b00110
– volume: 260
  start-page: 342
  year: 2008
  ident: 10.1016/j.cattod.2021.09.017_bib56
  article-title: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: II. Mesoporous silica SBA-15
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.09.023
– volume: 73
  start-page: 373
  year: 1951
  ident: 10.1016/j.cattod.2021.09.017_bib37
  article-title: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01145a126
– volume: 6
  start-page: 72
  year: 2016
  ident: 10.1016/j.cattod.2021.09.017_bib24
  article-title: The simple, effective synthesis of highly dispersed pd/c and copd/c heterogeneous catalysts via charge-enhanced dry impregnation
  publication-title: Catalysts
  doi: 10.3390/catal6050072
– volume: 165
  start-page: 129
  year: 1997
  ident: 10.1016/j.cattod.2021.09.017_bib52
  article-title: Preparation, Characterization, and Activity of Cu/TiO2Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2
  publication-title: J. Catal.
  doi: 10.1006/jcat.1997.1475
– volume: 57
  start-page: 4225
  year: 2018
  ident: 10.1016/j.cattod.2021.09.017_bib19
  article-title: Catalytic in-situ hydrogenation of furfural over bimetallic Cu–Ni alloy catalysts in isopropanol
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00366
– volume: 15
  start-page: 51
  year: 1992
  ident: 10.1016/j.cattod.2021.09.017_bib11
  article-title: Methanol synthesis
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(92)80122-4
– year: 1994
  ident: 10.1016/j.cattod.2021.09.017_bib10
  article-title: Hydrogenation catalyst, process for preparing and process of using said catalyst
  publication-title: US5345005A
– volume: 5
  start-page: 37581
  year: 2015
  ident: 10.1016/j.cattod.2021.09.017_bib29
  article-title: Dynamic redox cycle of Cu-0 and Cu+ over Cu/SiO2 catalyst in ester hydrogenation
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04389A
– volume: 12
  start-page: 3837
  year: 2019
  ident: 10.1016/j.cattod.2021.09.017_bib17
  article-title: Continuous hydrogenation of ethyl levulinate to 1,4-Pentanediol over 2.8Cu-3.5Fe/SBA-15 catalyst at low loading: the effect of Fe doping
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201901198
– volume: 59
  start-page: 2530
  year: 2013
  ident: 10.1016/j.cattod.2021.09.017_bib53
  article-title: Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts
  publication-title: AIChE J.
  doi: 10.1002/aic.13998
– year: 1991
  ident: 10.1016/j.cattod.2021.09.017_bib6
  article-title: Chromium-free catalyst for the selective hydrogenation of organic compounds
  publication-title: EP0552463B1
– start-page: 173
  year: 1989
  ident: 10.1016/j.cattod.2021.09.017_bib62
  article-title: Metal–Support Interaction: Group VIII Metals and Reducible Oxides
– volume: 4
  start-page: 2874
  year: 2014
  ident: 10.1016/j.cattod.2021.09.017_bib65
  article-title: Ketonization of Carboxylic Acids in Biomass Conversion over TiO2 and ZrO2 Surfaces: A DFT Perspective
  publication-title: ACS Catal.
  doi: 10.1021/cs500791w
– volume: 127
  start-page: 307
  year: 2012
  ident: 10.1016/j.cattod.2021.09.017_bib33
  article-title: Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.08.033
– volume: 126
  start-page: 436
  year: 2007
  ident: 10.1016/j.cattod.2021.09.017_bib13
  article-title: Study on the supported Cu-based catalysts for the low-temperature water–gas shift reaction
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2007.06.020
– volume: 451
  start-page: 236
  year: 2013
  ident: 10.1016/j.cattod.2021.09.017_bib20
  article-title: Vapor-phase hydrogenation of ethyl lactate over copper–silica nanocomposites
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2012.10.027
– ident: 10.1016/j.cattod.2021.09.017_bib32
– volume: 248
  start-page: 394
  year: 2019
  ident: 10.1016/j.cattod.2021.09.017_bib61
  article-title: Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid−base sites
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.02.042
– volume: 8
  start-page: 3428
  year: 2018
  ident: 10.1016/j.cattod.2021.09.017_bib4
  article-title: Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY00608C
– volume: 11
  start-page: 2169
  year: 2019
  ident: 10.1016/j.cattod.2021.09.017_bib38
  article-title: CuZn catalysts superior to adkins catalysts for dimethyl adipate hydrogenolysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900334
– start-page: 101
  year: 2010
  ident: 10.1016/j.cattod.2021.09.017_bib55
  article-title: Use of zeta potential measurements in catalyst preparation
– volume: 7
  start-page: 1029
  year: 2006
  ident: 10.1016/j.cattod.2021.09.017_bib42
  article-title: Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2006.05.001
– volume: 103
  start-page: 79
  year: 1987
  ident: 10.1016/j.cattod.2021.09.017_bib40
  article-title: The measurement of copper surface areas by reactive frontal chromatography
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(87)90094-7
– volume: 111
  start-page: 16
  year: 2018
  ident: 10.1016/j.cattod.2021.09.017_bib34
  article-title: On the importance of transesterification by-products during hydrogenolysis of dimethyl adipate to hexanediol
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2018.03.006
– volume: 35
  start-page: 810
  year: 2003
  ident: 10.1016/j.cattod.2021.09.017_bib44
  article-title: Studies about the dispersion process and structure of impregnated CuO/ZrO2 systems
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1606
– volume: 4
  start-page: 1749
  year: 2011
  ident: 10.1016/j.cattod.2021.09.017_bib59
  article-title: Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100380
– year: 2015
  ident: 10.1016/j.cattod.2021.09.017_bib7
  article-title: Catalyst used for preparing ethylene glycol by hydrogenating dimethyl oxalate, comprises specified amount of copper, transition metal additive containing lanthanum, cerium, neodymium and samarium, and silicon dioxide as carrier
  publication-title: CN104826633-A
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.cattod.2021.09.017_bib36
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 85
  start-page: 380
  year: 1984
  ident: 10.1016/j.cattod.2021.09.017_bib46
  article-title: Anomalous metal-support interactions in CuTiO2 catalysts
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(84)90227-6
SSID ssj0008842
Score 2.4283528
Snippet Supported copper catalysts are promising alternative to replace CuCr catalysts in ester hydrogenolysis and decrease the environmental footprint of the process....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 61
SubjectTerms Cu dispersion
Dimethyl adipate
Ester hydrogenolysis
Supported copper catalyst
Title Critical evaluation of parameters affecting Cu nanoparticles formation and their activity in dimethyl adipate hydrogenolysis
URI https://dx.doi.org/10.1016/j.cattod.2021.09.017
Volume 387
WOSCitedRecordID wos000753605400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4308
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008842
  issn: 0920-5861
  databaseCode: AIEXJ
  dateStart: 19950125
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgk4ICggykt74Ba5ctav3WMIRVBQQaJEuVkb75q6WE6VOlEj8b_4e8zsem2XIF4SFytx7GTl-TKvnfmGkOexBrOscM9QBdILcZC71Nz3Qq1EDiYoz0xv1fRdcnzMZzPxYTD45nph1mVSVfzyUpz_V1HDORA2ts7-hbjbL4UT8BqEDkcQOxz_SPDt8IKOyNuUNUssw0IuzaE0NRxmw381rGQFcXNTHtf1MrrKymJp6DbMhAksnC1w5PSmHEqFtdh6eLpRywUSvRpqk76rO8HEkOE7qfulOuMVBuE2IXAkwUaXct3qZ-QtLxdr49BOsWSgrluz8bb4clpvZGVJD96X-rP7ZKovdIk7_i9eNu1Hjk-8SWdAJNzWc9kc21afjU1WQpAbcUvbfqCtquZJ4IWBz_u6PGist9XG7nrzxk562bIYNnlxhnyh8DQOYEkjQ3xrO0p_4OL-iAvBdTAk2mP-7BrZZUkkQJ3ujt8czo5aJ4BzM7epXbjr2jSlhdu_9XOvqOfpnNwht5sQhY4tJu6Sga72yI2Jmwy4R271SCzvka8OcLQDHF3ktAMcbQFHJyt6BXC0BRwFwFEDOOoAR4uKOsDRBnD0KuDuk0-vDk8mr71mpoeXsSCuPcmYrzmDsEKOWB7IIFZhAmH1fOQn6Az78yiWUY5u8lzME8EDFSoeqySPwkSHUfCA7FSLSj8kVMlQSBwcw2LwUedMZCpjPMpA6WRCqNE-CdwzTbOG8B7nrpSpq2w8S60kUpRE6osUJLFPvPauc0v48pvrEyeutHFarTOaAsJ-eeejf77zMbnZ_XWekJ16udJPyfVsXRcXy2cNFL8D5pDEFQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+evaluation+of+parameters+affecting+Cu+nanoparticles+formation+and+their+activity+in+dimethyl+adipate+hydrogenolysis&rft.jtitle=Catalysis+today&rft.au=Aubrecht%2C+Jaroslav&rft.au=Pospelova%2C+Violetta&rft.au=Kikhtyanin%2C+Oleg&rft.au=Vesel%C3%BD%2C+Martin&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=0920-5861&rft.eissn=1873-4308&rft.volume=387&rft.spage=61&rft.epage=71&rft_id=info:doi/10.1016%2Fj.cattod.2021.09.017&rft.externalDocID=S092058612100420X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon