Critical evaluation of parameters affecting Cu nanoparticles formation and their activity in dimethyl adipate hydrogenolysis
Supported copper catalysts are promising alternative to replace CuCr catalysts in ester hydrogenolysis and decrease the environmental footprint of the process. However, the effect of the support properties on the Cu nanoparticles formation and, consequently, on the final hydrogenolysis performance h...
Uloženo v:
| Vydáno v: | Catalysis today Ročník 387; s. 61 - 71 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.2022
|
| Témata: | |
| ISSN: | 0920-5861, 1873-4308 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Supported copper catalysts are promising alternative to replace CuCr catalysts in ester hydrogenolysis and decrease the environmental footprint of the process. However, the effect of the support properties on the Cu nanoparticles formation and, consequently, on the final hydrogenolysis performance has not been investigated in detail. Therefore, we have selected 10 supports with different textural-structural properties and impregnated them by incipient wetness impregnation to achieve 8 wt% Cu loading. Although the silica-based supports provided much larger surface area to deposit Cu compared to ZnO, MgO, or TiO2, the final Cu dispersion was similar for these catalysts due to the insufficient electrostatic attraction. A significant improvement was observed when using ZrO2 as a support, while the best Cu dispersion was achieved using alumina-based supports. The reduced catalysts were tested in dimethyl adipate (DMA) hydrogenolysis to obtain hexane-1,6-diol (HDOL). Due to the good Cu dispersion ensured by ZrO2 and alumina supports, they outperformed the rest of the catalysts reaching the highest DMA conversion of 36 and 22–25%, respectively. Moreover, Cu-ZrO2 reached the highest hydrogenolysis activity (TOFH) due to a good copper-zirconia interaction. The maximum HDOL selectivity of about 8% was obtained over alumina-based catalysts. The increasing number of acid-base sites was found to be responsible for decreasing HDOL selectivity. Over these sites, a large amount of transesterification by-products (<80%) and other side products were formed. Although the larger support surface area may ensure a better Cu dispersion, the acid-base sites or electrostatic attraction during impregnation play a key role by affecting the Cu nanoparticle formation and, consequently, the final catalyst performance.
[Display omitted]
•Cu-ZrO2 is the most active catalyst in dimethyl adipate hydrogenolysis.•Al2O3 ensures the best Cu dispersion.•IWI is not efficient method to deposit Cu on SiO2, ZnO, MgO and TiO2 supports.•Acid-base properties and point of zero charge affect the Cu dispersion. |
|---|---|
| AbstractList | Supported copper catalysts are promising alternative to replace CuCr catalysts in ester hydrogenolysis and decrease the environmental footprint of the process. However, the effect of the support properties on the Cu nanoparticles formation and, consequently, on the final hydrogenolysis performance has not been investigated in detail. Therefore, we have selected 10 supports with different textural-structural properties and impregnated them by incipient wetness impregnation to achieve 8 wt% Cu loading. Although the silica-based supports provided much larger surface area to deposit Cu compared to ZnO, MgO, or TiO2, the final Cu dispersion was similar for these catalysts due to the insufficient electrostatic attraction. A significant improvement was observed when using ZrO2 as a support, while the best Cu dispersion was achieved using alumina-based supports. The reduced catalysts were tested in dimethyl adipate (DMA) hydrogenolysis to obtain hexane-1,6-diol (HDOL). Due to the good Cu dispersion ensured by ZrO2 and alumina supports, they outperformed the rest of the catalysts reaching the highest DMA conversion of 36 and 22–25%, respectively. Moreover, Cu-ZrO2 reached the highest hydrogenolysis activity (TOFH) due to a good copper-zirconia interaction. The maximum HDOL selectivity of about 8% was obtained over alumina-based catalysts. The increasing number of acid-base sites was found to be responsible for decreasing HDOL selectivity. Over these sites, a large amount of transesterification by-products (<80%) and other side products were formed. Although the larger support surface area may ensure a better Cu dispersion, the acid-base sites or electrostatic attraction during impregnation play a key role by affecting the Cu nanoparticle formation and, consequently, the final catalyst performance.
[Display omitted]
•Cu-ZrO2 is the most active catalyst in dimethyl adipate hydrogenolysis.•Al2O3 ensures the best Cu dispersion.•IWI is not efficient method to deposit Cu on SiO2, ZnO, MgO and TiO2 supports.•Acid-base properties and point of zero charge affect the Cu dispersion. |
| Author | Pospelova, Violetta Aubrecht, Jaroslav Kubička, David Veselý, Martin Kikhtyanin, Oleg |
| Author_xml | – sequence: 1 givenname: Jaroslav orcidid: 0000-0002-2730-7040 surname: Aubrecht fullname: Aubrecht, Jaroslav email: aubrechj@vscht.cz organization: Department of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic – sequence: 2 givenname: Violetta surname: Pospelova fullname: Pospelova, Violetta organization: Department of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic – sequence: 3 givenname: Oleg surname: Kikhtyanin fullname: Kikhtyanin, Oleg organization: Technopark Kralupy, University of Chemistry and Technology Prague, Náměstí G. Karse 7/2, 278 01 Kralupy nad Vltavou, Czech Republic – sequence: 4 givenname: Martin orcidid: 0000-0002-3147-4941 surname: Veselý fullname: Veselý, Martin organization: Department of Organic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic – sequence: 5 givenname: David surname: Kubička fullname: Kubička, David organization: Department of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic |
| BookMark | eNqFkM2KFDEUhYPMgD0_bzCLvECVNz9VlXIhSKOjMOBG1-F25WY6TXXSJJmGAh_eGtuVC13dxbnfgfPdsKuYIjH2IKAVIPp3h3bCWpNrJUjRwtiCGN6wjTCDarQCc8U2MEpoOtOLt-ymlAMAGKPlhv3c5lDDhDOnM84vWEOKPHl-woxHqpQLR-9pqiE-8-0LjxjTmq3ITIX7lI8XBKPjdU8hc1x_z6EuPETuwtqxX2aOLpywEt8vLqdnimleSih37NrjXOj-z71lPz5_-r790jx9e_y6_fjUTFL1tUEpgYwcpUIhvULVOz2A6XcChr4zGnZdj53Xahx2424YjXLamd4NvtMD6U7dMn3pnXIqJZO3pxyOmBcrwL4atAd7MWhfDVoY7Wpwxd7_hU2h_p5bM4b5f_CHC0zrsHOgbMsUKE7kQl51WpfCvwt-AQg_lAg |
| CitedBy_id | crossref_primary_10_3390_catal11111417 crossref_primary_10_1016_j_cattod_2022_07_011 crossref_primary_10_1016_j_apcata_2022_118811 crossref_primary_10_1039_D4CY00686K crossref_primary_10_1021_acscatal_5c03855 crossref_primary_10_1016_j_apcata_2024_119889 |
| Cites_doi | 10.1016/j.apcata.2015.10.006 10.1016/j.cattod.2008.06.026 10.1021/j100242a034 10.1016/j.catcom.2013.06.034 10.1039/c3ra42348d 10.1126/science.279.5350.548 10.1016/j.cattod.2005.07.113 10.1116/1.4983273 10.1039/C6EE02974D 10.1002/aoc.5644 10.1021/cs3008347 10.1135/cccc19891514 10.1039/C2DT32454G 10.1016/j.molcata.2013.02.026 10.1080/01614949408013931 10.1016/j.apcata.2008.07.031 10.1016/j.cej.2016.02.069 10.1039/C7SE00199A 10.1016/0926-860X(92)85141-W 10.1021/cr500486u 10.1039/c0cc00581a 10.1016/S0926-860X(99)00106-4 10.1016/j.apcata.2008.12.029 10.1039/c2cy20222k 10.1039/a801603h 10.1021/acs.oprd.6b00110 10.1016/j.jcat.2008.09.023 10.1021/ja01145a126 10.3390/catal6050072 10.1006/jcat.1997.1475 10.1021/acs.iecr.8b00366 10.1016/0920-5861(92)80122-4 10.1039/C5RA04389A 10.1002/cssc.201901198 10.1002/aic.13998 10.1021/cs500791w 10.1016/j.apcatb.2012.08.033 10.1016/j.cattod.2007.06.020 10.1016/j.apcata.2012.10.027 10.1016/j.apcatb.2019.02.042 10.1039/C8CY00608C 10.1002/cctc.201900334 10.1016/j.catcom.2006.05.001 10.1016/0021-9517(87)90094-7 10.1016/j.catcom.2018.03.006 10.1002/sia.1606 10.1002/cssc.201100380 10.1021/ja01269a023 10.1016/0021-9517(84)90227-6 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cattod.2021.09.017 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-4308 |
| EndPage | 71 |
| ExternalDocumentID | 10_1016_j_cattod_2021_09_017 S092058612100420X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSZ T5K ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c236t-a220e82923a12f3a36d47086b10765840b56a5f4397b9b7983d4d86d7f547e453 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753605400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-5861 |
| IngestDate | Sat Nov 29 07:19:30 EST 2025 Tue Nov 18 21:45:25 EST 2025 Fri Feb 23 02:40:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cu dispersion Dimethyl adipate Ester hydrogenolysis Supported copper catalyst |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c236t-a220e82923a12f3a36d47086b10765840b56a5f4397b9b7983d4d86d7f547e453 |
| ORCID | 0000-0002-2730-7040 0000-0002-3147-4941 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_cattod_2021_09_017 crossref_citationtrail_10_1016_j_cattod_2021_09_017 elsevier_sciencedirect_doi_10_1016_j_cattod_2021_09_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Catalysis today |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Pospelova, Aubrecht, Kikhtyanin, Pacultová, Kubička (bib38) 2019; 11 Thakur, Roberts, Sullivan, Vichek (bib10) 1994 Deng, Yan, Li, Fu (bib17) 2019; 12 Aubrecht J., Pospelova V., Kikhtyanin O., Lhotka M., Kubička D., Understanding of the key properties of supported Cu-based catalysts and their influence on ester hydrogenolysis, Catal. Today (in press doi.org/10.1016/j.cattod.2021.09.039). Cui, Meng, Zhang, Wang, Xu, Ye, Tang, Wang, Zhu, Wei, Evans, Duan (bib61) 2019; 248 Finger, Osmari, Cabral, Bueno, Gallo (bib14) 2020 Ma, Yang, Liu, Tan, Ge (bib29) 2015; 5 Dvorak, Hudec, Pasek (bib39) 1989; 54 Chen, Guo, Zhu, Qiao, Shen, Xu, Fan (bib15) 2009; 356 Kikhtyanin, Aubrecht, Pospelova, Kubička (bib30) 2020; 606 Yuan, Liu, Hu, Sun, Liu (bib63) 2010; 100 Soled, Wachter, Wo (bib55) 2010 Pacchioni (bib65) 2014; 4 Wang, Li, Xu, Wang (bib9) 2011 Rui, Huang, Zheng, Ji, Yu (bib43) 2013; 372 Adiram-Filiba, Schremer, Ohaion, Nadav-Tsubery, Lublin-Tennenbaum, Keinan-Adamsky, Goobes (bib57) 2017; 12 Lin, Pan, Sun, Qin, Yang, Yang, Yao, Zhou (bib7) 2015 Kasinathan, Hwang, Lee, Hwang, Chang (bib16) 2013; 41 Witoon, Chalorngtham, Dumrongbunditkul, Chareonpanich, Limtrakul (bib2) 2016; 293 Yang, Cai, Zhao, Xie, Xie, Hu, Zhang (bib44) 2003; 35 Munnik, de Jongh, de Jong (bib22) 2015; 115 Turek, Trimm (bib3) 1994; 36 Okamoto, Fukino, Imanaka, Teranishi (bib35) 1983; 87 Ye, Lin, Li, Zhou, Wang, Russell, Adidharma, Xu, Yao, Fan (bib4) 2018; 8 Ding, Zhang, Zhang, Liu, Xiao, Kong, Chen (bib26) 2015; 508 Zhao, Feng, Huo, Melosh, Fredrickson, Chmelka, Stucky (bib41) 1998; 279 Schneider, Kochloefl, Maletz (bib6) 1991 Yin, Guo, Dai, Fan (bib60) 2010; 46 Aubrecht, Pospelova, Kikhtyanin, Dubnová, Kubička (bib31) 2020; 608 Waugh (bib11) 1992; 15 D’Souza, Barnes, Regalbuto (bib24) 2016; 6 Wu, Gao, Sun, Long, Li (bib18) 2017; 7 Osman, Abu-Dahrieh, Rooney, Halawy, Mohamed, Abdelkader (bib33) 2012; 127 Pradhan, Reddy, Devi, Chilukuri (bib12) 2009; 141 Zaccheria, Scotti, Marelli, Psaro, Ravasio (bib54) 2013; 42 Kubička, Aubrecht, Pospelova, Tomášek, Šimáček, Kikhtyanin (bib34) 2018; 111 Upare, Lee, Hwang, Hwang, Lee, Halligudi, Hwang, Chang (bib59) 2011; 4 downloaded on 22.03.2021. Thomas, Wehrli, Wainwright, Trimm, Cant (bib25) 1992; 86 Chinchen, Hay, Vandervell, Waugh (bib40) 1987; 103 Shozi, Dasireddy, Singh, Mohlala, Morgan, Iqbal, Friedrich (bib48) 2017; 1 Kasinathan, Yoon, Hwang, Lee, Hwang, Hwang, Chang (bib20) 2013; 451 Jiao, Regalbuto (bib56) 2008; 260 Barrett, Joyner, Halenda (bib37) 1951; 73 G.V. Research Huang, Zhu, Zheng, Du, Li (bib21) 2008; 349 Sun, Ohkubo, Asami, Katori, Yamada, Sato (bib27) 2017; 437 Pandhare, Pudi, Biswas, Sinha (bib50) 2016; 20 Mane, Yamaguchi, Malawadkar, Shirai, Rode (bib58) 2013; 3 Yahiro, Murawaki, Saiki, Yamamoto, Yamaura (bib13) 2007; 126 Haller, Resasco (bib62) 1989 Boccuzzi, Chiorino, Martra, Gargano, Ravasio, Carrozzini (bib52) 1997; 165 Xu, Dong, Chen (bib45) 1998; 94 Delk, Vāvere (bib46) 1984; 85 Zhu, Cho, Pasupong, Regalbuto, Dry (bib23) 2013; 3 Yan, Fu, Zhao, Wang, Narkhede, Zheng, Zhang, Li (bib51) 2020; 34 Brands, Poels, Bliek (bib5) 1999; 184 Docao, Koirala, Kim, Hwang, Song, Yoon (bib47) 2017; 10 Ma, Chi, Yue, Zhao, Xu, Lv, Wang, Gong (bib53) 2013; 59 Huang, Wang, Zhao, Wang, Wang, Wu, Zhang, Huang (bib42) 2006; 7 Zhang, Pei, Chen, Chen, Hou, Lu, Ouyang, Fu (bib19) 2018; 57 Marella, Prasad Neeli, Rao Kamaraju, Burri (bib49) 2012; 2 Lin, Cheng, Ding (bib8) 2003 Figueiredo, Jordao, Carvalho (bib64) 2005; 08 Yao, Wu, Gutiérrez, Ji, Jin, Wang, Xu, Zhao, Wang, Ma (bib28) 2020; 267 Brunauer, Emmett, Teller (bib36) 1938; 60 Pradhan (10.1016/j.cattod.2021.09.017_bib12) 2009; 141 Jiao (10.1016/j.cattod.2021.09.017_bib56) 2008; 260 Cui (10.1016/j.cattod.2021.09.017_bib61) 2019; 248 Osman (10.1016/j.cattod.2021.09.017_bib33) 2012; 127 Yahiro (10.1016/j.cattod.2021.09.017_bib13) 2007; 126 10.1016/j.cattod.2021.09.017_bib1 Barrett (10.1016/j.cattod.2021.09.017_bib37) 1951; 73 Munnik (10.1016/j.cattod.2021.09.017_bib22) 2015; 115 Turek (10.1016/j.cattod.2021.09.017_bib3) 1994; 36 Thakur (10.1016/j.cattod.2021.09.017_bib10) 1994 Huang (10.1016/j.cattod.2021.09.017_bib42) 2006; 7 Lin (10.1016/j.cattod.2021.09.017_bib8) 2003 Kubička (10.1016/j.cattod.2021.09.017_bib34) 2018; 111 Schneider (10.1016/j.cattod.2021.09.017_bib6) 1991 Upare (10.1016/j.cattod.2021.09.017_bib59) 2011; 4 Ding (10.1016/j.cattod.2021.09.017_bib26) 2015; 508 Deng (10.1016/j.cattod.2021.09.017_bib17) 2019; 12 Rui (10.1016/j.cattod.2021.09.017_bib43) 2013; 372 Wu (10.1016/j.cattod.2021.09.017_bib18) 2017; 7 Ma (10.1016/j.cattod.2021.09.017_bib53) 2013; 59 Haller (10.1016/j.cattod.2021.09.017_bib62) 1989 Kasinathan (10.1016/j.cattod.2021.09.017_bib20) 2013; 451 Zhao (10.1016/j.cattod.2021.09.017_bib41) 1998; 279 Brunauer (10.1016/j.cattod.2021.09.017_bib36) 1938; 60 Soled (10.1016/j.cattod.2021.09.017_bib55) 2010 Yuan (10.1016/j.cattod.2021.09.017_bib63) 2010; 100 Wang (10.1016/j.cattod.2021.09.017_bib9) 2011 Witoon (10.1016/j.cattod.2021.09.017_bib2) 2016; 293 Ma (10.1016/j.cattod.2021.09.017_bib29) 2015; 5 Finger (10.1016/j.cattod.2021.09.017_bib14) 2020 Zhang (10.1016/j.cattod.2021.09.017_bib19) 2018; 57 Yang (10.1016/j.cattod.2021.09.017_bib44) 2003; 35 D’Souza (10.1016/j.cattod.2021.09.017_bib24) 2016; 6 Pandhare (10.1016/j.cattod.2021.09.017_bib50) 2016; 20 Figueiredo (10.1016/j.cattod.2021.09.017_bib64) 2005; 08 Zhu (10.1016/j.cattod.2021.09.017_bib23) 2013; 3 Huang (10.1016/j.cattod.2021.09.017_bib21) 2008; 349 Brands (10.1016/j.cattod.2021.09.017_bib5) 1999; 184 Thomas (10.1016/j.cattod.2021.09.017_bib25) 1992; 86 Kikhtyanin (10.1016/j.cattod.2021.09.017_bib30) 2020; 606 Boccuzzi (10.1016/j.cattod.2021.09.017_bib52) 1997; 165 Pospelova (10.1016/j.cattod.2021.09.017_bib38) 2019; 11 Yan (10.1016/j.cattod.2021.09.017_bib51) 2020; 34 Lin (10.1016/j.cattod.2021.09.017_bib7) 2015 Kasinathan (10.1016/j.cattod.2021.09.017_bib16) 2013; 41 Docao (10.1016/j.cattod.2021.09.017_bib47) 2017; 10 Chen (10.1016/j.cattod.2021.09.017_bib15) 2009; 356 Delk (10.1016/j.cattod.2021.09.017_bib46) 1984; 85 Yin (10.1016/j.cattod.2021.09.017_bib60) 2010; 46 Okamoto (10.1016/j.cattod.2021.09.017_bib35) 1983; 87 Marella (10.1016/j.cattod.2021.09.017_bib49) 2012; 2 Yao (10.1016/j.cattod.2021.09.017_bib28) 2020; 267 Mane (10.1016/j.cattod.2021.09.017_bib58) 2013; 3 Aubrecht (10.1016/j.cattod.2021.09.017_bib31) 2020; 608 Pacchioni (10.1016/j.cattod.2021.09.017_bib65) 2014; 4 Chinchen (10.1016/j.cattod.2021.09.017_bib40) 1987; 103 Waugh (10.1016/j.cattod.2021.09.017_bib11) 1992; 15 Sun (10.1016/j.cattod.2021.09.017_bib27) 2017; 437 Zaccheria (10.1016/j.cattod.2021.09.017_bib54) 2013; 42 Dvorak (10.1016/j.cattod.2021.09.017_bib39) 1989; 54 10.1016/j.cattod.2021.09.017_bib32 Shozi (10.1016/j.cattod.2021.09.017_bib48) 2017; 1 Xu (10.1016/j.cattod.2021.09.017_bib45) 1998; 94 Adiram-Filiba (10.1016/j.cattod.2021.09.017_bib57) 2017; 12 Ye (10.1016/j.cattod.2021.09.017_bib4) 2018; 8 |
| References_xml | – volume: 127 start-page: 307 year: 2012 end-page: 315 ident: bib33 article-title: Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether publication-title: Appl. Catal. B Environ. – year: 2020 ident: bib14 article-title: Direct synthesis of Cu supported on mesoporous silica: tailoring the Cu loading and the activity for ethanol dehydrogenation publication-title: Catal. Today – volume: 12 start-page: 02D414 year: 2017 end-page: 402D414 ident: bib57 article-title: Ubiquitin immobilized on mesoporous MCM41 silica surfaces - Analysis by solid-state NMR with biophysical and surface characterization publication-title: Biointerphases – volume: 85 start-page: 380 year: 1984 end-page: 388 ident: bib46 article-title: Anomalous metal-support interactions in CuTiO publication-title: J. Catal. – volume: 86 start-page: 101 year: 1992 end-page: 114 ident: bib25 article-title: Hydrogenolysis of diethyl oxalate over copper-based catalysts publication-title: Appl. Catal. A – volume: 606 year: 2020 ident: bib30 article-title: On the origin of the transesterification reaction route during dimethyl adipate hydrogenolysis publication-title: Appl. Catal. A Gen. – volume: 451 start-page: 236 year: 2013 end-page: 242 ident: bib20 article-title: Vapor-phase hydrogenation of ethyl lactate over copper–silica nanocomposites publication-title: Appl. Catal. A – volume: 12 start-page: 3837 year: 2019 end-page: 3848 ident: bib17 article-title: Continuous hydrogenation of ethyl levulinate to 1,4-Pentanediol over 2.8Cu-3.5Fe/SBA-15 catalyst at low loading: the effect of Fe doping publication-title: ChemSusChem – volume: 248 start-page: 394 year: 2019 end-page: 404 ident: bib61 article-title: Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid−base sites publication-title: Appl. Catal. B: Environ. – volume: 3 start-page: 625 year: 2013 end-page: 630 ident: bib23 article-title: Impregnation: a simple way to improve the preparation of supported metal catalysts publication-title: ACS Catal. – volume: 6 start-page: 72 year: 2016 ident: bib24 article-title: The simple, effective synthesis of highly dispersed pd/c and copd/c heterogeneous catalysts via charge-enhanced dry impregnation publication-title: Catalysts – volume: 349 start-page: 204 year: 2008 end-page: 211 ident: bib21 article-title: Vapor-phase hydrogenolysis of biomass-derived lactate to 1,2-propanediol over supported metal catalysts publication-title: Appl. Catal. A – volume: 54 start-page: 1514 year: 1989 end-page: 1529 ident: bib39 article-title: Measurement of specific copper surface-area by a pulse chromatographic technique publication-title: Collect. Czech Chem. Commun. – volume: 100 start-page: 427 year: 2010 end-page: 439 ident: bib63 article-title: Highly efficient Cu–Zn–Al catalyst for the hydrogenation of dimethyl adipate to 1,6-hexanediol: influence of calcination temperature publication-title: React. Kinet. Mech. Catal. – volume: 87 start-page: 3740 year: 1983 end-page: 3747 ident: bib35 article-title: Surface characterization of copper (II) oxide-zinc oxide methanol-synthesis catalysts by X-ray photoelectron spectroscopy. 1. Precursor and calcined catalysts publication-title: J. Phys. Chem. – volume: 293 start-page: 327 year: 2016 end-page: 336 ident: bib2 article-title: CO publication-title: Chem. Eng. J. – volume: 267 year: 2020 ident: bib28 article-title: Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@ C catalysts publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 7890 year: 2017 end-page: 7901 ident: bib18 article-title: Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters, ACS publication-title: Catalysis – volume: 7 start-page: 1029 year: 2006 end-page: 1034 ident: bib42 article-title: Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation publication-title: Catal. Commun. – volume: 356 start-page: 129 year: 2009 end-page: 136 ident: bib15 article-title: Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol publication-title: Appl. Catal. A – reference: G.V. Research, – volume: 5 start-page: 37581 year: 2015 end-page: 37584 ident: bib29 article-title: Dynamic redox cycle of Cu-0 and Cu+ over Cu/SiO2 catalyst in ester hydrogenation publication-title: RSC Adv. – volume: 184 start-page: 279 year: 1999 end-page: 289 ident: bib5 article-title: Ester hydrogenolysis over promoted Cu/SiO2 catalysts publication-title: Appl. Catal. A – volume: 59 start-page: 2530 year: 2013 end-page: 2539 ident: bib53 article-title: Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts publication-title: AIChE J. – volume: 73 start-page: 373 year: 1951 end-page: 380 ident: bib37 article-title: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms publication-title: J. Am. Chem. Soc. – volume: 508 start-page: 68 year: 2015 end-page: 79 ident: bib26 article-title: Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support publication-title: Appl. Catal. A – volume: 372 start-page: 128 year: 2013 end-page: 136 ident: bib43 article-title: Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion publication-title: J. Mol. Catal. A Chem. – volume: 4 start-page: 1749 year: 2011 end-page: 1752 ident: bib59 article-title: Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts publication-title: ChemSusChem – year: 1991 ident: bib6 article-title: Chromium-free catalyst for the selective hydrogenation of organic compounds publication-title: EP0552463B1 – reference: Aubrecht J., Pospelova V., Kikhtyanin O., Lhotka M., Kubička D., Understanding of the key properties of supported Cu-based catalysts and their influence on ester hydrogenolysis, Catal. Today (in press doi.org/10.1016/j.cattod.2021.09.039). – volume: 141 start-page: 72 year: 2009 end-page: 76 ident: bib12 article-title: Copper-based catalysts for water gas shift reaction: influence of support on their catalytic activity publication-title: Catal. Today – volume: 36 start-page: 645 year: 1994 end-page: 683 ident: bib3 article-title: The catalytic hydrogenolysis of esters to alcohols publication-title: Catal. Rev. Sci. Eng. – year: 2011 ident: bib9 article-title: Catalyst used for hydrogenation of 1,6-dialkyl adipate to prepare hexanediol, comprises copper, nickel, boron, metal additive, and porous carrier, in weight ratio of preset range publication-title: CN102380389-A CN102380389-B – year: 2015 ident: bib7 article-title: Catalyst used for preparing ethylene glycol by hydrogenating dimethyl oxalate, comprises specified amount of copper, transition metal additive containing lanthanum, cerium, neodymium and samarium, and silicon dioxide as carrier publication-title: CN104826633-A – volume: 126 start-page: 436 year: 2007 end-page: 440 ident: bib13 article-title: Study on the supported Cu-based catalysts for the low-temperature water–gas shift reaction publication-title: Catal. Today – volume: 1 start-page: 1437 year: 2017 end-page: 1445 ident: bib48 article-title: An investigation of Cu–Re–ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions publication-title: Sustain. Energy Fuels – volume: 11 start-page: 2169 year: 2019 end-page: 2178 ident: bib38 article-title: CuZn catalysts superior to adkins catalysts for dimethyl adipate hydrogenolysis publication-title: ChemCatChem – start-page: 101 year: 2010 end-page: 107 ident: bib55 article-title: Use of zeta potential measurements in catalyst preparation publication-title: Stud. Surf. Sci. Catal., Elsevier – volume: 165 start-page: 129 year: 1997 end-page: 139 ident: bib52 article-title: Preparation, Characterization, and Activity of Cu/TiO2Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2 publication-title: J. Catal. – volume: 42 start-page: 1319 year: 2013 end-page: 1328 ident: bib54 article-title: Unravelling the properties of supported copper oxide: can the particle size induce acidic behaviour? publication-title: Dalton Trans. – volume: 57 start-page: 4225 year: 2018 end-page: 4230 ident: bib19 article-title: Catalytic in-situ hydrogenation of furfural over bimetallic Cu–Ni alloy catalysts in isopropanol publication-title: Ind. Eng. Chem. Res. – year: 1994 ident: bib10 article-title: Hydrogenation catalyst, process for preparing and process of using said catalyst publication-title: US5345005A – volume: 111 start-page: 16 year: 2018 end-page: 20 ident: bib34 article-title: On the importance of transesterification by-products during hydrogenolysis of dimethyl adipate to hexanediol publication-title: Catal. Commun. – start-page: 173 year: 1989 end-page: 235 ident: bib62 article-title: Metal–Support Interaction: Group VIII Metals and Reducible Oxides publication-title: Adv. Catal. – volume: 4 start-page: 2874 year: 2014 end-page: 2888 ident: bib65 article-title: Ketonization of Carboxylic Acids in Biomass Conversion over TiO publication-title: ACS Catal. – volume: 115 start-page: 6687 year: 2015 end-page: 6718 ident: bib22 article-title: Recent developments in the synthesis of supported catalysts publication-title: Chem. Rev. – volume: 41 start-page: 17 year: 2013 end-page: 20 ident: bib16 article-title: Effect of Cu particle size on hydrogenation of dimethyl succinate over Cu-SiO2 nanocomposite publication-title: Catal. Commun. – volume: 8 start-page: 3428 year: 2018 end-page: 3449 ident: bib4 article-title: Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds publication-title: Catal. Sci. Technol. – volume: 103 start-page: 79 year: 1987 end-page: 86 ident: bib40 article-title: The measurement of copper surface areas by reactive frontal chromatography publication-title: J. Catal. – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: bib36 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – volume: 279 start-page: 548 year: 1998 end-page: 552 ident: bib41 article-title: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores publication-title: Science – volume: 608 year: 2020 ident: bib31 article-title: Do metal-oxide promoters of Cu hydrogenolysis catalysts affect the Cu intrinsic activity? publication-title: Appl. Catal. A Gen. – volume: 2 start-page: 1833 year: 2012 ident: bib49 article-title: Highly active Cu/MgO catalysts for selective dehydrogenation of benzyl alcohol into benzaldehyde using neither O2 nor H2 acceptor publication-title: Catal. Sci. Technol. – volume: 20 start-page: 1059 year: 2016 end-page: 1067 ident: bib50 article-title: Selective Hydrogenolysis of Glycerol to 1,2-Propanediol over Highly Active and Stable Cu/MgO Catalyst in the Vapor Phase publication-title: Org. Process Res. Dev. – volume: 260 start-page: 342 year: 2008 end-page: 350 ident: bib56 article-title: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: II. Mesoporous silica SBA-15 publication-title: J. Catal. – year: 2003 ident: bib8 article-title: Catalyst and method for preparing 1,6-hexandiol by hydrogenation of 1,6-dimethyl adipate publication-title: CN1565729-A – volume: 437 start-page: 105 year: 2017 end-page: 113 ident: bib27 article-title: Vapor-phase hydrogenation of levulinic acid and methyl levulinate to γ-valerolactone over non-noble metal-based catalysts publication-title: Mol. Catal. – volume: 15 start-page: 51 year: 1992 end-page: 75 ident: bib11 article-title: Methanol synthesis publication-title: Catal. Today – volume: 08 start-page: 223 year: 2005 end-page: 229 ident: bib64 article-title: Dimethyl adipate hydrogenation at presence of Pt based catalysts publication-title: Catal. Today, 107- – volume: 3 start-page: 16499 year: 2013 ident: bib58 article-title: Active sites in modified copper catalysts for selective liquid phase dehydration of aqueous glycerol to acetol publication-title: RSC Adv. – volume: 35 start-page: 810 year: 2003 end-page: 813 ident: bib44 article-title: Studies about the dispersion process and structure of impregnated CuO/ZrO2 systems publication-title: Surf. Interface Anal. – volume: 46 start-page: 4348 year: 2010 end-page: 4350 ident: bib60 article-title: High activity and selectivity of Ag/SiO publication-title: Chem. Commun. – volume: 34 year: 2020 ident: bib51 article-title: Highly dispersed Cu supported on mesoporous Al-KIT-6 for oxidative carbonylation of methanol to dimethyl carbonate publication-title: Appl. Organomet Chem. – volume: 10 start-page: 628 year: 2017 end-page: 640 ident: bib47 article-title: Solar photochemical–thermal water splitting at 140 °C with Cu-loaded TiO2 publication-title: Energy Environ. Sci. – volume: 94 start-page: 1905 year: 1998 end-page: 1909 ident: bib45 article-title: Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system publication-title: J. Chem. Soc. Faraday Trans. – reference: , downloaded on 22.03.2021. – year: 2003 ident: 10.1016/j.cattod.2021.09.017_bib8 article-title: Catalyst and method for preparing 1,6-hexandiol by hydrogenation of 1,6-dimethyl adipate publication-title: CN1565729-A – volume: 508 start-page: 68 year: 2015 ident: 10.1016/j.cattod.2021.09.017_bib26 article-title: Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2015.10.006 – volume: 100 start-page: 427 year: 2010 ident: 10.1016/j.cattod.2021.09.017_bib63 article-title: Highly efficient Cu–Zn–Al catalyst for the hydrogenation of dimethyl adipate to 1,6-hexanediol: influence of calcination temperature publication-title: React. Kinet. Mech. Catal. – volume: 141 start-page: 72 year: 2009 ident: 10.1016/j.cattod.2021.09.017_bib12 article-title: Copper-based catalysts for water gas shift reaction: influence of support on their catalytic activity publication-title: Catal. Today doi: 10.1016/j.cattod.2008.06.026 – volume: 87 start-page: 3740 year: 1983 ident: 10.1016/j.cattod.2021.09.017_bib35 article-title: Surface characterization of copper (II) oxide-zinc oxide methanol-synthesis catalysts by X-ray photoelectron spectroscopy. 1. Precursor and calcined catalysts publication-title: J. Phys. Chem. doi: 10.1021/j100242a034 – volume: 437 start-page: 105 year: 2017 ident: 10.1016/j.cattod.2021.09.017_bib27 article-title: Vapor-phase hydrogenation of levulinic acid and methyl levulinate to γ-valerolactone over non-noble metal-based catalysts publication-title: Mol. Catal. – volume: 41 start-page: 17 year: 2013 ident: 10.1016/j.cattod.2021.09.017_bib16 article-title: Effect of Cu particle size on hydrogenation of dimethyl succinate over Cu-SiO2 nanocomposite publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.06.034 – volume: 3 start-page: 16499 year: 2013 ident: 10.1016/j.cattod.2021.09.017_bib58 article-title: Active sites in modified copper catalysts for selective liquid phase dehydration of aqueous glycerol to acetol publication-title: RSC Adv. doi: 10.1039/c3ra42348d – volume: 279 start-page: 548 year: 1998 ident: 10.1016/j.cattod.2021.09.017_bib41 article-title: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores publication-title: Science doi: 10.1126/science.279.5350.548 – volume: 608 year: 2020 ident: 10.1016/j.cattod.2021.09.017_bib31 article-title: Do metal-oxide promoters of Cu hydrogenolysis catalysts affect the Cu intrinsic activity? publication-title: Appl. Catal. A Gen. – year: 2011 ident: 10.1016/j.cattod.2021.09.017_bib9 article-title: Catalyst used for hydrogenation of 1,6-dialkyl adipate to prepare hexanediol, comprises copper, nickel, boron, metal additive, and porous carrier, in weight ratio of preset range publication-title: CN102380389-A CN102380389-B – volume: 08 start-page: 223 year: 2005 ident: 10.1016/j.cattod.2021.09.017_bib64 article-title: Dimethyl adipate hydrogenation at presence of Pt based catalysts publication-title: Catal. Today, 107- doi: 10.1016/j.cattod.2005.07.113 – volume: 12 start-page: 02D414 year: 2017 ident: 10.1016/j.cattod.2021.09.017_bib57 article-title: Ubiquitin immobilized on mesoporous MCM41 silica surfaces - Analysis by solid-state NMR with biophysical and surface characterization publication-title: Biointerphases doi: 10.1116/1.4983273 – volume: 10 start-page: 628 year: 2017 ident: 10.1016/j.cattod.2021.09.017_bib47 article-title: Solar photochemical–thermal water splitting at 140 °C with Cu-loaded TiO2 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02974D – volume: 34 year: 2020 ident: 10.1016/j.cattod.2021.09.017_bib51 article-title: Highly dispersed Cu supported on mesoporous Al-KIT-6 for oxidative carbonylation of methanol to dimethyl carbonate publication-title: Appl. Organomet Chem. doi: 10.1002/aoc.5644 – volume: 3 start-page: 625 year: 2013 ident: 10.1016/j.cattod.2021.09.017_bib23 article-title: Impregnation: a simple way to improve the preparation of supported metal catalysts publication-title: ACS Catal. doi: 10.1021/cs3008347 – volume: 54 start-page: 1514 year: 1989 ident: 10.1016/j.cattod.2021.09.017_bib39 article-title: Measurement of specific copper surface-area by a pulse chromatographic technique publication-title: Collect. Czech Chem. Commun. doi: 10.1135/cccc19891514 – volume: 267 year: 2020 ident: 10.1016/j.cattod.2021.09.017_bib28 article-title: Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@ C catalysts publication-title: Appl. Catal. B Environ. – volume: 42 start-page: 1319 year: 2013 ident: 10.1016/j.cattod.2021.09.017_bib54 article-title: Unravelling the properties of supported copper oxide: can the particle size induce acidic behaviour? publication-title: Dalton Trans. doi: 10.1039/C2DT32454G – volume: 372 start-page: 128 year: 2013 ident: 10.1016/j.cattod.2021.09.017_bib43 article-title: Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2013.02.026 – ident: 10.1016/j.cattod.2021.09.017_bib1 – volume: 36 start-page: 645 year: 1994 ident: 10.1016/j.cattod.2021.09.017_bib3 article-title: The catalytic hydrogenolysis of esters to alcohols publication-title: Catal. Rev. Sci. Eng. doi: 10.1080/01614949408013931 – volume: 7 start-page: 7890 year: 2017 ident: 10.1016/j.cattod.2021.09.017_bib18 article-title: Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters, ACS publication-title: Catalysis – volume: 349 start-page: 204 year: 2008 ident: 10.1016/j.cattod.2021.09.017_bib21 article-title: Vapor-phase hydrogenolysis of biomass-derived lactate to 1,2-propanediol over supported metal catalysts publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2008.07.031 – volume: 293 start-page: 327 year: 2016 ident: 10.1016/j.cattod.2021.09.017_bib2 article-title: CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.02.069 – volume: 1 start-page: 1437 year: 2017 ident: 10.1016/j.cattod.2021.09.017_bib48 article-title: An investigation of Cu–Re–ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00199A – volume: 86 start-page: 101 year: 1992 ident: 10.1016/j.cattod.2021.09.017_bib25 article-title: Hydrogenolysis of diethyl oxalate over copper-based catalysts publication-title: Appl. Catal. A doi: 10.1016/0926-860X(92)85141-W – volume: 115 start-page: 6687 year: 2015 ident: 10.1016/j.cattod.2021.09.017_bib22 article-title: Recent developments in the synthesis of supported catalysts publication-title: Chem. Rev. doi: 10.1021/cr500486u – volume: 46 start-page: 4348 year: 2010 ident: 10.1016/j.cattod.2021.09.017_bib60 article-title: High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate publication-title: Chem. Commun. doi: 10.1039/c0cc00581a – volume: 184 start-page: 279 year: 1999 ident: 10.1016/j.cattod.2021.09.017_bib5 article-title: Ester hydrogenolysis over promoted Cu/SiO2 catalysts publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(99)00106-4 – volume: 606 year: 2020 ident: 10.1016/j.cattod.2021.09.017_bib30 article-title: On the origin of the transesterification reaction route during dimethyl adipate hydrogenolysis publication-title: Appl. Catal. A Gen. – volume: 356 start-page: 129 year: 2009 ident: 10.1016/j.cattod.2021.09.017_bib15 article-title: Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2008.12.029 – year: 2020 ident: 10.1016/j.cattod.2021.09.017_bib14 article-title: Direct synthesis of Cu supported on mesoporous silica: tailoring the Cu loading and the activity for ethanol dehydrogenation publication-title: Catal. Today – volume: 2 start-page: 1833 year: 2012 ident: 10.1016/j.cattod.2021.09.017_bib49 article-title: Highly active Cu/MgO catalysts for selective dehydrogenation of benzyl alcohol into benzaldehyde using neither O2 nor H2 acceptor publication-title: Catal. Sci. Technol. doi: 10.1039/c2cy20222k – volume: 94 start-page: 1905 year: 1998 ident: 10.1016/j.cattod.2021.09.017_bib45 article-title: Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/a801603h – volume: 20 start-page: 1059 year: 2016 ident: 10.1016/j.cattod.2021.09.017_bib50 article-title: Selective Hydrogenolysis of Glycerol to 1,2-Propanediol over Highly Active and Stable Cu/MgO Catalyst in the Vapor Phase publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.6b00110 – volume: 260 start-page: 342 year: 2008 ident: 10.1016/j.cattod.2021.09.017_bib56 article-title: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: II. Mesoporous silica SBA-15 publication-title: J. Catal. doi: 10.1016/j.jcat.2008.09.023 – volume: 73 start-page: 373 year: 1951 ident: 10.1016/j.cattod.2021.09.017_bib37 article-title: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01145a126 – volume: 6 start-page: 72 year: 2016 ident: 10.1016/j.cattod.2021.09.017_bib24 article-title: The simple, effective synthesis of highly dispersed pd/c and copd/c heterogeneous catalysts via charge-enhanced dry impregnation publication-title: Catalysts doi: 10.3390/catal6050072 – volume: 165 start-page: 129 year: 1997 ident: 10.1016/j.cattod.2021.09.017_bib52 article-title: Preparation, Characterization, and Activity of Cu/TiO2Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2 publication-title: J. Catal. doi: 10.1006/jcat.1997.1475 – volume: 57 start-page: 4225 year: 2018 ident: 10.1016/j.cattod.2021.09.017_bib19 article-title: Catalytic in-situ hydrogenation of furfural over bimetallic Cu–Ni alloy catalysts in isopropanol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00366 – volume: 15 start-page: 51 year: 1992 ident: 10.1016/j.cattod.2021.09.017_bib11 article-title: Methanol synthesis publication-title: Catal. Today doi: 10.1016/0920-5861(92)80122-4 – year: 1994 ident: 10.1016/j.cattod.2021.09.017_bib10 article-title: Hydrogenation catalyst, process for preparing and process of using said catalyst publication-title: US5345005A – volume: 5 start-page: 37581 year: 2015 ident: 10.1016/j.cattod.2021.09.017_bib29 article-title: Dynamic redox cycle of Cu-0 and Cu+ over Cu/SiO2 catalyst in ester hydrogenation publication-title: RSC Adv. doi: 10.1039/C5RA04389A – volume: 12 start-page: 3837 year: 2019 ident: 10.1016/j.cattod.2021.09.017_bib17 article-title: Continuous hydrogenation of ethyl levulinate to 1,4-Pentanediol over 2.8Cu-3.5Fe/SBA-15 catalyst at low loading: the effect of Fe doping publication-title: ChemSusChem doi: 10.1002/cssc.201901198 – volume: 59 start-page: 2530 year: 2013 ident: 10.1016/j.cattod.2021.09.017_bib53 article-title: Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts publication-title: AIChE J. doi: 10.1002/aic.13998 – year: 1991 ident: 10.1016/j.cattod.2021.09.017_bib6 article-title: Chromium-free catalyst for the selective hydrogenation of organic compounds publication-title: EP0552463B1 – start-page: 173 year: 1989 ident: 10.1016/j.cattod.2021.09.017_bib62 article-title: Metal–Support Interaction: Group VIII Metals and Reducible Oxides – volume: 4 start-page: 2874 year: 2014 ident: 10.1016/j.cattod.2021.09.017_bib65 article-title: Ketonization of Carboxylic Acids in Biomass Conversion over TiO2 and ZrO2 Surfaces: A DFT Perspective publication-title: ACS Catal. doi: 10.1021/cs500791w – volume: 127 start-page: 307 year: 2012 ident: 10.1016/j.cattod.2021.09.017_bib33 article-title: Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.08.033 – volume: 126 start-page: 436 year: 2007 ident: 10.1016/j.cattod.2021.09.017_bib13 article-title: Study on the supported Cu-based catalysts for the low-temperature water–gas shift reaction publication-title: Catal. Today doi: 10.1016/j.cattod.2007.06.020 – volume: 451 start-page: 236 year: 2013 ident: 10.1016/j.cattod.2021.09.017_bib20 article-title: Vapor-phase hydrogenation of ethyl lactate over copper–silica nanocomposites publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2012.10.027 – ident: 10.1016/j.cattod.2021.09.017_bib32 – volume: 248 start-page: 394 year: 2019 ident: 10.1016/j.cattod.2021.09.017_bib61 article-title: Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid−base sites publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.02.042 – volume: 8 start-page: 3428 year: 2018 ident: 10.1016/j.cattod.2021.09.017_bib4 article-title: Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00608C – volume: 11 start-page: 2169 year: 2019 ident: 10.1016/j.cattod.2021.09.017_bib38 article-title: CuZn catalysts superior to adkins catalysts for dimethyl adipate hydrogenolysis publication-title: ChemCatChem doi: 10.1002/cctc.201900334 – start-page: 101 year: 2010 ident: 10.1016/j.cattod.2021.09.017_bib55 article-title: Use of zeta potential measurements in catalyst preparation – volume: 7 start-page: 1029 year: 2006 ident: 10.1016/j.cattod.2021.09.017_bib42 article-title: Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation publication-title: Catal. Commun. doi: 10.1016/j.catcom.2006.05.001 – volume: 103 start-page: 79 year: 1987 ident: 10.1016/j.cattod.2021.09.017_bib40 article-title: The measurement of copper surface areas by reactive frontal chromatography publication-title: J. Catal. doi: 10.1016/0021-9517(87)90094-7 – volume: 111 start-page: 16 year: 2018 ident: 10.1016/j.cattod.2021.09.017_bib34 article-title: On the importance of transesterification by-products during hydrogenolysis of dimethyl adipate to hexanediol publication-title: Catal. Commun. doi: 10.1016/j.catcom.2018.03.006 – volume: 35 start-page: 810 year: 2003 ident: 10.1016/j.cattod.2021.09.017_bib44 article-title: Studies about the dispersion process and structure of impregnated CuO/ZrO2 systems publication-title: Surf. Interface Anal. doi: 10.1002/sia.1606 – volume: 4 start-page: 1749 year: 2011 ident: 10.1016/j.cattod.2021.09.017_bib59 article-title: Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts publication-title: ChemSusChem doi: 10.1002/cssc.201100380 – year: 2015 ident: 10.1016/j.cattod.2021.09.017_bib7 article-title: Catalyst used for preparing ethylene glycol by hydrogenating dimethyl oxalate, comprises specified amount of copper, transition metal additive containing lanthanum, cerium, neodymium and samarium, and silicon dioxide as carrier publication-title: CN104826633-A – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.cattod.2021.09.017_bib36 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 85 start-page: 380 year: 1984 ident: 10.1016/j.cattod.2021.09.017_bib46 article-title: Anomalous metal-support interactions in CuTiO2 catalysts publication-title: J. Catal. doi: 10.1016/0021-9517(84)90227-6 |
| SSID | ssj0008842 |
| Score | 2.4284353 |
| Snippet | Supported copper catalysts are promising alternative to replace CuCr catalysts in ester hydrogenolysis and decrease the environmental footprint of the process.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 61 |
| SubjectTerms | Cu dispersion Dimethyl adipate Ester hydrogenolysis Supported copper catalyst |
| Title | Critical evaluation of parameters affecting Cu nanoparticles formation and their activity in dimethyl adipate hydrogenolysis |
| URI | https://dx.doi.org/10.1016/j.cattod.2021.09.017 |
| Volume | 387 |
| WOSCitedRecordID | wos000753605400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-4308 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008842 issn: 0920-5861 databaseCode: AIEXJ dateStart: 19950125 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgl6QFBAtDy0B26Rkd-7ewyhCAoqHEqVm7Veb1oXy6lSJ2okfhQ_kdmnE4oKPXCxIjte25kvOzPrb75B6DWnkeCMlUEVUhbA7JcEtIxoIFgpOSQ-MhXa0p_J0RGdTNjXweCnq4VZNqRt6dUVu_ivpoZ9YGxVOnsLc_tBYQd8BqPDFswO238yvG9e0At5a1ozVzQspaU55JrDoV_4L4YtbyFvtvS4vpbRMSvruZbb0B0mFHG2Vi2nV82QV4qLLYdnq2o-U0KvWtpkPdQdq4UhrXfSrVN1RguVhJsFgUMOPrrhSz8_K93yZrbUAe2Jogx0nXcbn-rvZ92Kt0b04EsjT92RE3kpG_XG_-07W37k9MTtcgZkwp7P5dYlIZ_NqFFod1N0Yp2ymWTtMeOuTQOXa47ArEmcKxlQeMg3cKVI69maQtFN3e3f_KFnKToC3HlhRinUKEXIChjlDtqOScZgHt0efTyYHHrvT6lu2OQfw5Vrak7h9bv5czi0FuIcP0QPbG6CRwYMj9BAtrvo3ti1BNxFO2vqlY_RD4c03CMNz6a4Rxr2SMPjBd5AGvZIw4A0rJGGHdJw3WKHNGyRhjeR9gR9e39wPP4Q2GYegYiTvAt4HIeSxpBP8CieJjzJq5RAPl1GIVFRcFhmOc-mKj4uWUkYTaq0onlFpllKZJolT9FWO2vlM4QZE2FJVCe7NEtFTMo4lgzyXnDbJBIs30OJ-00LYZXuVcOVprjJonso8GddGKWXv3yfOHMVNlo1UWgBGLzxzP1bXuk5ut__U16grW6-kC_RXbHs6sv5KwvAX_DTvto |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+evaluation+of+parameters+affecting+Cu+nanoparticles+formation+and+their+activity+in+dimethyl+adipate+hydrogenolysis&rft.jtitle=Catalysis+today&rft.au=Aubrecht%2C+Jaroslav&rft.au=Pospelova%2C+Violetta&rft.au=Kikhtyanin%2C+Oleg&rft.au=Vesel%C3%BD%2C+Martin&rft.date=2022-03-01&rft.issn=0920-5861&rft.volume=387&rft.spage=61&rft.epage=71&rft_id=info:doi/10.1016%2Fj.cattod.2021.09.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cattod_2021_09_017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon |