Tourism combination forecasting with swarm intelligence

Combination forecasting is an effective method for improving the accuracy of tourism demand. This study proposes an innovative combination strategy based on a multi-objective swarm intelligence optimization algorithm and, for the first time, examines whether and how this algorithm can enhance the pe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of tourism research Ročník 111; s. 103932
Hlavní autoři: Li, Hengyun, Guo, Honggang, Wang, Jianzhou, Wang, Yong, Wu, Chunying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2025
Témata:
ISSN:0160-7383
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Combination forecasting is an effective method for improving the accuracy of tourism demand. This study proposes an innovative combination strategy based on a multi-objective swarm intelligence optimization algorithm and, for the first time, examines whether and how this algorithm can enhance the performance of tourism demand combination forecasting. An empirical study conducted under several scenarios demonstrates that the proposed combination strategy enhances the interaction among single forecasts, leading to improved forecast accuracy and stability compared with traditional combination methods. The model remained effective even during the COVID-19 pandemic. The findings have a positive impact on predictive research, offering new insights and methodologies for tourism demand modeling. •This study forecasts daily and weekly tourism demand for three tourism destinations.•A novel combination method based on multi-objective swarm intelligence is proposed.•The proposed method can enhance both forecast accuracy and stability.•The proposed method can improve forecast accuracy even in turbulent period.
AbstractList Combination forecasting is an effective method for improving the accuracy of tourism demand. This study proposes an innovative combination strategy based on a multi-objective swarm intelligence optimization algorithm and, for the first time, examines whether and how this algorithm can enhance the performance of tourism demand combination forecasting. An empirical study conducted under several scenarios demonstrates that the proposed combination strategy enhances the interaction among single forecasts, leading to improved forecast accuracy and stability compared with traditional combination methods. The model remained effective even during the COVID-19 pandemic. The findings have a positive impact on predictive research, offering new insights and methodologies for tourism demand modeling. •This study forecasts daily and weekly tourism demand for three tourism destinations.•A novel combination method based on multi-objective swarm intelligence is proposed.•The proposed method can enhance both forecast accuracy and stability.•The proposed method can improve forecast accuracy even in turbulent period.
ArticleNumber 103932
Author Wang, Jianzhou
Li, Hengyun
Wang, Yong
Guo, Honggang
Wu, Chunying
Author_xml – sequence: 1
  givenname: Hengyun
  surname: Li
  fullname: Li, Hengyun
  email: neilhengyun.li@polyu.edu.hk
  organization: School of Hotel and Tourism Management, The Hong Kong Polytechnic University, Hong Kong
– sequence: 2
  givenname: Honggang
  surname: Guo
  fullname: Guo, Honggang
  email: ghg970612@163.com
  organization: School of Data Science and Artificial Intelligence, Dongbei University of Finance and Economics, Dalian, China
– sequence: 3
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
  email: wangjz@dufe.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian, China
– sequence: 4
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: ywang@dufe.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian, China
– sequence: 5
  givenname: Chunying
  surname: Wu
  fullname: Wu, Chunying
  email: wcydufe@163.com
  organization: School of Management Science and Engineering, Shandong University of Finance and Economics, Shandong, China
BookMark eNqFkE1LAzEQhnOoYFv9Bx72D2xNNvuRehCk-AWCl3oO2WRSp-wmkkSL_97U9eRBTwPv8MzMMwsyc94BIReMrhhl7eV-pZxTQ1xVtGpyxNe8mpF5btGy44KfkkWMe0pz0K3npNv694BxLLQfe3QqoXeF9QG0igndrjhgei3iQYWxQJdgGHAHTsMZObF5C5z_1CV5ubvdbh7Kp-f7x83NU6kr3qayqTrRAHAhFNhGM9MbzlveGyug6xTXxihGa2rqvu0t4w3YXrFWCGAtNHXFl-RqmquDjzGAlRrT95UpKBwko_KoLfdy0pZHbTlpZ7j-Bb8FHFX4_A-7njDIYh8IQUaNR2mD-S9JGo9_D_gC4yJ5XQ
CitedBy_id crossref_primary_10_1002_jtr_70088
Cites_doi 10.1016/j.annals.2020.102923
10.1057/jors.1969.103
10.1016/j.annals.2020.102912
10.1177/0047287520934871
10.1016/j.annals.2021.103149
10.1016/j.ins.2022.09.056
10.1016/j.annals.2018.12.001
10.1016/j.annals.2010.05.003
10.1002/jtr.1953
10.1016/j.tourman.2024.105004
10.1016/S0925-2312(01)00702-0
10.1016/j.tourman.2022.104490
10.1007/s00521-015-1920-1
10.3389/fenrg.2023.1078751
10.1016/j.annals.2019.01.010
10.1108/IJCHM-05-2015-0249
10.1016/j.rser.2014.12.012
10.1109/JAS.2021.1004129
10.1016/j.ijhm.2024.103750
10.1016/j.annals.2023.103667
10.1016/j.annals.2023.103675
10.1016/j.advengsoft.2013.12.007
10.1016/j.tourman.2006.08.003
10.1016/j.annals.2024.103871
10.1016/j.annals.2024.103791
10.1016/j.annals.2021.103155
10.1007/s00366-022-01604-x
10.1016/j.annals.2021.103197
10.1016/j.annals.2021.103271
10.1177/00472875211040569
10.1016/j.annals.2020.103117
10.1016/j.annals.2019.01.014
10.1016/j.annals.2022.103402
10.1016/j.annals.2020.102943
10.1016/j.annals.2021.103258
10.1016/j.tourman.2014.07.019
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.annals.2025.103932
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_annals_2025_103932
S0160738325000386
GroupedDBID --K
--M
-~X
.~1
0R~
13V
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYJJ
ABEHJ
ABFNM
ABFRF
ABFSI
ABIVO
ABJNI
ABKBG
ABMAC
ABMMH
ABMVD
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACHQT
ACHRH
ACNTT
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
D0S
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG8
M3Y
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBM
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSB
SSL
SSO
SSS
SSZ
T5K
TAE
TN5
VH1
WH7
WUQ
XSW
XXG
YK3
YV5
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABUFD
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c236t-52785ee388aef5c1dbd3363bdf8e77a3cdda1040d4b6bf135efba1688e16e5423
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001435354200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0160-7383
IngestDate Sat Nov 29 08:13:26 EST 2025
Tue Nov 18 21:37:19 EST 2025
Sat Mar 22 15:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Combination forecasts
Swarm intelligence optimization algorithm
Tourism demand forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-52785ee388aef5c1dbd3363bdf8e77a3cdda1040d4b6bf135efba1688e16e5423
ParticipantIDs crossref_citationtrail_10_1016_j_annals_2025_103932
crossref_primary_10_1016_j_annals_2025_103932
elsevier_sciencedirect_doi_10_1016_j_annals_2025_103932
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Annals of tourism research
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hu, Li, Chen, Liu (bb0045) 2025; 106
Wu, Zhong, Wu, Song (bb0155) 2024; 10963480231223151
Zheng, Huang, Lin (bb0190) 2021; 90
Wu, Zhong, Song, Wu (bb0150) 2024; 120
Zhang (bb0175) 2003; 50
Li, Ge, Liu, Zheng (bb0060) 2020; 83
Li, Wu, Zhou, Liu (bb0065) 2019; 75
Mirjalili, Mirjalili, Lewis (bb0100) 2014; 69
Bi, Liu, Li (bb0015) 2020; 83
He, Li, Bi, Yang, Zhou (bb0035) 2022; 94
Granger, Newbold (bb0030) 2014
Mirjalili (bb0095) 2016; 27
Kourentzes, Saayman, Jean-Pierre, Provenzano, Sahli, Seetaram, Volo (bb0050) 2021; 88
Bi, Li, Xu, Li (bb0010) 2022; 61
Law, Li, Fong, Han (bb0055) 2019; 75
Zhang, Song, Wen, Liu (bb0180) 2021; 87
Zhang, Wang, Yu, Wang (bb0185) 2022; 615
Seyyedabbasi, Kiani (bb0115) 2022; 39
Hu, Li, Song, Li, Law (bb0040) 2022; 90
Su, Zheng, Lu (bb0130) 2023; 11
Fotiadis, Polyzos, Huan (bb0025) 2021; 87
Li, Gong, Gao, Yuan (bb0080) 2021; 90
Song, Qiu, Park (bb0125) 2019; 75
Li, Li, Pan, Law (bb0085) 2021; 60
Wu, Song, Shen (bb0145) 2017; 29
Li, Hu, Li (bb0075) 2020; 83
Yang, Pan, Evans, Lv (bb0170) 2015; 46
Cang (bb0020) 2014; 16
Qiu, Wu, Dropsy, Petit, Pratt, Ohe (bb0110) 2021; 88
Wong, Song, Witt, Wu (bb0140) 2007; 28
Li, Xu, Law, Wang (bb0090) 2024; 107
Li, Gao, Song (bb0070) 2023; 103
Tang, Liu, Pan (bb0135) 2021; 8
Bates, Granger (bb0005) 1969; 20
Pan, Liao, Wang, Ren, Xing, Li (bb0105) 2025; 110
Shen, Li, Song (bb0120) 2011; 38
Xiao, Wang, Dong, Wu (bb0160) 2015; 44
Xu, Liu, Jin (bb0165) 2023; 103
Li (10.1016/j.annals.2025.103932_bb0065) 2019; 75
Wu (10.1016/j.annals.2025.103932_bb0145) 2017; 29
Hu (10.1016/j.annals.2025.103932_bb0045) 2025; 106
Mirjalili (10.1016/j.annals.2025.103932_bb0100) 2014; 69
Wu (10.1016/j.annals.2025.103932_bb0155) 2024; 10963480231223151
Bi (10.1016/j.annals.2025.103932_bb0010) 2022; 61
Xu (10.1016/j.annals.2025.103932_bb0165) 2023; 103
Fotiadis (10.1016/j.annals.2025.103932_bb0025) 2021; 87
Hu (10.1016/j.annals.2025.103932_bb0040) 2022; 90
Xiao (10.1016/j.annals.2025.103932_bb0160) 2015; 44
Li (10.1016/j.annals.2025.103932_bb0075) 2020; 83
Zhang (10.1016/j.annals.2025.103932_bb0180) 2021; 87
Bates (10.1016/j.annals.2025.103932_bb0005) 1969; 20
Zheng (10.1016/j.annals.2025.103932_bb0190) 2021; 90
Cang (10.1016/j.annals.2025.103932_bb0020) 2014; 16
Song (10.1016/j.annals.2025.103932_bb0125) 2019; 75
Li (10.1016/j.annals.2025.103932_bb0070) 2023; 103
Granger (10.1016/j.annals.2025.103932_bb0030) 2014
Qiu (10.1016/j.annals.2025.103932_bb0110) 2021; 88
Shen (10.1016/j.annals.2025.103932_bb0120) 2011; 38
Zhang (10.1016/j.annals.2025.103932_bb0175) 2003; 50
Tang (10.1016/j.annals.2025.103932_bb0135) 2021; 8
Li (10.1016/j.annals.2025.103932_bb0080) 2021; 90
Su (10.1016/j.annals.2025.103932_bb0130) 2023; 11
Yang (10.1016/j.annals.2025.103932_bb0170) 2015; 46
Wong (10.1016/j.annals.2025.103932_bb0140) 2007; 28
Bi (10.1016/j.annals.2025.103932_bb0015) 2020; 83
Li (10.1016/j.annals.2025.103932_bb0060) 2020; 83
Law (10.1016/j.annals.2025.103932_bb0055) 2019; 75
Li (10.1016/j.annals.2025.103932_bb0090) 2024; 107
Seyyedabbasi (10.1016/j.annals.2025.103932_bb0115) 2022; 39
Kourentzes (10.1016/j.annals.2025.103932_bb0050) 2021; 88
Li (10.1016/j.annals.2025.103932_bb0085) 2021; 60
Pan (10.1016/j.annals.2025.103932_bb0105) 2025; 110
Mirjalili (10.1016/j.annals.2025.103932_bb0095) 2016; 27
He (10.1016/j.annals.2025.103932_bb0035) 2022; 94
Wu (10.1016/j.annals.2025.103932_bb0150) 2024; 120
Zhang (10.1016/j.annals.2025.103932_bb0185) 2022; 615
References_xml – volume: 87
  year: 2021
  ident: bb0025
  article-title: The good, the bad and the ugly on COVID-19 tourism recovery
  publication-title: Annals of Tourism Research
– volume: 20
  start-page: 451
  year: 1969
  end-page: 468
  ident: bb0005
  article-title: The combination of forecasts
  publication-title: Journal of the Operational Research Society
– volume: 90
  year: 2021
  ident: bb0080
  article-title: Impacts of COVID-19 on tourists' destination preferences: Evidence from China
  publication-title: Annals of Tourism Research
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bb0100
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 107
  year: 2024
  ident: bb0090
  article-title: Enhancing tourism demand forecasting with a transformer-based framework
  publication-title: Annals of Tourism Research
– volume: 46
  start-page: 386
  year: 2015
  end-page: 397
  ident: bb0170
  article-title: Forecasting Chinese tourist volume with search engine data
  publication-title: Tourism Management
– volume: 120
  year: 2024
  ident: bb0150
  article-title: Do topic and sentiment matter? Predictive power of online reviews for hotel demand forecasting
  publication-title: International Journal of Hospitality Management
– volume: 103
  year: 2023
  ident: bb0165
  article-title: Forecasting daily tourism demand with multiple factors
  publication-title: Annals of Tourism Research
– volume: 83
  year: 2020
  ident: bb0060
  article-title: Forecasting tourist arrivals using denoising and potential factors
  publication-title: Annals of Tourism Research
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: bb0095
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: bb0175
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
– volume: 615
  start-page: 774
  year: 2022
  end-page: 793
  ident: bb0185
  article-title: An extreme bias-penalized forecast combination approach to commodity price forecasting
  publication-title: Information Sciences
– volume: 88
  year: 2021
  ident: bb0110
  article-title: Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team
  publication-title: Annals of Tourism Research
– volume: 28
  start-page: 1068
  year: 2007
  end-page: 1078
  ident: bb0140
  article-title: Tourism forecasting: To combine or not to combine?
  publication-title: Tourism Management
– volume: 10963480231223151
  year: 2024
  ident: bb0155
  article-title: Tourism and hospitality forecasting with big data: A systematic review of the literature
  publication-title: Journal of Hospitality and Tourism Research
– volume: 60
  start-page: 1213
  year: 2021
  end-page: 1231
  ident: bb0085
  article-title: Machine learning in internet search query selection for tourism forecasting
  publication-title: Journal of Travel Research
– volume: 106
  year: 2025
  ident: bb0045
  article-title: Tourism forecasting by mixed-frequency machine learning
  publication-title: Tourism Management
– volume: 110
  year: 2025
  ident: bb0105
  article-title: Tourism forecasting: A dynamic spatiotemporal model
  publication-title: Annals of Tourism Research
– volume: 39
  start-page: 2627
  year: 2022
  end-page: 2651
  ident: bb0115
  article-title: Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems
  publication-title: Engineering with Computers
– volume: 38
  start-page: 72
  year: 2011
  end-page: 89
  ident: bb0120
  article-title: Combination forecasts of international tourism demand
  publication-title: Annals of Tourism Research
– volume: 29
  start-page: 507
  year: 2017
  end-page: 529
  ident: bb0145
  article-title: New developments in tourism and hotel demand modeling and forecasting
  publication-title: International Journal of Contemporary Hospitality Management
– year: 2014
  ident: bb0030
  article-title: Forecasting economic time series: Academic press
– volume: 44
  start-page: 271
  year: 2015
  end-page: 288
  ident: bb0160
  article-title: Combined forecasting models for wind energy forecasting: A case study in China
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 8
  start-page: 1627
  year: 2021
  end-page: 1643
  ident: bb0135
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 103
  year: 2023
  ident: bb0070
  article-title: Tourism forecasting with granular sentiment analysis
  publication-title: Annals of Tourism Research
– volume: 83
  year: 2020
  ident: bb0075
  article-title: Forecasting tourism demand with multisource big data
  publication-title: Annals of Tourism Research
– volume: 16
  start-page: 596
  year: 2014
  end-page: 607
  ident: bb0020
  article-title: A comparative analysis of three types of tourism demand forecasting models: Individual, linear combination and non-linear combination
  publication-title: International Journal of Tourism Research
– volume: 83
  year: 2020
  ident: bb0015
  article-title: Daily tourism volume forecasting for tourist attractions
  publication-title: Annals of Tourism Research
– volume: 87
  year: 2021
  ident: bb0180
  article-title: Forecasting tourism recovery amid COVID-19
  publication-title: Annals of Tourism Research
– volume: 75
  start-page: 363
  year: 2019
  end-page: 378
  ident: bb0065
  article-title: The combination of interval forecasts in tourism
  publication-title: Annals of Tourism Research
– volume: 11
  start-page: 1078751
  year: 2023
  ident: bb0130
  article-title: A combined model based on secondary decomposition technique and grey wolf optimizer for short-term wind power forecasting
  publication-title: Frontiers in Energy Research
– volume: 90
  year: 2022
  ident: bb0040
  article-title: Tourism demand forecasting using tourist-generated online review data
  publication-title: Tourism Management
– volume: 94
  year: 2022
  ident: bb0035
  article-title: The impact of public health emergencies on hotel demand - estimation from a new foresight perspective on the COVID-19
  publication-title: Annals of Tourism Research
– volume: 88
  year: 2021
  ident: bb0050
  article-title: Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team
  publication-title: Annals of Tourism Research
– volume: 61
  start-page: 1719
  year: 2022
  end-page: 1737
  ident: bb0010
  article-title: Forecasting daily tourism demand for tourist attractions with big data: An ensemble deep learning method
  publication-title: Journal of Travel Research
– volume: 75
  start-page: 410
  year: 2019
  end-page: 423
  ident: bb0055
  article-title: Tourism demand forecasting: A deep learning approach
  publication-title: Annals of Tourism Research
– volume: 90
  year: 2021
  ident: bb0190
  article-title: Multi-attraction, hourly tourism demand forecasting
  publication-title: Annals of Tourism Research
– volume: 75
  start-page: 338
  year: 2019
  end-page: 362
  ident: bb0125
  article-title: A review of research on tourism demand forecasting: Launching the annals of tourism research curated collection on tourism demand forecasting
  publication-title: Annals of Tourism Research
– volume: 83
  year: 2020
  ident: 10.1016/j.annals.2025.103932_bb0015
  article-title: Daily tourism volume forecasting for tourist attractions
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2020.102923
– volume: 20
  start-page: 451
  issue: 4
  year: 1969
  ident: 10.1016/j.annals.2025.103932_bb0005
  article-title: The combination of forecasts
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1969.103
– year: 2014
  ident: 10.1016/j.annals.2025.103932_bb0030
– volume: 83
  year: 2020
  ident: 10.1016/j.annals.2025.103932_bb0075
  article-title: Forecasting tourism demand with multisource big data
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2020.102912
– volume: 60
  start-page: 1213
  issue: 6
  year: 2021
  ident: 10.1016/j.annals.2025.103932_bb0085
  article-title: Machine learning in internet search query selection for tourism forecasting
  publication-title: Journal of Travel Research
  doi: 10.1177/0047287520934871
– volume: 87
  year: 2021
  ident: 10.1016/j.annals.2025.103932_bb0180
  article-title: Forecasting tourism recovery amid COVID-19
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2021.103149
– volume: 615
  start-page: 774
  year: 2022
  ident: 10.1016/j.annals.2025.103932_bb0185
  article-title: An extreme bias-penalized forecast combination approach to commodity price forecasting
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.09.056
– volume: 75
  start-page: 338
  year: 2019
  ident: 10.1016/j.annals.2025.103932_bb0125
  article-title: A review of research on tourism demand forecasting: Launching the annals of tourism research curated collection on tourism demand forecasting
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2018.12.001
– volume: 38
  start-page: 72
  issue: 1
  year: 2011
  ident: 10.1016/j.annals.2025.103932_bb0120
  article-title: Combination forecasts of international tourism demand
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2010.05.003
– volume: 16
  start-page: 596
  issue: 6
  year: 2014
  ident: 10.1016/j.annals.2025.103932_bb0020
  article-title: A comparative analysis of three types of tourism demand forecasting models: Individual, linear combination and non-linear combination
  publication-title: International Journal of Tourism Research
  doi: 10.1002/jtr.1953
– volume: 106
  year: 2025
  ident: 10.1016/j.annals.2025.103932_bb0045
  article-title: Tourism forecasting by mixed-frequency machine learning
  publication-title: Tourism Management
  doi: 10.1016/j.tourman.2024.105004
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.annals.2025.103932_bb0175
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 90
  year: 2022
  ident: 10.1016/j.annals.2025.103932_bb0040
  article-title: Tourism demand forecasting using tourist-generated online review data
  publication-title: Tourism Management
  doi: 10.1016/j.tourman.2022.104490
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.annals.2025.103932_bb0095
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1920-1
– volume: 11
  start-page: 1078751
  year: 2023
  ident: 10.1016/j.annals.2025.103932_bb0130
  article-title: A combined model based on secondary decomposition technique and grey wolf optimizer for short-term wind power forecasting
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2023.1078751
– volume: 75
  start-page: 363
  year: 2019
  ident: 10.1016/j.annals.2025.103932_bb0065
  article-title: The combination of interval forecasts in tourism
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2019.01.010
– volume: 29
  start-page: 507
  issue: 1
  year: 2017
  ident: 10.1016/j.annals.2025.103932_bb0145
  article-title: New developments in tourism and hotel demand modeling and forecasting
  publication-title: International Journal of Contemporary Hospitality Management
  doi: 10.1108/IJCHM-05-2015-0249
– volume: 44
  start-page: 271
  year: 2015
  ident: 10.1016/j.annals.2025.103932_bb0160
  article-title: Combined forecasting models for wind energy forecasting: A case study in China
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2014.12.012
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  ident: 10.1016/j.annals.2025.103932_bb0135
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2021.1004129
– volume: 120
  year: 2024
  ident: 10.1016/j.annals.2025.103932_bb0150
  article-title: Do topic and sentiment matter? Predictive power of online reviews for hotel demand forecasting
  publication-title: International Journal of Hospitality Management
  doi: 10.1016/j.ijhm.2024.103750
– volume: 103
  year: 2023
  ident: 10.1016/j.annals.2025.103932_bb0070
  article-title: Tourism forecasting with granular sentiment analysis
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2023.103667
– volume: 103
  year: 2023
  ident: 10.1016/j.annals.2025.103932_bb0165
  article-title: Forecasting daily tourism demand with multiple factors
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2023.103675
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.annals.2025.103932_bb0100
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 28
  start-page: 1068
  issue: 4
  year: 2007
  ident: 10.1016/j.annals.2025.103932_bb0140
  article-title: Tourism forecasting: To combine or not to combine?
  publication-title: Tourism Management
  doi: 10.1016/j.tourman.2006.08.003
– volume: 110
  year: 2025
  ident: 10.1016/j.annals.2025.103932_bb0105
  article-title: Tourism forecasting: A dynamic spatiotemporal model
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2024.103871
– volume: 107
  year: 2024
  ident: 10.1016/j.annals.2025.103932_bb0090
  article-title: Enhancing tourism demand forecasting with a transformer-based framework
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2024.103791
– volume: 88
  year: 2021
  ident: 10.1016/j.annals.2025.103932_bb0110
  article-title: Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2021.103155
– volume: 39
  start-page: 2627
  issue: 4
  year: 2022
  ident: 10.1016/j.annals.2025.103932_bb0115
  article-title: Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-022-01604-x
– volume: 88
  year: 2021
  ident: 10.1016/j.annals.2025.103932_bb0050
  article-title: Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2021.103197
– volume: 90
  year: 2021
  ident: 10.1016/j.annals.2025.103932_bb0190
  article-title: Multi-attraction, hourly tourism demand forecasting
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2021.103271
– volume: 61
  start-page: 1719
  issue: 8
  year: 2022
  ident: 10.1016/j.annals.2025.103932_bb0010
  article-title: Forecasting daily tourism demand for tourist attractions with big data: An ensemble deep learning method
  publication-title: Journal of Travel Research
  doi: 10.1177/00472875211040569
– volume: 87
  year: 2021
  ident: 10.1016/j.annals.2025.103932_bb0025
  article-title: The good, the bad and the ugly on COVID-19 tourism recovery
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2020.103117
– volume: 75
  start-page: 410
  year: 2019
  ident: 10.1016/j.annals.2025.103932_bb0055
  article-title: Tourism demand forecasting: A deep learning approach
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2019.01.014
– volume: 94
  year: 2022
  ident: 10.1016/j.annals.2025.103932_bb0035
  article-title: The impact of public health emergencies on hotel demand - estimation from a new foresight perspective on the COVID-19
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2022.103402
– volume: 83
  year: 2020
  ident: 10.1016/j.annals.2025.103932_bb0060
  article-title: Forecasting tourist arrivals using denoising and potential factors
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2020.102943
– volume: 90
  year: 2021
  ident: 10.1016/j.annals.2025.103932_bb0080
  article-title: Impacts of COVID-19 on tourists' destination preferences: Evidence from China
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2021.103258
– volume: 10963480231223151
  year: 2024
  ident: 10.1016/j.annals.2025.103932_bb0155
  article-title: Tourism and hospitality forecasting with big data: A systematic review of the literature
  publication-title: Journal of Hospitality and Tourism Research
– volume: 46
  start-page: 386
  year: 2015
  ident: 10.1016/j.annals.2025.103932_bb0170
  article-title: Forecasting Chinese tourist volume with search engine data
  publication-title: Tourism Management
  doi: 10.1016/j.tourman.2014.07.019
SSID ssj0001679
Score 2.4758425
Snippet Combination forecasting is an effective method for improving the accuracy of tourism demand. This study proposes an innovative combination strategy based on a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103932
SubjectTerms Combination forecasts
Multi-objective optimization
Swarm intelligence optimization algorithm
Tourism demand forecasting
Title Tourism combination forecasting with swarm intelligence
URI https://dx.doi.org/10.1016/j.annals.2025.103932
Volume 111
WOSCitedRecordID wos001435354200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0160-7383
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001679
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagRYILKi2IAq1y4OpqbcePHCvUB6iqKlGk7SlyHHtLBdlqNwstv57xI9mUohaQuESRFTvJfCNn_GX8DUJvLXiKI1pi4gzDvkQhVpWx2BBmhaDKjaqwUfhIHh-r8bg4STXc56GcgGwadXVVXP5XqKENwPZbZ_8C7n5QaIBzAB2OADsc_wz4qAvok8Vh1dvnElqj523PvM6_69nXoBXR6XEOo9SlqnKbBkuaQD13fBSLXdtmcr3o3etgEXjXw2kzmej0RQxcfcr6BU_8cT5d_Np-Nk3XJvKB8mX2VWTEul0xyxSkQFKKEZYsFqjpZ9k4p96asSN5cLGjw5vt-Jt4IYAisZ43tbA_Bj08GJny8E9TPESrVPICZuTV3fd74w_9R9j_XYqy7vFRul2TIbXv9r1-H5UMIo3TNfQ0LRGy3QjtM_TANuvocapWf369gWSCOBtAnA0gzjzEWYA4G0L8HH3a3zt9d4hTAQxsKBMt5lQqbi1TSlvHDamrmjHBqtopK6Vmpq41LKdHdV6JyhHGras0EUpZIiyHQPkFWmmmjX2JMidVXlBVU-J4Xo9UkVOdC5dbWH7mhtBNxDoDlCapw_siJV_KLg3wooxmK73Zymi2TYT7XpdRHeWe62Vn2zJFeDFyK8Ed7uz56p97vkZPlp77Bq20s4XdQo_Mt_bzfLad_OYnX7F4SA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tourism+combination+forecasting+with+swarm+intelligence&rft.jtitle=Annals+of+tourism+research&rft.au=Li%2C+Hengyun&rft.au=Guo%2C+Honggang&rft.au=Wang%2C+Jianzhou&rft.au=Wang%2C+Yong&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0160-7383&rft.volume=111&rft_id=info:doi/10.1016%2Fj.annals.2025.103932&rft.externalDocID=S0160738325000386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-7383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-7383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-7383&client=summon