Optimization of biomimetic heliostat field using heuristic optimization algorithms

Central receiver systems are one of the most promising solar energy harvesting technologies. They consist of a large field of sun-tracking mirrors known as heliostats that focus sunlight onto a receiver at the top of a tower to generate high temperatures for running a heat cycle. Optimum localizatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 258; s. 110048
Hlavní autoři: Rizvi, Arslan A., Yang, Dong, Khan, Talha A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 22.12.2022
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Central receiver systems are one of the most promising solar energy harvesting technologies. They consist of a large field of sun-tracking mirrors known as heliostats that focus sunlight onto a receiver at the top of a tower to generate high temperatures for running a heat cycle. Optimum localization of heliostats in the field plays an essential role during the design phase of a central receiver system. A good design aims to obtain the highest energy yield and efficiency at the lowest cost. The primary parameter that affects the energy yield of a central receiver system is the optical efficiency of its heliostat field. Optimization is carried out to obtain an arrangement of heliostats, which maximizes optical efficiency. This study presents the optimization process of a biomimetic heliostat field design using different heuristic optimization algorithms, namely advanced particle swarm optimization, genetic algorithm, whale optimization algorithm, and gravitational search algorithm. In un-optimized biomimetic heliostat fields, the efficiency is 66.4% which is enhanced to 68.7% after optimization. The results show that the advanced particle swarm is the fastest method that converges in less than 20 iterations. The instantaneous efficiency of the field increases by approximately 3.48% after optimization by particle swarm optimization, followed by 3% with the gravitational search algorithm, 2.88% from the whale optimization algorithm, and 1.99% with the genetic algorithm. The results are compared with other similar works in optimizing the biomimetic heliostat field. •Biomimetic Heliostat Fields are based on arrangement of seeds in sun flowers.•Design and optimization procedure for biomimetic heliostat fields is presented.•Four heuristic optimization algorithms are used for the optimization.•Objective functions are presented for biomimetic heliostat field optimization.•APSO algorithm results in highest optical efficiency by avoiding local minima.
AbstractList Central receiver systems are one of the most promising solar energy harvesting technologies. They consist of a large field of sun-tracking mirrors known as heliostats that focus sunlight onto a receiver at the top of a tower to generate high temperatures for running a heat cycle. Optimum localization of heliostats in the field plays an essential role during the design phase of a central receiver system. A good design aims to obtain the highest energy yield and efficiency at the lowest cost. The primary parameter that affects the energy yield of a central receiver system is the optical efficiency of its heliostat field. Optimization is carried out to obtain an arrangement of heliostats, which maximizes optical efficiency. This study presents the optimization process of a biomimetic heliostat field design using different heuristic optimization algorithms, namely advanced particle swarm optimization, genetic algorithm, whale optimization algorithm, and gravitational search algorithm. In un-optimized biomimetic heliostat fields, the efficiency is 66.4% which is enhanced to 68.7% after optimization. The results show that the advanced particle swarm is the fastest method that converges in less than 20 iterations. The instantaneous efficiency of the field increases by approximately 3.48% after optimization by particle swarm optimization, followed by 3% with the gravitational search algorithm, 2.88% from the whale optimization algorithm, and 1.99% with the genetic algorithm. The results are compared with other similar works in optimizing the biomimetic heliostat field. •Biomimetic Heliostat Fields are based on arrangement of seeds in sun flowers.•Design and optimization procedure for biomimetic heliostat fields is presented.•Four heuristic optimization algorithms are used for the optimization.•Objective functions are presented for biomimetic heliostat field optimization.•APSO algorithm results in highest optical efficiency by avoiding local minima.
ArticleNumber 110048
Author Khan, Talha A.
Rizvi, Arslan A.
Yang, Dong
Author_xml – sequence: 1
  givenname: Arslan A.
  surname: Rizvi
  fullname: Rizvi, Arslan A.
  organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, Shaanxi, China
– sequence: 2
  givenname: Dong
  surname: Yang
  fullname: Yang, Dong
  email: dyang@mail.xjtu.edu.cn
  organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, Shaanxi, China
– sequence: 3
  givenname: Talha A.
  surname: Khan
  fullname: Khan, Talha A.
  organization: Department of Data Science, University of Europe for Applied Sciences, Think Campus, Konrad-Zuse-Ring 11, 14469 Potsdam, Germany
BookMark eNqFkF1LwzAUhoNMcJv-Ay_6B1qTNOlSLwQZfsFgIHod0jTZzmybkWTC_PW21gvxQq8OnHOeF95nhiad6wxClwRnBJPiape9dS4cQ0YxpRkhGDNxgqZELGi6YLicoCkuOU4XmJMzNAthh3H_ScQUPa_3EVr4UBFclzibVOBaaE0EnWxNAy5EFRMLpqmTQ4Bu028PHsJwdz9R1Wych7htwzk6taoJ5uJ7ztHr_d3L8jFdrR-elrerVNO8iCmzIteW6bwsKsoLzmldaCxoWWnOba1ISVVhBbMVzw0xXNOq5pQWlDBRC8HyOWJjrvYuBG-s3HtolT9KguXgRe7k6EUOXuTopceuf2Ea4leH6BU0_8E3I2z6Yu9gvAwaTKdNDd7oKGsHfwd8AqnFhVc
CitedBy_id crossref_primary_10_1016_j_energy_2024_131573
crossref_primary_10_1016_j_enconman_2025_120488
crossref_primary_10_1016_j_ref_2023_06_008
crossref_primary_10_3390_en18051069
crossref_primary_10_1177_1088467X251356155
crossref_primary_10_1021_acscatal_5c02227
crossref_primary_10_1016_j_renene_2024_121654
crossref_primary_10_1016_j_solener_2024_113005
crossref_primary_10_1016_j_heliyon_2023_e21488
crossref_primary_10_1016_j_solener_2025_113915
crossref_primary_10_1016_j_applthermaleng_2025_127598
crossref_primary_10_1109_TAI_2025_3545813
crossref_primary_10_1109_ACCESS_2024_3368865
Cites_doi 10.1016/j.solener.2013.03.001
10.1016/S0038-092X(00)00156-0
10.1016/j.cma.2020.113609
10.1016/j.solener.2018.02.042
10.1016/j.solener.2005.02.012
10.1109/SMC.2019.8914478
10.1002/er.5048
10.1016/j.egypro.2015.03.135
10.1016/j.rser.2013.02.017
10.1016/j.solener.2011.12.007
10.1016/j.ins.2009.03.004
10.1080/01430750.2018.1525581
10.1016/j.cma.2022.114570
10.1016/j.renene.2021.09.045
10.1109/ICNN.1995.488968
10.1016/j.renene.2021.05.058
10.1109/SMC.2018.00669
10.1016/j.solener.2007.10.001
10.1016/j.solener.2021.02.011
10.1016/j.applthermaleng.2017.08.164
10.1109/ACCESS.2022.3147821
10.1016/j.renene.2015.11.015
10.1016/j.eswa.2021.116158
10.1007/s10825-020-01567-6
10.1016/j.renene.2014.03.043
10.1016/j.solener.2003.12.003
10.1016/j.enconman.2015.01.089
10.1016/j.cie.2021.107250
10.1016/j.solener.2022.04.035
10.1016/j.renene.2012.03.011
10.1016/j.advengsoft.2016.01.008
10.1016/j.solener.2017.03.048
10.1016/0038-092X(83)90022-1
10.1115/1.1467921
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2022.110048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_110048
S0950705122011418
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
ID FETCH-LOGICAL-c236t-4f83cf4c396b256552d6c0829bc55fda192a6f84fb53e1e5c2bd52262148d8843
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000883044600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:07:44 EST 2025
Tue Nov 18 22:38:35 EST 2025
Fri Feb 23 02:39:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heuristic optimization algorithms
Central receiver system
Biomimetic heliostat field
Solar energy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-4f83cf4c396b256552d6c0829bc55fda192a6f84fb53e1e5c2bd52262148d8843
ParticipantIDs crossref_primary_10_1016_j_knosys_2022_110048
crossref_citationtrail_10_1016_j_knosys_2022_110048
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_110048
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References P.L. Leary, J.D. Hankins, User’s Guide for MIRVAL E a Computer Code for Modeling the Optical Behavior of Reflecting Solar Concentrators, Vol. 0, Sand77-8280, 1979.
Blanco-Muriel, Alarcón-Padilla, López-Moratalla, Lara-Coira (b30) 2001; 70
Kiwan, Khammash (b20) 2018; 164
Noone, Torrilhon, Mitsos (b19) 2012; 86
T.A. Khan, S.H. Ling, A.S. Mohan, Advanced Particle Swarm Optimization Algorithm with Improved Velocity Update Strategy, in: Proc. - 2018 IEEE Int. Conf. Syst. Man, Cybern. SMC 2018, 2019, pp. 3944–3949
Grena (b29) 2008; 82
Belaid, Filali, Hassani, Arrif, Guermoui, Gama, Bouakba (b24) 2022; 238
Romero, Buck, Pacheco (b4) 2002; 124
Khan, Ling (b14) 2020
Collado, Guallar (b25) 2012; 46
Oyelade, Ezugwu, Mohamed, Abualigah (b9) 2022; 10
Mirjalili, Lewis (b7) 2016; 95
Besarati, Yogi Goswami (b21) 2014; 69
Reda, Andreas (b28) 2004; 76
Behar, Khellaf, Mohammedi (b2) 2013; 23
Rizvi, Danish, El-Leathy, Al-Ansary, Yang (b5) 2021; 218
Rizvi, Yang (b36) 2022; 181
Solucar (b17) 2006
Duffie, Beckman (b27) 2013
Huang, Li, Li, Hu, Chen (b33) 2013; 92
Abualigah, Elaziz, Sumari, Geem, Gandomi (b10) 2022; 191
Deng, Wu, Guo, Zhang, Sun (b3) 2020; 44
Agushaka, Ezugwu, Abualigah (b8) 2022; 391
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b12) 2021; 376
.
Sassi (b34) 1983; 31
Ho (b1) 2017; 152
Abualigah, Yousri, Abd Elaziz, Ewees, Al-qaness, Gandomi (b11) 2021; 157
Atif, Al-Sulaiman (b26) 2015; 95
Xie, Guo, Liu, Chen, Shen, Wang (b15) 2021; 176
Zhang, Yang, Xu, Du (b23) 2016; 87
T.A. Khan, S.H. Ling, A.S. Mohan, Advanced gravitational search algorithm with modified exploitation strategy, in: Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern. 2019-October, 2019, pp. 1056–1061
Arrif, Benchabane, Germoui, Bezza, Belaid (b16) 2021; 42
Schwarzbözl, Schmitz, Pitz-paal (b32) 2009
Li, Zhai, Liu, Yang, Wu (b18) 2018; 128
Rashedi, Nezamabadi-pour, Saryazdi (b13) 2009; 179
Schmitz, Schwarzbözl, Buck, Pitz-Paal (b31) 2006; 80
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 - Int. Conf. Neural Networks, Vol. 4, 1995, pp. 1942–1948
Mutuberria, Pascual, Guisado, Mallor (b22) 2015; 69
Ho (10.1016/j.knosys.2022.110048_b1) 2017; 152
Schwarzbözl (10.1016/j.knosys.2022.110048_b32) 2009
Sassi (10.1016/j.knosys.2022.110048_b34) 1983; 31
Collado (10.1016/j.knosys.2022.110048_b25) 2012; 46
Li (10.1016/j.knosys.2022.110048_b18) 2018; 128
Abualigah (10.1016/j.knosys.2022.110048_b10) 2022; 191
Schmitz (10.1016/j.knosys.2022.110048_b31) 2006; 80
Solucar (10.1016/j.knosys.2022.110048_b17) 2006
Duffie (10.1016/j.knosys.2022.110048_b27) 2013
Blanco-Muriel (10.1016/j.knosys.2022.110048_b30) 2001; 70
Huang (10.1016/j.knosys.2022.110048_b33) 2013; 92
Abualigah (10.1016/j.knosys.2022.110048_b12) 2021; 376
Atif (10.1016/j.knosys.2022.110048_b26) 2015; 95
Deng (10.1016/j.knosys.2022.110048_b3) 2020; 44
Romero (10.1016/j.knosys.2022.110048_b4) 2002; 124
Agushaka (10.1016/j.knosys.2022.110048_b8) 2022; 391
Rizvi (10.1016/j.knosys.2022.110048_b5) 2021; 218
Besarati (10.1016/j.knosys.2022.110048_b21) 2014; 69
Belaid (10.1016/j.knosys.2022.110048_b24) 2022; 238
Oyelade (10.1016/j.knosys.2022.110048_b9) 2022; 10
10.1016/j.knosys.2022.110048_b6
Rashedi (10.1016/j.knosys.2022.110048_b13) 2009; 179
Zhang (10.1016/j.knosys.2022.110048_b23) 2016; 87
Mutuberria (10.1016/j.knosys.2022.110048_b22) 2015; 69
Arrif (10.1016/j.knosys.2022.110048_b16) 2021; 42
Xie (10.1016/j.knosys.2022.110048_b15) 2021; 176
Reda (10.1016/j.knosys.2022.110048_b28) 2004; 76
Kiwan (10.1016/j.knosys.2022.110048_b20) 2018; 164
Noone (10.1016/j.knosys.2022.110048_b19) 2012; 86
Grena (10.1016/j.knosys.2022.110048_b29) 2008; 82
Mirjalili (10.1016/j.knosys.2022.110048_b7) 2016; 95
Rizvi (10.1016/j.knosys.2022.110048_b36) 2022; 181
Behar (10.1016/j.knosys.2022.110048_b2) 2013; 23
10.1016/j.knosys.2022.110048_b35
10.1016/j.knosys.2022.110048_b38
10.1016/j.knosys.2022.110048_b37
Abualigah (10.1016/j.knosys.2022.110048_b11) 2021; 157
Khan (10.1016/j.knosys.2022.110048_b14) 2020
References_xml – volume: 42
  start-page: 65
  year: 2021
  end-page: 80
  ident: b16
  article-title: Optimisation of heliostat field layout for solar power tower systems using iterative artificial bee colony algorithm: a review and case study
  publication-title: Int. J. Ambient Energy.
– volume: 44
  start-page: 1951
  year: 2020
  end-page: 1970
  ident: b3
  article-title: Rose pattern for heliostat field optimization with a dynamic speciation-based mutation differential evolution
  publication-title: Int. J. Energy Res.
– volume: 86
  start-page: 792
  year: 2012
  end-page: 803
  ident: b19
  article-title: Heliostat field optimization: A new computationally efficient model and biomimetic layout
  publication-title: Sol. Energy.
– start-page: 1
  year: 2006
  end-page: 10
  ident: b17
  article-title: 10 MW solar thermal power plant for southern Spain
  publication-title: Final Tech. Prog. Rep.
– reference: T.A. Khan, S.H. Ling, A.S. Mohan, Advanced Particle Swarm Optimization Algorithm with Improved Velocity Update Strategy, in: Proc. - 2018 IEEE Int. Conf. Syst. Man, Cybern. SMC 2018, 2019, pp. 3944–3949,
– volume: 218
  start-page: 296
  year: 2021
  end-page: 311
  ident: b5
  article-title: A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems
  publication-title: Sol. Energy.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b13
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci. (Ny).
– volume: 176
  start-page: 447
  year: 2021
  end-page: 458
  ident: b15
  article-title: Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm
  publication-title: Renew. Energy.
– volume: 191
  year: 2022
  ident: b10
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: 49
  year: 2012
  end-page: 59
  ident: b25
  article-title: Campo: Generation of regular heliostat fields
  publication-title: Renew. Energy.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b7
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 376
  year: 2021
  ident: b12
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2020
  ident: b14
  article-title: A survey of the state-of-the-art swarm intelligence techniques and their application to an inverse design problem
  publication-title: J. Comput. Electron.
– volume: 95
  start-page: 1
  year: 2015
  end-page: 9
  ident: b26
  article-title: Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm
  publication-title: Energy Convers. Manag.
– volume: 152
  start-page: 38
  year: 2017
  end-page: 56
  ident: b1
  article-title: Advances in central receivers for concentrating solar applications
  publication-title: Sol. Energy.
– volume: 164
  start-page: 25
  year: 2018
  end-page: 37
  ident: b20
  article-title: Investigations into the spiral distribution of the heliostat field in solar central tower system
  publication-title: Sol. Energy.
– volume: 10
  year: 2022
  ident: b9
  article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm
  publication-title: IEEE Access.
– volume: 92
  start-page: 7
  year: 2013
  end-page: 14
  ident: b33
  article-title: Gauss–Legendre integration of an analytical function to calculate the optical efficiency of a heliostat
  publication-title: Sol. Energy.
– volume: 181
  start-page: 292
  year: 2022
  end-page: 303
  ident: b36
  article-title: A detailed account of calculation of shading and blocking factor of a heliostat field
  publication-title: Renew. Energy.
– volume: 128
  start-page: 33
  year: 2018
  end-page: 41
  ident: b18
  article-title: Optimization of a heliostat field layout using hybrid PSO-GA algorithm
  publication-title: Appl. Therm. Eng.
– reference: P.L. Leary, J.D. Hankins, User’s Guide for MIRVAL E a Computer Code for Modeling the Optical Behavior of Reflecting Solar Concentrators, Vol. 0, Sand77-8280, 1979.
– volume: 124
  start-page: 98
  year: 2002
  end-page: 108
  ident: b4
  article-title: An update on solar central receiver systems, projects, and technologies
  publication-title: J. Sol. Energy Eng. Trans. ASME.
– volume: 238
  start-page: 162
  year: 2022
  end-page: 177
  ident: b24
  article-title: Heliostat field optimization and comparisons between biomimetic spiral and radial-staggered layouts for different heliostat shapes
  publication-title: Sol. Energy.
– volume: 31
  start-page: 331
  year: 1983
  end-page: 333
  ident: b34
  article-title: Some notes on shadow and blockage effects
  publication-title: Sol. Energy.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 - Int. Conf. Neural Networks, Vol. 4, 1995, pp. 1942–1948,
– volume: 391
  year: 2022
  ident: b8
  article-title: Dwarf mongoose optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 80
  start-page: 111
  year: 2006
  end-page: 120
  ident: b31
  article-title: Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators
  publication-title: Sol. Energy.
– reference: .
– year: 2009
  ident: b32
  article-title: Visual hflcal – a software tool for layout and optimisation of heliostat fields
  publication-title: Sol. PACES 2009
– volume: 23
  start-page: 12
  year: 2013
  end-page: 39
  ident: b2
  article-title: A review of studies on central receiver solar thermal power plants
  publication-title: Renew. Sustain. Energy Rev.
– volume: 69
  start-page: 226
  year: 2014
  end-page: 232
  ident: b21
  article-title: A computationally efficient method for the design of the heliostat field for solar power tower plant
  publication-title: Renew. Energy.
– reference: T.A. Khan, S.H. Ling, A.S. Mohan, Advanced gravitational search algorithm with modified exploitation strategy, in: Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern. 2019-October, 2019, pp. 1056–1061,
– volume: 69
  start-page: 1360
  year: 2015
  end-page: 1370
  ident: b22
  article-title: Comparison of heliostat field layout design methodologies and impact on power plant efficiency
  publication-title: Energy Procedia.
– volume: 76
  start-page: 577
  year: 2004
  end-page: 589
  ident: b28
  article-title: Solar position algorithm for solar radiation applications
  publication-title: Sol. Energy.
– volume: 82
  start-page: 462
  year: 2008
  end-page: 470
  ident: b29
  article-title: An algorithm for the computation of the solar position
  publication-title: Sol. Energy.
– volume: 157
  year: 2021
  ident: b11
  article-title: Aquila Optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
– year: 2013
  ident: b27
  article-title: Solar engineering of thermal processes
– volume: 87
  start-page: 720
  year: 2016
  end-page: 730
  ident: b23
  article-title: An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout
  publication-title: Renew. Energy.
– volume: 70
  start-page: 431
  year: 2001
  end-page: 441
  ident: b30
  article-title: Computing the solar vector
  publication-title: Sol. Energy.
– volume: 92
  start-page: 7
  year: 2013
  ident: 10.1016/j.knosys.2022.110048_b33
  article-title: Gauss–Legendre integration of an analytical function to calculate the optical efficiency of a heliostat
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2013.03.001
– volume: 70
  start-page: 431
  year: 2001
  ident: 10.1016/j.knosys.2022.110048_b30
  article-title: Computing the solar vector
  publication-title: Sol. Energy.
  doi: 10.1016/S0038-092X(00)00156-0
– volume: 376
  year: 2021
  ident: 10.1016/j.knosys.2022.110048_b12
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113609
– volume: 164
  start-page: 25
  year: 2018
  ident: 10.1016/j.knosys.2022.110048_b20
  article-title: Investigations into the spiral distribution of the heliostat field in solar central tower system
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2018.02.042
– volume: 80
  start-page: 111
  year: 2006
  ident: 10.1016/j.knosys.2022.110048_b31
  article-title: Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2005.02.012
– ident: 10.1016/j.knosys.2022.110048_b38
  doi: 10.1109/SMC.2019.8914478
– ident: 10.1016/j.knosys.2022.110048_b35
– volume: 44
  start-page: 1951
  year: 2020
  ident: 10.1016/j.knosys.2022.110048_b3
  article-title: Rose pattern for heliostat field optimization with a dynamic speciation-based mutation differential evolution
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5048
– start-page: 1
  year: 2006
  ident: 10.1016/j.knosys.2022.110048_b17
  article-title: 10 MW solar thermal power plant for southern Spain
  publication-title: Final Tech. Prog. Rep.
– volume: 69
  start-page: 1360
  year: 2015
  ident: 10.1016/j.knosys.2022.110048_b22
  article-title: Comparison of heliostat field layout design methodologies and impact on power plant efficiency
  publication-title: Energy Procedia.
  doi: 10.1016/j.egypro.2015.03.135
– volume: 23
  start-page: 12
  year: 2013
  ident: 10.1016/j.knosys.2022.110048_b2
  article-title: A review of studies on central receiver solar thermal power plants
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.02.017
– volume: 86
  start-page: 792
  year: 2012
  ident: 10.1016/j.knosys.2022.110048_b19
  article-title: Heliostat field optimization: A new computationally efficient model and biomimetic layout
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2011.12.007
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.knosys.2022.110048_b13
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2009.03.004
– volume: 42
  start-page: 65
  year: 2021
  ident: 10.1016/j.knosys.2022.110048_b16
  article-title: Optimisation of heliostat field layout for solar power tower systems using iterative artificial bee colony algorithm: a review and case study
  publication-title: Int. J. Ambient Energy.
  doi: 10.1080/01430750.2018.1525581
– volume: 391
  year: 2022
  ident: 10.1016/j.knosys.2022.110048_b8
  article-title: Dwarf mongoose optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.114570
– volume: 181
  start-page: 292
  year: 2022
  ident: 10.1016/j.knosys.2022.110048_b36
  article-title: A detailed account of calculation of shading and blocking factor of a heliostat field
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2021.09.045
– year: 2009
  ident: 10.1016/j.knosys.2022.110048_b32
  article-title: Visual hflcal – a software tool for layout and optimisation of heliostat fields
– ident: 10.1016/j.knosys.2022.110048_b6
  doi: 10.1109/ICNN.1995.488968
– volume: 176
  start-page: 447
  year: 2021
  ident: 10.1016/j.knosys.2022.110048_b15
  article-title: Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2021.05.058
– ident: 10.1016/j.knosys.2022.110048_b37
  doi: 10.1109/SMC.2018.00669
– volume: 82
  start-page: 462
  year: 2008
  ident: 10.1016/j.knosys.2022.110048_b29
  article-title: An algorithm for the computation of the solar position
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2007.10.001
– volume: 218
  start-page: 296
  year: 2021
  ident: 10.1016/j.knosys.2022.110048_b5
  article-title: A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2021.02.011
– volume: 128
  start-page: 33
  year: 2018
  ident: 10.1016/j.knosys.2022.110048_b18
  article-title: Optimization of a heliostat field layout using hybrid PSO-GA algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.164
– volume: 10
  year: 2022
  ident: 10.1016/j.knosys.2022.110048_b9
  article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3147821
– volume: 87
  start-page: 720
  year: 2016
  ident: 10.1016/j.knosys.2022.110048_b23
  article-title: An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2015.11.015
– volume: 191
  year: 2022
  ident: 10.1016/j.knosys.2022.110048_b10
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– year: 2020
  ident: 10.1016/j.knosys.2022.110048_b14
  article-title: A survey of the state-of-the-art swarm intelligence techniques and their application to an inverse design problem
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-020-01567-6
– volume: 69
  start-page: 226
  year: 2014
  ident: 10.1016/j.knosys.2022.110048_b21
  article-title: A computationally efficient method for the design of the heliostat field for solar power tower plant
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2014.03.043
– volume: 76
  start-page: 577
  year: 2004
  ident: 10.1016/j.knosys.2022.110048_b28
  article-title: Solar position algorithm for solar radiation applications
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2003.12.003
– volume: 95
  start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2022.110048_b26
  article-title: Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.01.089
– volume: 157
  year: 2021
  ident: 10.1016/j.knosys.2022.110048_b11
  article-title: Aquila Optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 238
  start-page: 162
  year: 2022
  ident: 10.1016/j.knosys.2022.110048_b24
  article-title: Heliostat field optimization and comparisons between biomimetic spiral and radial-staggered layouts for different heliostat shapes
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2022.04.035
– volume: 46
  start-page: 49
  year: 2012
  ident: 10.1016/j.knosys.2022.110048_b25
  article-title: Campo: Generation of regular heliostat fields
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2012.03.011
– year: 2013
  ident: 10.1016/j.knosys.2022.110048_b27
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.knosys.2022.110048_b7
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 152
  start-page: 38
  year: 2017
  ident: 10.1016/j.knosys.2022.110048_b1
  article-title: Advances in central receivers for concentrating solar applications
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2017.03.048
– volume: 31
  start-page: 331
  year: 1983
  ident: 10.1016/j.knosys.2022.110048_b34
  article-title: Some notes on shadow and blockage effects
  publication-title: Sol. Energy.
  doi: 10.1016/0038-092X(83)90022-1
– volume: 124
  start-page: 98
  year: 2002
  ident: 10.1016/j.knosys.2022.110048_b4
  article-title: An update on solar central receiver systems, projects, and technologies
  publication-title: J. Sol. Energy Eng. Trans. ASME.
  doi: 10.1115/1.1467921
SSID ssj0002218
Score 2.4208598
Snippet Central receiver systems are one of the most promising solar energy harvesting technologies. They consist of a large field of sun-tracking mirrors known as...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110048
SubjectTerms Biomimetic heliostat field
Central receiver system
Heuristic optimization algorithms
Solar energy
Title Optimization of biomimetic heliostat field using heuristic optimization algorithms
URI https://dx.doi.org/10.1016/j.knosys.2022.110048
Volume 258
WOSCitedRecordID wos000883044600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cAFyksUKPKB28qrxLFj-7iCVuWhgqBIe4scx2HTbpNqu1tV_HrGjvOQFvGSuERRFMfJzJfx59E8EHpV8CRPBGOEassIi-OUKBFTUnCtVBlpqqVPFP4gTk7kfK4-hYIKV76dgKhreXOjLv-rquEaKNulzv6FuvuHwgU4B6XDEdQOxz9S_EcwAhchu9JRQZdgX124XEVghcuqcSlEEx-4Ntl4R8HCbtpyzZNmPFQvvzWrar0I5cwDgX3f-eCIW_-KUAl6CJivvl_7-IDZCrBWT2bT3qwEx_SbJqyVzsovQnNkvVzo7t7ggqC-GwodNqzbuTHBwRgREYVysrY1r1IAn2eRGttf2tZu37LlrVvhbHpeN_AtUzfx1Be4k8Pa1UcUfnHTudmoYzQslrfRLhVcga3enb09nL_rl2dKvdO3f70un9IH_W3P9XO-MuIgp3voXtg84Fmr9Afolq0fovtdYw4c7PQj9HmMAdyUeMAA7jGAPQawxwDuMYDHGMADBh6jr0eHp6-PSWieQQxN0jVhpUxMyUyi0hxoLee0SI1LpM4N52WhgdnrtJSszHliY8sNzQvHxSnsjwspWfIE7dRNbZ8ibHTMyrjIBfy_wLeBYdLYpnkRKSMiYeN9lHQiykyoLO8anCyzLoTwLGsFmznBZq1g9xHpR122lVV-c7_opJ8FdtiyvgwA88uRz_555HN0d8D7C7SzXm3sAbpjrtfV1eplQNYPEz2NLA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+biomimetic+heliostat+field+using+heuristic+optimization+algorithms&rft.jtitle=Knowledge-based+systems&rft.au=Rizvi%2C+Arslan+A.&rft.au=Yang%2C+Dong&rft.au=Khan%2C+Talha+A.&rft.date=2022-12-22&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=258&rft_id=info:doi/10.1016%2Fj.knosys.2022.110048&rft.externalDocID=S0950705122011418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon