Multi-track laser metal deposition of Stellite6 on martensitic stainless steel: Geometry optimization and defects suppression
Direct Laser Deposition has been considered as a method to repair and rebuild the industrial parts. Considering the possibility of the formation of structural defects due to the process parameters, assessing the selection of the optimum laser cladding parameters to minimize these defects is a crucia...
Gespeichert in:
| Veröffentlicht in: | Journal of manufacturing processes Jg. 86; S. 177 - 186 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
27.01.2023
|
| Schlagworte: | |
| ISSN: | 1526-6125, 2212-4616 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Direct Laser Deposition has been considered as a method to repair and rebuild the industrial parts. Considering the possibility of the formation of structural defects due to the process parameters, assessing the selection of the optimum laser cladding parameters to minimize these defects is a crucial subject. Therefore, a model to predict the single-track geometric characteristics based on the three main process parameters namely, laser power, scanning speed and powder feed rate was presented to prevent the formation of defects in the deposition of Stellite 6 on martensitic stainless steel. Application of the linear regression method coupled with genetic optimization algorithm resulted in the optimum combined parameters (PαVβFγ), which were the basis for the generation of the process map. Eventually, based on track geometric attributes, an optimum region was introduced on the process map and to validate the capability of the prediction model, three single tracks were selected for multi-track laser deposition with a 30%, overlapping ratio concluded from derived equations. Investigation of these three multi-tracks indicated that the one with the least dilution (2.14 %) and the most wetting angle (52°), contained various defects, namely lack of fusion, delamination, and unmelted powder defect. Furthermore, the multi-track with high dilution resulted in the penetration of alloying elements from the substrate to the deposited clad and vice versa. Finally, the multi-track which was selected from the optimum region, presented the best deposited layer with no visible defects, which validated the proposed model.
[Display omitted]
•Using full factorial Design of Experiment, 27 tracks were deposited for three levels of laser power, scanning speed and powder feed rate.•A model to predict the single-track geometric characteristics was presented.•A process map was drawn which is capable of predicting the geometric behavior of the track for various process parameters.•An optimum region on process map was highlighted to achieve defect-free multi-track depositions.•Optimum region was validated by depositing three various parameters with optimal overlap which was concluded from the equations. |
|---|---|
| AbstractList | Direct Laser Deposition has been considered as a method to repair and rebuild the industrial parts. Considering the possibility of the formation of structural defects due to the process parameters, assessing the selection of the optimum laser cladding parameters to minimize these defects is a crucial subject. Therefore, a model to predict the single-track geometric characteristics based on the three main process parameters namely, laser power, scanning speed and powder feed rate was presented to prevent the formation of defects in the deposition of Stellite 6 on martensitic stainless steel. Application of the linear regression method coupled with genetic optimization algorithm resulted in the optimum combined parameters (PαVβFγ), which were the basis for the generation of the process map. Eventually, based on track geometric attributes, an optimum region was introduced on the process map and to validate the capability of the prediction model, three single tracks were selected for multi-track laser deposition with a 30%, overlapping ratio concluded from derived equations. Investigation of these three multi-tracks indicated that the one with the least dilution (2.14 %) and the most wetting angle (52°), contained various defects, namely lack of fusion, delamination, and unmelted powder defect. Furthermore, the multi-track with high dilution resulted in the penetration of alloying elements from the substrate to the deposited clad and vice versa. Finally, the multi-track which was selected from the optimum region, presented the best deposited layer with no visible defects, which validated the proposed model.
[Display omitted]
•Using full factorial Design of Experiment, 27 tracks were deposited for three levels of laser power, scanning speed and powder feed rate.•A model to predict the single-track geometric characteristics was presented.•A process map was drawn which is capable of predicting the geometric behavior of the track for various process parameters.•An optimum region on process map was highlighted to achieve defect-free multi-track depositions.•Optimum region was validated by depositing three various parameters with optimal overlap which was concluded from the equations. |
| Author | Shoja Razavi, Reza Nourollahi, Amin Ilanlou, Morteza Haghighat, Siavash |
| Author_xml | – sequence: 1 givenname: Morteza surname: Ilanlou fullname: Ilanlou, Morteza email: Morteza_ilanlou@mut.ac.ir organization: Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Iran – sequence: 2 givenname: Reza surname: Shoja Razavi fullname: Shoja Razavi, Reza organization: Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Iran – sequence: 3 givenname: Siavash surname: Haghighat fullname: Haghighat, Siavash organization: Faculty of New Science and Technologies, University of Tehran, Tehran, Iran – sequence: 4 givenname: Amin surname: Nourollahi fullname: Nourollahi, Amin organization: Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Iran |
| BookMark | eNqFkMtKxDAUhoMoOF7ewEVeoDUnadPOLAQRb6C4UNchTU8hY6YpSUZQ8N3NzLhyoaucJOf_4P-OyP7oRyTkDFgJDOT5slyu9BR8yRnnJfCSCblHZpwDLyoJcp_MoOaykMDrQ3IU45Ix4BWDGfl6XLtkixS0eaNORwx0hUk72uPko03Wj9QP9DmhczahpPm-0iHhuPk0NCZtR4cx5gnRLegt-gwIH9RPya7sp94i9Nhn4oAm5cX1NIWcyO8n5GDQLuLpz3lMXm-uX67uioen2_ury4fCcCFTIYYGOQpWNaIB3fIWtOyxa0U7zAc5Z9W865pOV52AGkQt-hpYMwcztC3WsmvEMal2XBN8jAEHNQWba3woYGqjUC3VTqHaKFTAVVaYY4tfMWPTtlD2Zd1_4YtdGHOxd4tBRWNxNNjbkD2o3tu_Ad-_u5S6 |
| CitedBy_id | crossref_primary_10_1007_s00170_023_12196_1 crossref_primary_10_1007_s00170_023_12197_0 crossref_primary_10_1016_j_jmrt_2024_07_191 crossref_primary_10_1016_j_engfailanal_2023_107871 crossref_primary_10_3390_ma17163914 crossref_primary_10_1051_mfreview_2024012 crossref_primary_10_1007_s00170_024_14480_0 crossref_primary_10_1016_j_surfcoat_2025_131990 crossref_primary_10_1016_j_surfcoat_2024_131021 crossref_primary_10_1016_j_ijleo_2023_170839 crossref_primary_10_1016_j_optlastec_2024_111621 crossref_primary_10_1016_j_optlastec_2024_110940 crossref_primary_10_1016_j_jmapro_2024_04_047 crossref_primary_10_1007_s40962_025_01578_8 crossref_primary_10_1038_s41598_025_19863_1 crossref_primary_10_1007_s12289_024_01859_3 crossref_primary_10_2351_7_0001663 crossref_primary_10_1007_s11665_024_09598_x crossref_primary_10_1016_j_mtcomm_2024_109643 crossref_primary_10_1016_j_jmrt_2025_09_193 crossref_primary_10_1016_j_surfcoat_2024_130647 |
| Cites_doi | 10.1016/j.jmapro.2021.10.052 10.1016/j.matdes.2007.01.023 10.1016/j.optlastec.2014.12.005 10.2351/1.521888 10.1016/j.electacta.2020.135925 10.1016/j.surfcoat.2006.10.044 10.1016/j.surfcoat.2005.03.033 10.1016/j.optlastec.2017.06.026 10.1016/j.surfcoat.2004.06.029 10.1016/j.jmrt.2020.05.094 10.4028/www.scientific.net/AMR.1119.628 10.5781/JWJ.2019.37.6.7 10.2351/1.4828755 10.1016/j.apsusc.2004.09.073 10.3390/ma14030560 10.4028/www.scientific.net/MSF.414-415.385 10.1108/13552540610670744 10.4028/www.scientific.net/MSF.589.79 10.1016/j.phpro.2013.11.029 10.1007/s40516-020-00132-0 10.1007/s11837-020-04410-2 10.1016/j.optlastec.2005.10.009 10.1016/j.jmapro.2020.04.045 10.1007/s00170-017-0066-y 10.1016/j.jmapro.2018.11.004 10.1016/j.jmatprotec.2004.04.016 10.1016/j.jallcom.2010.09.216 10.3390/coatings9070418 10.1016/j.jmrt.2021.04.087 10.1557/jmr.2015.358 10.3390/ma14195662 10.1007/s00170-017-0384-0 10.1016/j.phpro.2014.08.166 10.1115/1.4032117 10.1007/s00170-009-2480-2 10.1179/174329406X84949 10.1016/j.surfcoat.2014.04.008 10.1016/j.optlastec.2022.108507 10.1016/j.actamat.2009.11.032 10.1007/s00170-018-2107-6 10.4028/www.scientific.net/AMR.891-892.1519 10.1016/j.optlastec.2014.07.017 10.1016/j.mseb.2020.114799 10.1115/1.4028513 |
| ContentType | Journal Article |
| Copyright | 2022 The Society of Manufacturing Engineers |
| Copyright_xml | – notice: 2022 The Society of Manufacturing Engineers |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jmapro.2022.12.036 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2212-4616 |
| EndPage | 186 |
| ExternalDocumentID | 10_1016_j_jmapro_2022_12_036 S1526612522009008 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 8FL 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_ABI_INFORM_COMPLETE HVGLF H~9 J1W JJJVA K60 K6~ KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RWL SDF SES SPC SPCBC SST SSZ T5K TAE TN5 U5U ~G- 29K 883 88I 8AO 8FE 8FG 8FW 8R4 8R5 9DU 9M8 AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJCF ABUWG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFHD AFFNX AFJKZ AFKRA AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN AZQEC BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION D-I DWQXO EFKBS EJD FGOYB FRNLG GNUQQ GROUPED_ABI_INFORM_RESEARCH HCIFZ HZ~ L6V M0C M0F M2P M7S PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS Q2X R2- S0X ~HD |
| ID | FETCH-LOGICAL-c236t-3f7e2e3047371a8281a6deb838f9f69049bb7ba4b3151353d510791cf88e56b73 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918070900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1526-6125 |
| IngestDate | Sat Nov 29 07:01:37 EST 2025 Tue Nov 18 21:58:11 EST 2025 Fri Feb 23 02:34:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cobalt-base superalloy additive manufacturing laser cladding Parameter optimization Genetic algorithm Stellite 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c236t-3f7e2e3047371a8281a6deb838f9f69049bb7ba4b3151353d510791cf88e56b73 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1016_j_jmapro_2022_12_036 crossref_citationtrail_10_1016_j_jmapro_2022_12_036 elsevier_sciencedirect_doi_10_1016_j_jmapro_2022_12_036 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-27 |
| PublicationDateYYYYMMDD | 2023-01-27 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of manufacturing processes |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Urbanic, Saqib, Aggarwal (bb0165) 2016; 138 Shahriari, Khaksar, Nasiri, Hadadzadeh, Amirkhiz, Mohammadi (bb0005) 2020; 339 Lin, Chen (bb0025) 2006; 200 dos Santos Paes, Pereira, Xavier, Weingaertner, Vilarinho (bb0100) 2022; 73 Toyserkani, Khajepour, Corbin (bb0070) 2004 Popoola (bb0185) 2003 Zhang, Liu, Shang (bb0200) 2007; 39 Bartkowski, Młynarczak, Piasecki, Dudziak, Gościański, Bartkowska (bb0030) 2015; 68 Cho, Zhao, Kwak, Kim (bb0225) 2004; 153 Chen, Lian, Jiang, Wang (bb0175) 2018; 36 Buza (bb0130) 2008; 589 Nourollahi, Razavi, Barekat, Anaraki, Erfanmanesh (bb3250) 2021; 13 Yang, Zhong, Liu (bb0125) 2002; 4915 De Oliveira, Ocelik, De Hosson (bb0230) 2005; 197 Wu, Qian, Brandt, Matthews (bb0250) 2020; 72 Kempen, Vrancken, Buls, Thijs, Van Humbeeck, Kruth (bb0080) 2014; 136 Murr (bb0135) 2010; 58 Navas, Conde, Cadenas, De Damborenea (bb0240) 2006; 22 Pilehrood, Mashhuriazar, Baghdadi, Sajuri, Omidvar (bb0015) 2021; 14 Thawari, Gullipalli, Katiyar, Gupta (bb0065) 2021; 28 Vilar (bb0020) 1999; 11 Wen, Feng, Zheng (bb0215) 2015; 65 Borges, Quintino, Miranda, Carr (bb0220) 2010; 50 Kusmoko, Dunne, Li (bb0050) 2015; 1119 Singh, Kumar, Mishra, Tiwari (bb0255) 2014; 251 Dass, Moridi (bb0235) 2019; 9 Erfanmanesh, Abdollah-Pour, Mohammadian-Semnani, Shoja-Razavi (bb0190) 2017; 97 Aiyiti, Zhao, Lu, Tang (bb0205) 2006; 12 Costa (bb0145) 2003; 414 Shayanfar, Daneshmanesh, Janghorban (bb0195) 2020; 9 Ramalho, Santos, Bevans, Smoqi, Rao, Oliveira (bb0140) 2022; 51 Deng, Zhang, Chen, Xia (bb0045) 2013; 50 Thawari, Gullipalli, Katiyar, Gupta (bb0035) 2021; 263 Brown, Newkirk, Liou (bb0010) 2021; 14 Reijonen, Revuelta, Riipinen, Ruusuvuori, Puukko (bb0110) 2020; 32 Lian, Yao, Zhang, Chen (bb0170) 2018; 97 Ocelík, De Oliveira, De Boer, De Hosson (bb0210) 2007; 201 Davim, Oliveira, Cardoso (bb0150) 2008; 29 Alizadeh-Sh, Marashi, Ranjbarnodeh, Shoja-Razavi, Oliveira (bb0060) 2020; 128 Nursyifaulkhair, Park, Baek, Lee (bb0105) 2019; 37 Pacheco (bb0180) 2021; 8 Zheng, Cong, Dong, Liu, Liu (bb0095) 2017; 92 Cao, Gu (bb0115) 2015; 30 Xue, Wang (bb0120) 2005; 243 Ilanlou, Razavi, Nourollahi, Hosseini, Haghighat (bb0155) 2022; 156 Buchbinder, Meiners, Pirch, Wissenbach, Schrage (bb0075) 2014; 26 Liu, Hu, Qin, Wang, Zhang, Huang (bb0090) 2017; 91 Gholipour, Shamanian, Ashrafizadeh (bb0040) 2011; 509 Li (bb0055) 2022; 57 Nenadl, Ocelík, Palavra, De Hosson (bb0160) 2014; 56 Alizadeh-sh, Marashi, Ranjbarnodeh, Shoja-razavi (bb0245) 2020; 56 Liu, Elambasseril, Sun, Leary, Brandt, Sharp (bb0085) 2014; 891 Brown (10.1016/j.jmapro.2022.12.036_bb0010) 2021; 14 Lin (10.1016/j.jmapro.2022.12.036_bb0025) 2006; 200 Erfanmanesh (10.1016/j.jmapro.2022.12.036_bb0190) 2017; 97 Shahriari (10.1016/j.jmapro.2022.12.036_bb0005) 2020; 339 Popoola (10.1016/j.jmapro.2022.12.036_bb0185) 2003 Nursyifaulkhair (10.1016/j.jmapro.2022.12.036_bb0105) 2019; 37 Buza (10.1016/j.jmapro.2022.12.036_bb0130) 2008; 589 Nourollahi (10.1016/j.jmapro.2022.12.036_bb3250) 2021; 13 Liu (10.1016/j.jmapro.2022.12.036_bb0090) 2017; 91 Dass (10.1016/j.jmapro.2022.12.036_bb0235) 2019; 9 Kempen (10.1016/j.jmapro.2022.12.036_bb0080) 2014; 136 Wu (10.1016/j.jmapro.2022.12.036_bb0250) 2020; 72 Murr (10.1016/j.jmapro.2022.12.036_bb0135) 2010; 58 Ramalho (10.1016/j.jmapro.2022.12.036_bb0140) 2022; 51 Singh (10.1016/j.jmapro.2022.12.036_bb0255) 2014; 251 Costa (10.1016/j.jmapro.2022.12.036_bb0145) 2003; 414 Cho (10.1016/j.jmapro.2022.12.036_bb0225) 2004; 153 Navas (10.1016/j.jmapro.2022.12.036_bb0240) 2006; 22 Cao (10.1016/j.jmapro.2022.12.036_bb0115) 2015; 30 Vilar (10.1016/j.jmapro.2022.12.036_bb0020) 1999; 11 dos Santos Paes (10.1016/j.jmapro.2022.12.036_bb0100) 2022; 73 Chen (10.1016/j.jmapro.2022.12.036_bb0175) 2018; 36 Yang (10.1016/j.jmapro.2022.12.036_bb0125) 2002; 4915 Alizadeh-sh (10.1016/j.jmapro.2022.12.036_bb0245) 2020; 56 Shayanfar (10.1016/j.jmapro.2022.12.036_bb0195) 2020; 9 Gholipour (10.1016/j.jmapro.2022.12.036_bb0040) 2011; 509 Bartkowski (10.1016/j.jmapro.2022.12.036_bb0030) 2015; 68 Alizadeh-Sh (10.1016/j.jmapro.2022.12.036_bb0060) 2020; 128 Thawari (10.1016/j.jmapro.2022.12.036_bb0035) 2021; 263 Ilanlou (10.1016/j.jmapro.2022.12.036_bb0155) 2022; 156 Xue (10.1016/j.jmapro.2022.12.036_bb0120) 2005; 243 De Oliveira (10.1016/j.jmapro.2022.12.036_bb0230) 2005; 197 Davim (10.1016/j.jmapro.2022.12.036_bb0150) 2008; 29 Wen (10.1016/j.jmapro.2022.12.036_bb0215) 2015; 65 Pilehrood (10.1016/j.jmapro.2022.12.036_bb0015) 2021; 14 Pacheco (10.1016/j.jmapro.2022.12.036_bb0180) 2021; 8 Zhang (10.1016/j.jmapro.2022.12.036_bb0200) 2007; 39 Thawari (10.1016/j.jmapro.2022.12.036_bb0065) 2021; 28 Urbanic (10.1016/j.jmapro.2022.12.036_bb0165) 2016; 138 Aiyiti (10.1016/j.jmapro.2022.12.036_bb0205) 2006; 12 Reijonen (10.1016/j.jmapro.2022.12.036_bb0110) 2020; 32 Ocelík (10.1016/j.jmapro.2022.12.036_bb0210) 2007; 201 Deng (10.1016/j.jmapro.2022.12.036_bb0045) 2013; 50 Zheng (10.1016/j.jmapro.2022.12.036_bb0095) 2017; 92 Toyserkani (10.1016/j.jmapro.2022.12.036_bb0070) 2004 Borges (10.1016/j.jmapro.2022.12.036_bb0220) 2010; 50 Nenadl (10.1016/j.jmapro.2022.12.036_bb0160) 2014; 56 Kusmoko (10.1016/j.jmapro.2022.12.036_bb0050) 2015; 1119 Liu (10.1016/j.jmapro.2022.12.036_bb0085) 2014; 891 Li (10.1016/j.jmapro.2022.12.036_bb0055) 2022; 57 Lian (10.1016/j.jmapro.2022.12.036_bb0170) 2018; 97 Buchbinder (10.1016/j.jmapro.2022.12.036_bb0075) 2014; 26 |
| References_xml | – volume: 4915 start-page: 71 year: 2002 end-page: 78 ident: bb0125 article-title: Fabrication of in-situ composite coating reinforced with TiC particles by powder feeding laser cladding publication-title: Lasers Mater Process Manuf – volume: 197 start-page: 127 year: 2005 end-page: 136 ident: bb0230 article-title: Analysis of coaxial laser cladding processing conditions publication-title: Surf Coat Technol – year: 2004 ident: bb0070 article-title: Laser cladding – volume: 589 start-page: 79 year: 2008 end-page: 84 ident: bb0130 article-title: On the possible mechanisms of porosity formation during laser melt injection (LMI) technology publication-title: Mater Sci Forum – volume: 56 start-page: 54 year: 2020 end-page: 62 ident: bb0245 article-title: Laser cladding of inconel 718 powder on a non-weldable substrate : clad bead geometry-solidification cracking relationship publication-title: J Manuf Process – volume: 97 start-page: 180 year: 2017 end-page: 186 ident: bb0190 article-title: An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel publication-title: Opt Laser Technol – volume: 156 year: 2022 ident: bb0155 article-title: Prediction of the geometric characteristics of the laser cladding of inconel 718 on the inconel 738 substrate via genetic algorithm and linear regression publication-title: Opt Laser Technol – volume: 92 start-page: 3605 year: 2017 end-page: 3614 ident: bb0095 article-title: CAD-based automatic path generation and optimization for laser cladding robot in additive manufacturing publication-title: Int J Adv Manuf Technol – volume: 50 start-page: 177 year: 2013 end-page: 184 ident: bb0045 article-title: Microstructure and microhardness of 17–4PH deposited with co-based alloy hardfacing coating publication-title: Phys Procedia – volume: 91 start-page: 3967 year: 2017 end-page: 3975 ident: bb0090 article-title: Parameter optimization and experimental study of the sprocket repairing using laser cladding publication-title: Int J Adv Manuf Technol – volume: 14 start-page: 560 year: 2021 ident: bb0010 article-title: Absorption of nitrogen during pulsed wave L-PBF of 17–4 PH steel publication-title: Materials (Basel) – volume: 153 start-page: 494 year: 2004 end-page: 500 ident: bb0225 article-title: Computational mechanics of laser cladding process publication-title: J Mater Process Technol – volume: 1119 start-page: 628 year: 2015 end-page: 632 ident: bb0050 article-title: Evaluation of two different energy inputs for deposition of stellite 6 by laser cladding on a martensitic stainless steel substrate publication-title: Adv Mater Res – volume: 36 start-page: 621 year: 2018 end-page: 628 ident: bb0175 article-title: Simplification and experimental investigation of geometrical surface smoothness model for multi-track laser cladding processes publication-title: J Manuf Process – volume: 73 start-page: 67 year: 2022 end-page: 77 ident: bb0100 article-title: Lack of fusion mitigation in directed energy deposition with laser (DED-L) additive manufacturing through laser remelting publication-title: J Manuf Process – volume: 37 start-page: 579 year: 2019 end-page: 584 ident: bb0105 article-title: Effect of process parameters on the formation of lack of fusion in directed energy deposition of ti-6Al-4V alloy publication-title: J Weld Join – volume: 13 start-page: 590 year: 2021 end-page: 601 ident: bb3250 article-title: Microstructural investigation of direct laser deposition of the Ti–6Al–4V alloy by different melt pool protection conditions publication-title: J Mater Res Tech – volume: 200 start-page: 4557 year: 2006 end-page: 4563 ident: bb0025 article-title: Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding publication-title: Surf Coat Technol – volume: 201 start-page: 5875 year: 2007 end-page: 5883 ident: bb0210 article-title: Thick co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties publication-title: Surf Coat Technol – volume: 251 start-page: 87 year: 2014 end-page: 97 ident: bb0255 article-title: Laser cladding of stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance publication-title: Surf Coat Technol – volume: 30 start-page: 3616 year: 2015 end-page: 3628 ident: bb0115 article-title: Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: relation of densification, microstructures and performance publication-title: J Mater Res – volume: 65 start-page: 180 year: 2015 end-page: 188 ident: bb0215 article-title: Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel publication-title: Opt Laser Technol – volume: 51 year: 2022 ident: bb0140 article-title: Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel publication-title: Addit Manuf – volume: 136 year: 2014 ident: bb0080 article-title: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating publication-title: J Manuf Sci Eng – volume: 14 start-page: 5662 year: 2021 ident: bb0015 article-title: Effect of laser metal deposition parameters on the characteristics of stellite 6 deposited layers on precipitation-hardened stainless steel publication-title: Materials (Basel) – volume: 509 start-page: 4905 year: 2011 end-page: 4909 ident: bb0040 article-title: Microstructure and wear behavior of stellite 6 cladding on 17–4 PH stainless steel publication-title: J Alloys Compd – volume: 414 start-page: 385 year: 2003 end-page: 394 ident: bb0145 article-title: A simplified semi-empirical method to select the processing parameters for laser clad coatings publication-title: Mater Sci Forum – volume: 891 start-page: 1519 year: 2014 end-page: 1524 ident: bb0085 article-title: The effect of manufacturing defects on the fatigue behaviour of ti-6Al-4V specimens fabricated using selective laser melting publication-title: Adv Mater Res – volume: 9 start-page: 418 year: 2019 ident: bb0235 article-title: State of the art in directed energy deposition: from additive manufacturing to materials design publication-title: Coatings – volume: 243 start-page: 278 year: 2005 end-page: 286 ident: bb0120 article-title: Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy publication-title: Appl Surf Sci – volume: 26 start-page: 12004 year: 2014 ident: bb0075 article-title: Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting publication-title: J Laser Appl – volume: 97 start-page: 2397 year: 2018 end-page: 2407 ident: bb0170 article-title: Analysis and prediction on geometric characteristics of multi-track overlapping laser cladding publication-title: Int J Adv Manuf Technol – volume: 68 start-page: 191 year: 2015 end-page: 201 ident: bb0030 article-title: Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding publication-title: Opt Laser Technol – volume: 39 start-page: 549 year: 2007 end-page: 557 ident: bb0200 article-title: Research on the processing experiments of laser metal deposition shaping publication-title: Opt Laser Technol – volume: 9 start-page: 8258 year: 2020 end-page: 8265 ident: bb0195 article-title: Parameters optimization for laser cladding of inconel 625 on ASTM A592 steel publication-title: J Mater Res Technol – volume: 32 year: 2020 ident: bb0110 article-title: On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing publication-title: Addit Manuf – volume: 8 start-page: 1 year: 2021 end-page: 14 ident: bb0180 article-title: Laser cladding of stellite-6 on AISI 316 L austenitic stainless steel: empirical-statistical modeling and parameter optimization publication-title: Lasers Manuf Mater Process – volume: 11 start-page: 64 year: 1999 end-page: 79 ident: bb0020 article-title: Laser cladding publication-title: J Laser Appl – volume: 12 start-page: 165 year: 2006 end-page: 172 ident: bb0205 article-title: Investigation of the overlapping parameters of MPAW-based rapid prototyping publication-title: Rapid Prototyp J – volume: 72 start-page: 4632 year: 2020 end-page: 4638 ident: bb0250 article-title: Ultra-high-speed laser cladding of Stellite® 6 alloy on mild steel publication-title: JOM – volume: 22 start-page: 26 year: 2006 end-page: 34 ident: bb0240 article-title: Tribological properties of laser clad stellite 6 coatings on steel substrates publication-title: Surf Eng – volume: 50 start-page: 175 year: 2010 end-page: 183 ident: bb0220 article-title: Imperfections in laser clading with powder and wire fillers publication-title: Int J Adv Manuf Technol – volume: 128 year: 2020 ident: bb0060 article-title: Prediction of solidification cracking by an empirical-statistical analysis for laser cladding of inconel 718 powder on a non-weldable substrate publication-title: Opt Laser Technol – volume: 339 year: 2020 ident: bb0005 article-title: Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel publication-title: Electrochim Acta – volume: 28 year: 2021 ident: bb0065 article-title: Effect of multi-layer laser cladding of stellite 6 and inconel 718 materials on clad geometry, microstructure evolution and mechanical properties publication-title: Mater Today Commun – volume: 29 start-page: 554 year: 2008 end-page: 557 ident: bb0150 article-title: Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA) publication-title: Mater Des – volume: 58 start-page: 1887 year: 2010 end-page: 1894 ident: bb0135 article-title: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting publication-title: Acta Mater – year: 2003 ident: bb0185 article-title: Proceedings of the 1st ASM international surface engineering and the 13th IFHTSE congress – volume: 57 year: 2022 ident: bb0055 article-title: Controlling the columnar-to-equiaxed transition during directed energy deposition of inconel 625 publication-title: Addit Manuf – volume: 138 year: 2016 ident: bb0165 article-title: Using predictive modeling and classification methods for single and overlapping bead laser cladding to understand bead geometry to process parameter relationships publication-title: J Manuf Sci Eng Trans ASME – volume: 56 start-page: 220 year: 2014 end-page: 227 ident: bb0160 article-title: The prediction of coating geometry from main processing parameters in laser cladding publication-title: Phys Procedia – volume: 263 year: 2021 ident: bb0035 article-title: Influence of buffer layer on surface and tribomechanical properties of laser cladded stellite 6 publication-title: Mater Sci Eng B – volume: 4915 start-page: 71 year: 2002 ident: 10.1016/j.jmapro.2022.12.036_bb0125 article-title: Fabrication of in-situ composite coating reinforced with TiC particles by powder feeding laser cladding publication-title: Lasers Mater Process Manuf – volume: 73 start-page: 67 year: 2022 ident: 10.1016/j.jmapro.2022.12.036_bb0100 article-title: Lack of fusion mitigation in directed energy deposition with laser (DED-L) additive manufacturing through laser remelting publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.10.052 – volume: 29 start-page: 554 issue: 2 year: 2008 ident: 10.1016/j.jmapro.2022.12.036_bb0150 article-title: Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA) publication-title: Mater Des doi: 10.1016/j.matdes.2007.01.023 – volume: 68 start-page: 191 year: 2015 ident: 10.1016/j.jmapro.2022.12.036_bb0030 article-title: Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2014.12.005 – volume: 11 start-page: 64 issue: 2 year: 1999 ident: 10.1016/j.jmapro.2022.12.036_bb0020 article-title: Laser cladding publication-title: J Laser Appl doi: 10.2351/1.521888 – volume: 339 year: 2020 ident: 10.1016/j.jmapro.2022.12.036_bb0005 article-title: Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.135925 – volume: 201 start-page: 5875 issue: 12 year: 2007 ident: 10.1016/j.jmapro.2022.12.036_bb0210 article-title: Thick co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2006.10.044 – volume: 200 start-page: 4557 issue: 14–15 year: 2006 ident: 10.1016/j.jmapro.2022.12.036_bb0025 article-title: Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2005.03.033 – volume: 97 start-page: 180 year: 2017 ident: 10.1016/j.jmapro.2022.12.036_bb0190 article-title: An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2017.06.026 – volume: 197 start-page: 127 issue: 2–3 year: 2005 ident: 10.1016/j.jmapro.2022.12.036_bb0230 article-title: Analysis of coaxial laser cladding processing conditions publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2004.06.029 – volume: 128 issue: March year: 2020 ident: 10.1016/j.jmapro.2022.12.036_bb0060 article-title: Prediction of solidification cracking by an empirical-statistical analysis for laser cladding of inconel 718 powder on a non-weldable substrate publication-title: Opt Laser Technol – year: 2003 ident: 10.1016/j.jmapro.2022.12.036_bb0185 – volume: 9 start-page: 8258 issue: 4 year: 2020 ident: 10.1016/j.jmapro.2022.12.036_bb0195 article-title: Parameters optimization for laser cladding of inconel 625 on ASTM A592 steel publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2020.05.094 – volume: 1119 start-page: 628 year: 2015 ident: 10.1016/j.jmapro.2022.12.036_bb0050 article-title: Evaluation of two different energy inputs for deposition of stellite 6 by laser cladding on a martensitic stainless steel substrate publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.1119.628 – volume: 37 start-page: 579 issue: 6 year: 2019 ident: 10.1016/j.jmapro.2022.12.036_bb0105 article-title: Effect of process parameters on the formation of lack of fusion in directed energy deposition of ti-6Al-4V alloy publication-title: J Weld Join doi: 10.5781/JWJ.2019.37.6.7 – volume: 26 start-page: 12004 issue: 1 year: 2014 ident: 10.1016/j.jmapro.2022.12.036_bb0075 article-title: Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting publication-title: J Laser Appl doi: 10.2351/1.4828755 – volume: 243 start-page: 278 issue: 1–4 year: 2005 ident: 10.1016/j.jmapro.2022.12.036_bb0120 article-title: Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2004.09.073 – volume: 14 start-page: 560 issue: 3 year: 2021 ident: 10.1016/j.jmapro.2022.12.036_bb0010 article-title: Absorption of nitrogen during pulsed wave L-PBF of 17–4 PH steel publication-title: Materials (Basel) doi: 10.3390/ma14030560 – volume: 414 start-page: 385 year: 2003 ident: 10.1016/j.jmapro.2022.12.036_bb0145 article-title: A simplified semi-empirical method to select the processing parameters for laser clad coatings publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.414-415.385 – volume: 12 start-page: 165 year: 2006 ident: 10.1016/j.jmapro.2022.12.036_bb0205 article-title: Investigation of the overlapping parameters of MPAW-based rapid prototyping publication-title: Rapid Prototyp J doi: 10.1108/13552540610670744 – year: 2004 ident: 10.1016/j.jmapro.2022.12.036_bb0070 – volume: 589 start-page: 79 year: 2008 ident: 10.1016/j.jmapro.2022.12.036_bb0130 article-title: On the possible mechanisms of porosity formation during laser melt injection (LMI) technology publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.589.79 – volume: 50 start-page: 177 year: 2013 ident: 10.1016/j.jmapro.2022.12.036_bb0045 article-title: Microstructure and microhardness of 17–4PH deposited with co-based alloy hardfacing coating publication-title: Phys Procedia doi: 10.1016/j.phpro.2013.11.029 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.jmapro.2022.12.036_bb0180 article-title: Laser cladding of stellite-6 on AISI 316 L austenitic stainless steel: empirical-statistical modeling and parameter optimization publication-title: Lasers Manuf Mater Process doi: 10.1007/s40516-020-00132-0 – volume: 72 start-page: 4632 issue: 12 year: 2020 ident: 10.1016/j.jmapro.2022.12.036_bb0250 article-title: Ultra-high-speed laser cladding of Stellite® 6 alloy on mild steel publication-title: JOM doi: 10.1007/s11837-020-04410-2 – volume: 39 start-page: 549 issue: 3 year: 2007 ident: 10.1016/j.jmapro.2022.12.036_bb0200 article-title: Research on the processing experiments of laser metal deposition shaping publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2005.10.009 – volume: 56 start-page: 54 issue: April year: 2020 ident: 10.1016/j.jmapro.2022.12.036_bb0245 article-title: Laser cladding of inconel 718 powder on a non-weldable substrate : clad bead geometry-solidification cracking relationship publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.04.045 – volume: 91 start-page: 3967 issue: 9 year: 2017 ident: 10.1016/j.jmapro.2022.12.036_bb0090 article-title: Parameter optimization and experimental study of the sprocket repairing using laser cladding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0066-y – volume: 36 start-page: 621 year: 2018 ident: 10.1016/j.jmapro.2022.12.036_bb0175 article-title: Simplification and experimental investigation of geometrical surface smoothness model for multi-track laser cladding processes publication-title: J Manuf Process doi: 10.1016/j.jmapro.2018.11.004 – volume: 153 start-page: 494 year: 2004 ident: 10.1016/j.jmapro.2022.12.036_bb0225 article-title: Computational mechanics of laser cladding process publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.04.016 – volume: 509 start-page: 4905 issue: 14 year: 2011 ident: 10.1016/j.jmapro.2022.12.036_bb0040 article-title: Microstructure and wear behavior of stellite 6 cladding on 17–4 PH stainless steel publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2010.09.216 – volume: 28 year: 2021 ident: 10.1016/j.jmapro.2022.12.036_bb0065 article-title: Effect of multi-layer laser cladding of stellite 6 and inconel 718 materials on clad geometry, microstructure evolution and mechanical properties publication-title: Mater Today Commun – volume: 9 start-page: 418 issue: 7 year: 2019 ident: 10.1016/j.jmapro.2022.12.036_bb0235 article-title: State of the art in directed energy deposition: from additive manufacturing to materials design publication-title: Coatings doi: 10.3390/coatings9070418 – volume: 51 year: 2022 ident: 10.1016/j.jmapro.2022.12.036_bb0140 article-title: Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel publication-title: Addit Manuf – volume: 13 start-page: 590 year: 2021 ident: 10.1016/j.jmapro.2022.12.036_bb3250 article-title: Microstructural investigation of direct laser deposition of the Ti–6Al–4V alloy by different melt pool protection conditions publication-title: J Mater Res Tech doi: 10.1016/j.jmrt.2021.04.087 – volume: 30 start-page: 3616 issue: 23 year: 2015 ident: 10.1016/j.jmapro.2022.12.036_bb0115 article-title: Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: relation of densification, microstructures and performance publication-title: J Mater Res doi: 10.1557/jmr.2015.358 – volume: 14 start-page: 5662 issue: 19 year: 2021 ident: 10.1016/j.jmapro.2022.12.036_bb0015 article-title: Effect of laser metal deposition parameters on the characteristics of stellite 6 deposited layers on precipitation-hardened stainless steel publication-title: Materials (Basel) doi: 10.3390/ma14195662 – volume: 92 start-page: 3605 issue: 9 year: 2017 ident: 10.1016/j.jmapro.2022.12.036_bb0095 article-title: CAD-based automatic path generation and optimization for laser cladding robot in additive manufacturing publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0384-0 – volume: 56 start-page: 220 year: 2014 ident: 10.1016/j.jmapro.2022.12.036_bb0160 article-title: The prediction of coating geometry from main processing parameters in laser cladding publication-title: Phys Procedia doi: 10.1016/j.phpro.2014.08.166 – volume: 138 issue: 5 year: 2016 ident: 10.1016/j.jmapro.2022.12.036_bb0165 article-title: Using predictive modeling and classification methods for single and overlapping bead laser cladding to understand bead geometry to process parameter relationships publication-title: J Manuf Sci Eng Trans ASME doi: 10.1115/1.4032117 – volume: 50 start-page: 175 issue: 1 year: 2010 ident: 10.1016/j.jmapro.2022.12.036_bb0220 article-title: Imperfections in laser clading with powder and wire fillers publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2480-2 – volume: 22 start-page: 26 issue: 1 year: 2006 ident: 10.1016/j.jmapro.2022.12.036_bb0240 article-title: Tribological properties of laser clad stellite 6 coatings on steel substrates publication-title: Surf Eng doi: 10.1179/174329406X84949 – volume: 251 start-page: 87 year: 2014 ident: 10.1016/j.jmapro.2022.12.036_bb0255 article-title: Laser cladding of stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2014.04.008 – volume: 156 year: 2022 ident: 10.1016/j.jmapro.2022.12.036_bb0155 article-title: Prediction of the geometric characteristics of the laser cladding of inconel 718 on the inconel 738 substrate via genetic algorithm and linear regression publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2022.108507 – volume: 58 start-page: 1887 issue: 5 year: 2010 ident: 10.1016/j.jmapro.2022.12.036_bb0135 article-title: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting publication-title: Acta Mater doi: 10.1016/j.actamat.2009.11.032 – volume: 97 start-page: 2397 issue: 5 year: 2018 ident: 10.1016/j.jmapro.2022.12.036_bb0170 article-title: Analysis and prediction on geometric characteristics of multi-track overlapping laser cladding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2107-6 – volume: 57 year: 2022 ident: 10.1016/j.jmapro.2022.12.036_bb0055 article-title: Controlling the columnar-to-equiaxed transition during directed energy deposition of inconel 625 publication-title: Addit Manuf – volume: 32 year: 2020 ident: 10.1016/j.jmapro.2022.12.036_bb0110 article-title: On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing publication-title: Addit Manuf – volume: 891 start-page: 1519 year: 2014 ident: 10.1016/j.jmapro.2022.12.036_bb0085 article-title: The effect of manufacturing defects on the fatigue behaviour of ti-6Al-4V specimens fabricated using selective laser melting publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.891-892.1519 – volume: 65 start-page: 180 year: 2015 ident: 10.1016/j.jmapro.2022.12.036_bb0215 article-title: Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2014.07.017 – volume: 263 year: 2021 ident: 10.1016/j.jmapro.2022.12.036_bb0035 article-title: Influence of buffer layer on surface and tribomechanical properties of laser cladded stellite 6 publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2020.114799 – volume: 136 issue: 6 year: 2014 ident: 10.1016/j.jmapro.2022.12.036_bb0080 article-title: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating publication-title: J Manuf Sci Eng doi: 10.1115/1.4028513 |
| SSID | ssj0012401 |
| Score | 2.433585 |
| Snippet | Direct Laser Deposition has been considered as a method to repair and rebuild the industrial parts. Considering the possibility of the formation of structural... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 177 |
| SubjectTerms | additive manufacturing Cobalt-base superalloy Genetic algorithm laser cladding Parameter optimization Stellite 6 |
| Title | Multi-track laser metal deposition of Stellite6 on martensitic stainless steel: Geometry optimization and defects suppression |
| URI | https://dx.doi.org/10.1016/j.jmapro.2022.12.036 |
| Volume | 86 |
| WOSCitedRecordID | wos000918070900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2212-4616 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012401 issn: 1526-6125 databaseCode: AIEXJ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5wQDzF8pIP3CqvGjtPbhVa2OWwQnSReovsxIGWPKq-tFqJP8ivYsZ2HmJ5S1yi1m4cy_PVM5mZb0zIC88PEtj3BdO5lsz3s5wlChNd_YnKFRe5kJk5bCI6P4_n8-TdaPS15cLsy6iu48vLZPVfRQ1tIGykzv6FuLtBoQE-g9DhCmKH6x8J3lBq2XYts89jMI31Gk-JxlCMbhO0DFHFVOLc6hCjBRUmdtbYmY0Nn6rE_Q_kr0v0GLzRDQyBsXjYXypH3DRRh1zbbJDNbuUSauufWLuVrHdIorCsyJWlJ_T5i2elrMtmZ9yzmP571WmL2admKcfv5ZXcLywe-r5T-RHLLUujSGYLuZeb3rsNz0aMm0OLx9PKVRh3Dg6O6V3M1guwXreWedOnOZmNmocMrTOrx0wbBzXM_NByN9vdPR5uz547MsZqes_2XVMi1p-xPF5WEpbjGObEjctYfFez21gBM5wJToRjnMnwzg95FCSgJA6nZyfzt11MC2wnW73Xzbwlcppsw-vP-rGhNDB-Lu6Q206OdGrRdpeMdH2P3BrUsrxPvgxwRw3uqMEd7XFHm4J2uKPwfYA72uGOGty9pC3q6BB1FFBHHeroAHUPyIfXJxevTpk724NlXIRbJopIc40xXxF5El77PRnmWsUiLpIiTOC9ValISV8JMElFIHLQHVHiZUUc6yBUkXhIDuqm1o8InXCZ-J7KwPIMfS00aCStgngiNAwuZXRERLuQaeYK3-P5K2XaZjguU7v8KS5_6vEUlv-IsO6ulS388pvfR62MUme8WqM0BVj98s7H_3znE3Kz_8M8JQfb9U4_Izey_XaxWT93-PsGHO7IiA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-track+laser+metal+deposition+of+Stellite6+on+martensitic+stainless+steel%3A+Geometry+optimization+and+defects+suppression&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Ilanlou%2C+Morteza&rft.au=Shoja+Razavi%2C+Reza&rft.au=Haghighat%2C+Siavash&rft.au=Nourollahi%2C+Amin&rft.date=2023-01-27&rft.pub=Elsevier+Ltd&rft.issn=1526-6125&rft.eissn=2212-4616&rft.volume=86&rft.spage=177&rft.epage=186&rft_id=info:doi/10.1016%2Fj.jmapro.2022.12.036&rft.externalDocID=S1526612522009008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon |