Meso-structure based phase field modeling for tensile behavior of UHPC materials
Pre-peak multiple fine cracks and post-peak strain-hardening are features rendering ultra-high performance concrete (UHPC) different from conventional normal-strength concrete, which exhibits superior ductility. To promote its engineering applications, an accurate numerical tool is necessary to desc...
Uložené v:
| Vydané v: | Structures (Oxford) Ročník 74; s. 108448 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.04.2025
|
| Predmet: | |
| ISSN: | 2352-0124, 2352-0124 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Pre-peak multiple fine cracks and post-peak strain-hardening are features rendering ultra-high performance concrete (UHPC) different from conventional normal-strength concrete, which exhibits superior ductility. To promote its engineering applications, an accurate numerical tool is necessary to describe the crack initiation, nucleation, localization and propagation. Aiming at tensile behavior of UHPC materials, the numerical framework is proposed, which integrates statistical meso-scale mechanical damage model and elasto-plastic phase field model. Given properties of UHPC matrix, steel fibers, and interface, the meso-scale damage model gives the stress-strain relationship subject to monotonic tension, considering cracking bridging effect and matrix spalling. The predicted stress-strain relationship is subsequently converted into the elasto-plastic phase field model to study the failure mechanisms of UHPC materials at structural (macro-scale) level. A novel concept of thresholds of elastic and plastic strain energies is proposed to take the multi-cracking and crack localization of UHPC materials into account. The model is numerically realized through implicit, staggered time-integration algorithm. Its robustness is validated by several experimental paradigms, i.e., direct tension of dog-bone UHPC specimens, three-point bending of notched UHPC specimens, and flexural behavior of reinforced UHPC specimens. The related code in this study is released at GitHub repository for better analysis and design of various UHPC members.
•Tensile stress-strain curve is related to the meso-structure of UHPC materials.•Meso-structure based crack bridging mechanism is integrated with the damage-plastic phase field model.•The model is implemented with Abaqus/Standard solver and is verified by several experimental paradigms. |
|---|---|
| AbstractList | Pre-peak multiple fine cracks and post-peak strain-hardening are features rendering ultra-high performance concrete (UHPC) different from conventional normal-strength concrete, which exhibits superior ductility. To promote its engineering applications, an accurate numerical tool is necessary to describe the crack initiation, nucleation, localization and propagation. Aiming at tensile behavior of UHPC materials, the numerical framework is proposed, which integrates statistical meso-scale mechanical damage model and elasto-plastic phase field model. Given properties of UHPC matrix, steel fibers, and interface, the meso-scale damage model gives the stress-strain relationship subject to monotonic tension, considering cracking bridging effect and matrix spalling. The predicted stress-strain relationship is subsequently converted into the elasto-plastic phase field model to study the failure mechanisms of UHPC materials at structural (macro-scale) level. A novel concept of thresholds of elastic and plastic strain energies is proposed to take the multi-cracking and crack localization of UHPC materials into account. The model is numerically realized through implicit, staggered time-integration algorithm. Its robustness is validated by several experimental paradigms, i.e., direct tension of dog-bone UHPC specimens, three-point bending of notched UHPC specimens, and flexural behavior of reinforced UHPC specimens. The related code in this study is released at GitHub repository for better analysis and design of various UHPC members.
•Tensile stress-strain curve is related to the meso-structure of UHPC materials.•Meso-structure based crack bridging mechanism is integrated with the damage-plastic phase field model.•The model is implemented with Abaqus/Standard solver and is verified by several experimental paradigms. |
| ArticleNumber | 108448 |
| Author | Liu, Zhao Tong, Teng Wang, Tao Li, Po Li, Xiaobo |
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0009-0001-5766-2211 surname: Wang fullname: Wang, Tao organization: Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Po orcidid: 0009-0006-7371-1868 surname: Li fullname: Li, Po organization: School of Civil Engineering, Southeast University, Nanjing, Nanjing 211189, China – sequence: 3 givenname: Teng surname: Tong fullname: Tong, Teng email: 101012308@seu.edu.cn organization: Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing 210096, China – sequence: 4 givenname: Xiaobo orcidid: 0009-0006-3001-8166 surname: Li fullname: Li, Xiaobo organization: School of Civil Engineering, Southeast University, Nanjing, Nanjing 211189, China – sequence: 5 givenname: Zhao surname: Liu fullname: Liu, Zhao organization: Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing 210096, China |
| BookMark | eNqFkMtKAzEUhoNUsNa-gYu8wNTc5uZCkKJWqNiFXYdMcmJTppOSpAXf3qnjQlzo6j8czvfD-S7RqPMdIHRNyYwSWtxsZy6mcNAzRljeryohqjM0ZjxnGaFMjH7MF2ga45YQwqggTJRjtHqB6LOvgnQIgBsVweD9pg9sHbQG77yB1nXv2PqAE3TRtf0ZbNTR9Qtv8XqxmuOdShCcauMVOrd9wPQ7J2j9-PA2X2TL16fn-f0y04wXKeN1I3ipqjrPgeuK14zWqrJVTkpLq6I2ZdMAEFvbhpHCkJqLsiwMV4JrI3LKJ-h26NXBxxjASu2SSs53KSjXSkrkSY_cykGPPOmRg54eFr_gfXA7FT7-w-4GDPrHjg6CjNpBp8G4ADpJ493fBZ8KaYML |
| CitedBy_id | crossref_primary_10_1016_j_istruc_2025_109580 crossref_primary_10_1016_j_compstruct_2025_119349 crossref_primary_10_1016_j_istruc_2025_109686 |
| Cites_doi | 10.1016/j.cma.2021.113936 10.1016/j.jmps.2021.104692 10.1007/s43452-022-00443-3 10.1016/0001-6160(85)90124-5 10.1016/j.cma.2006.06.020 10.1016/j.conbuildmat.2020.121117 10.1016/j.cemconcomp.2013.12.015 10.1177/1056789510386852 10.1177/10567895211011225 10.1016/j.compstruc.2016.05.025 10.1016/j.ijplas.2016.04.011 10.1016/j.ijmecsci.2019.03.033 10.1016/j.tafmec.2023.103831 10.1016/j.conbuildmat.2017.07.130 10.1016/j.ijmecsci.2023.108907 10.1177/10567895221128057 10.1061/(ASCE)0899-1561(2000)12:2(147) 10.1016/j.conbuildmat.2018.06.150 10.1007/s00466-015-1225-3 10.1016/j.cemconres.2015.10.009 10.1016/j.compstruc.2023.107095 10.1007/s00707-022-03253-z 10.1016/j.tafmec.2019.102447 10.1016/0022-5096(91)90043-N 10.1016/j.cma.2024.116834 10.1016/j.cma.2020.113004 10.1016/j.tafmec.2019.102252 10.1115/1.2904224 10.1016/j.cma.2022.115577 10.1016/j.engfracmech.2022.109030 10.1177/105678959500400105 10.1016/j.conbuildmat.2013.11.023 10.1016/j.cma.2022.115181 10.1016/j.conbuildmat.2024.136432 10.1016/j.cemconcomp.2023.105015 10.1016/S0022-5096(96)00095-6 10.1016/j.cma.2010.03.031 10.1016/j.cma.2019.112790 10.1016/j.nucengdes.2012.07.004 10.1007/s00466-015-1151-4 10.1007/s00466-020-01887-1 10.1016/j.cma.2010.04.011 10.1016/j.jmps.2009.04.011 10.1002/nme.1151 10.1115/1.3119767 10.1016/S0022-5096(99)00028-9 10.1016/j.ijmecsci.2019.03.012 10.1016/j.compstruct.2021.113855 |
| ContentType | Journal Article |
| Copyright | 2025 Institution of Structural Engineers |
| Copyright_xml | – notice: 2025 Institution of Structural Engineers |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.istruc.2025.108448 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2352-0124 |
| ExternalDocumentID | 10_1016_j_istruc_2025_108448 S2352012425002620 |
| GroupedDBID | --M 0R~ 4.4 457 AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ADCNI ADEZE AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFKBS EFLBG EJD FDB FIRID FYGXN KOM M41 O9- OAUVE ROL SPC SPCBC SST SSZ T5K ~G- AAYXX CITATION |
| ID | FETCH-LOGICAL-c236t-39b437a8955e3c839219a8f8507f1869d7bbee0f9fb206d0934776d3a43cd4513 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001443987500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-0124 |
| IngestDate | Sat Nov 29 07:34:52 EST 2025 Tue Nov 18 21:16:34 EST 2025 Sat Sep 27 17:13:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ductile Strain-hardening UHPC Phase field Meso-scale |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c236t-39b437a8955e3c839219a8f8507f1869d7bbee0f9fb206d0934776d3a43cd4513 |
| ORCID | 0009-0006-3001-8166 0009-0001-5766-2211 0009-0006-7371-1868 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_istruc_2025_108448 crossref_primary_10_1016_j_istruc_2025_108448 elsevier_sciencedirect_doi_10_1016_j_istruc_2025_108448 |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 2025-04-00 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Structures (Oxford) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Luan, Wang, Gao, Wang, Du, Zhou (bib38) 2022; 22 Kim, Kim, Kang, Lee (bib32) 2012; 252 Ambati, Gerasimov, De Lorenzis (bib25) 2015; 55 Fang, Wu, Rabczuk, Wu, Sun, Li (bib28) 2020; 66 K. Pham, H. Amor, J.-J. Marigo, and C. Maurini. Gradient damage models and their use to approximate brittle fracture. 2011, vol. 20: SAGE Publications Ltd, in International Journal of Damage Mechanics, 4 ed., pp. 618-652, doi Han, Matsubara, Moriguchi, Terada (bib23) 2022; 400 El-Helou, Graybeal (bib10) 2023; 149 Huang, Zhang (bib6) 2016; 173 Ambati, Kruse, De Lorenzis (bib26) 2016; 57 Khan, Ali (bib34) 2018; 182 El-Helou, Koutromanos, Moen, Moharrami (bib1) 2020; 146 Samaniego, Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib18) 2020; 362 Wille, El-Tawil, Naaman (bib56) 2014; 48 Li, Leung (bib44) 1992; 118 Goswami, Anitescu, Chakraborty, Rabczuk (bib17) 2020; 106 Schroder, Pise, Brands, Gebuhr, Anders (bib5) 2022; 398 Rong, Sun, Xiao, Wang (bib36) 2014; 51 Lu, Leung (bib47) 2016; 79 Amor, Marigo, Maurini (bib51) 2009; 57 Hai, Zhang, Wriggers, Huang, Zhuang, Xu (bib13) 2024; 265 L. Q.W., Study on the axial tensile performance and conversion relationship between flexural and tensile properties of UHPC. 2021. Miehe, Hofacker, Welschinger (bib14) 2010; 199 Fang, Wu, Li, Liu, Wu, Sun (bib24) 2019; 156 Fang, Wu, Rabczuk, Wu, Ma, Sun (bib27) 2019; 103 Ji, Jiang, Gao, Sun (bib2) 2024; 91 . Marshall, Cox (bib46) 1985 Wei, Zhu, Chen, Ju, Yan, Shen (bib41) 2023; 32 Yu, Hou, Zhao (bib22) 2023; 125 Shao, Billington (bib59) 2022; 148 Liu, Zhao, Wang, Wu, Lyu, Liu (bib11) 2020; 31 Rabczuk, Belytschko (bib7) 2004; 61 Wu, Li (bib50) 1995; 4 Wang, Li, Li, Sun, Yang (bib35) 2023; 51 Yu, Yang, Li, Tat Ooi, Li, Liu (bib29) 2023; 278 Wei, Zhu, Chen, Ju, Cai, Yan (bib40) 2023; 139 Lin, Li (bib43) 1997; 45 Kang, Yoo, Gupta (bib30) 2021; 266 Baktheer, Martinez-Paneda, Aldakheel (bib16) 2024; 422 Molnar, Gravouil, Seghir, Rethore (bib19) 2020; 365 Spearing, Zok (bib49) 1993; 115 Pashazad, Kharazi (bib54) 2019; 156 Zhu, Wei, Ju, Chen, Yan, Shen (bib39) 2021; 30 Li, Cheng, Zhang (bib21) 2022; 233 Kanda, Lin, Li (bib48) 2000; 12 Le Hoang, Fehling (bib37) 2017; 153 Rabczuk, Belytschko (bib8) 2007; 196 Liu, Zhang, Liew (bib12) 2022; 158 Talamini, Tupek, Stershic, Hu, Foulk, Ostien (bib20) 2021; 384 V.M. Reddy and M.V.S. Rao, Effect of w/c ratio on workability and mechanical properties of high strength Self Compacting Concrete (M70 grade). no. 5, 2014. Li, Wu (bib45) 1992 Wang, Qiao, Sun, Chen (bib57) 2024; 430 Chitlange, Bang, Pajgade (bib31) 2010; 90 Ferradi, Fliscounakis, Arquier, Bleyer (bib4) 2023; 286 Wu, Nguyen, Nguyen, Sutula, Sinaie, Bordas (bib53) 2020 Miehe, Aldakheel, Raina (bib55) 2016; 84 Wang, Xu, Yin, Chen, Chi (bib3) 2021; 267 Li, Wang, Backer (bib42) 1991; 39 Rabczuk, Zi, Bordas, Nguyen-Xuan (bib9) 2010; 199 Bourdin, Francfort, Marigo (bib52) 2000; 48 Wu (10.1016/j.istruc.2025.108448_bib50) 1995; 4 Wille (10.1016/j.istruc.2025.108448_bib56) 2014; 48 Lin (10.1016/j.istruc.2025.108448_bib43) 1997; 45 Chitlange (10.1016/j.istruc.2025.108448_bib31) 2010; 90 Wang (10.1016/j.istruc.2025.108448_bib3) 2021; 267 Rong (10.1016/j.istruc.2025.108448_bib36) 2014; 51 Schroder (10.1016/j.istruc.2025.108448_bib5) 2022; 398 Li (10.1016/j.istruc.2025.108448_bib21) 2022; 233 Le Hoang (10.1016/j.istruc.2025.108448_bib37) 2017; 153 Wei (10.1016/j.istruc.2025.108448_bib40) 2023; 139 Kanda (10.1016/j.istruc.2025.108448_bib48) 2000; 12 Fang (10.1016/j.istruc.2025.108448_bib24) 2019; 156 El-Helou (10.1016/j.istruc.2025.108448_bib10) 2023; 149 Liu (10.1016/j.istruc.2025.108448_bib12) 2022; 158 Rabczuk (10.1016/j.istruc.2025.108448_bib8) 2007; 196 Wang (10.1016/j.istruc.2025.108448_bib35) 2023; 51 El-Helou (10.1016/j.istruc.2025.108448_bib1) 2020; 146 Ambati (10.1016/j.istruc.2025.108448_bib26) 2016; 57 Pashazad (10.1016/j.istruc.2025.108448_bib54) 2019; 156 10.1016/j.istruc.2025.108448_bib58 10.1016/j.istruc.2025.108448_bib15 Zhu (10.1016/j.istruc.2025.108448_bib39) 2021; 30 Li (10.1016/j.istruc.2025.108448_bib42) 1991; 39 Lu (10.1016/j.istruc.2025.108448_bib47) 2016; 79 Huang (10.1016/j.istruc.2025.108448_bib6) 2016; 173 Molnar (10.1016/j.istruc.2025.108448_bib19) 2020; 365 Rabczuk (10.1016/j.istruc.2025.108448_bib9) 2010; 199 Baktheer (10.1016/j.istruc.2025.108448_bib16) 2024; 422 Bourdin (10.1016/j.istruc.2025.108448_bib52) 2000; 48 Wang (10.1016/j.istruc.2025.108448_bib57) 2024; 430 Fang (10.1016/j.istruc.2025.108448_bib28) 2020; 66 Yu (10.1016/j.istruc.2025.108448_bib29) 2023; 278 Marshall (10.1016/j.istruc.2025.108448_bib46) 1985 Goswami (10.1016/j.istruc.2025.108448_bib17) 2020; 106 Samaniego (10.1016/j.istruc.2025.108448_bib18) 2020; 362 Yu (10.1016/j.istruc.2025.108448_bib22) 2023; 125 Wei (10.1016/j.istruc.2025.108448_bib41) 2023; 32 Talamini (10.1016/j.istruc.2025.108448_bib20) 2021; 384 Kim (10.1016/j.istruc.2025.108448_bib32) 2012; 252 Ambati (10.1016/j.istruc.2025.108448_bib25) 2015; 55 Ji (10.1016/j.istruc.2025.108448_bib2) 2024; 91 Miehe (10.1016/j.istruc.2025.108448_bib55) 2016; 84 Li (10.1016/j.istruc.2025.108448_bib45) 1992 Rabczuk (10.1016/j.istruc.2025.108448_bib7) 2004; 61 Han (10.1016/j.istruc.2025.108448_bib23) 2022; 400 Wu (10.1016/j.istruc.2025.108448_bib53) 2020 Shao (10.1016/j.istruc.2025.108448_bib59) 2022; 148 Li (10.1016/j.istruc.2025.108448_bib44) 1992; 118 Khan (10.1016/j.istruc.2025.108448_bib34) 2018; 182 Miehe (10.1016/j.istruc.2025.108448_bib14) 2010; 199 Fang (10.1016/j.istruc.2025.108448_bib27) 2019; 103 Ferradi (10.1016/j.istruc.2025.108448_bib4) 2023; 286 10.1016/j.istruc.2025.108448_bib33 Spearing (10.1016/j.istruc.2025.108448_bib49) 1993; 115 Hai (10.1016/j.istruc.2025.108448_bib13) 2024; 265 Kang (10.1016/j.istruc.2025.108448_bib30) 2021; 266 Luan (10.1016/j.istruc.2025.108448_bib38) 2022; 22 Amor (10.1016/j.istruc.2025.108448_bib51) 2009; 57 Liu (10.1016/j.istruc.2025.108448_bib11) 2020; 31 |
| References_xml | – volume: 182 start-page: 703 year: 2018 end-page: 715 ident: bib34 article-title: Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber publication-title: Constr Build Mater – volume: 45 start-page: p.763 year: 1997 end-page: 788 ident: bib43 article-title: Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces publication-title: J Mech Phys Solids – volume: 146 year: 2020 ident: bib1 article-title: Triaxial constitutive law for ultra-high-performance concrete and other fiber-reinforced cementitious materials publication-title: J Eng Mech – volume: 173 start-page: 95 year: 2016 end-page: 108 ident: bib6 article-title: Numerical modeling of mechanical behaviour of engineered cementitious composites under axial tension publication-title: Comput Struct – volume: 55 start-page: 1017 year: 2015 end-page: 1040 ident: bib25 article-title: Phase-field modeling of ductile fracture publication-title: Comput Mech – volume: 51 start-page: 1962 year: 2023 end-page: 1970 ident: bib35 article-title: Flowability and rheological properties of ultra-high performance concrete publication-title: Kuei Suan Jen Hsueh Pao/J Chin Ceram Soc – volume: 286 year: 2023 ident: bib4 article-title: Elastoplastic and limit analysis of reinforced concrete with an equilibrium-based finite element formulation publication-title: Comput Struct – volume: 91 year: 2024 ident: bib2 article-title: Synergistic effect of microfibers and oriented steel fibers on mechanical properties of UHPC publication-title: J Build Eng – volume: 31 start-page: 2678 year: 2020 end-page: 2690 ident: bib11 article-title: Research progresses on coupling multi-scale simulation of deformation and microstructure evolution of titanium alloy in hot forming processes publication-title: Zhongguo Jixie Gongcheng/China Mech Eng – volume: 233 start-page: 2829 year: 2022 end-page: 2849 ident: bib21 article-title: Coupling of a phase-field method with a nonlocal micro-mechanical damage model for simulating ductile fracture publication-title: Acta Mech – volume: 265 year: 2024 ident: bib13 article-title: 3D concrete fracture simulations using an explicit phase field model publication-title: Int J Mech Sci – volume: 267 year: 2021 ident: bib3 article-title: Experimental investigation on the damage behavior of ultra-high performance concrete subjected to cyclic compression publication-title: Compos Struct – volume: 362 year: 2020 ident: bib18 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications," publication-title: Comput Methods Appl Mech Eng – volume: 125 year: 2023 ident: bib22 article-title: Phase field model for brittle fracture using threshold strategy publication-title: Theor Appl Fract Mech – volume: 61 start-page: 2316 year: 2004 end-page: 2343 ident: bib7 article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks publication-title: Int J Numer Methods Eng – volume: 148 year: 2022 ident: bib59 article-title: Impact of UHPC tensile behavior on steel reinforced UHPC flexural behavior publication-title: J Struct Eng (U S) – volume: 32 start-page: 103 year: 2023 end-page: 131 ident: bib41 article-title: A micromechanical crack bridging model considering the slip-softening interface with the residual shear stress for SFRCC publication-title: Int J Damage Mech – volume: 199 start-page: 2437 year: 2010 end-page: 2455 ident: bib9 article-title: A simple and robust three-dimensional cracking-particle method without enrichment publication-title: Comput Methods Appl Mech Eng – volume: 22 year: 2022 ident: bib38 article-title: Changes in fractal dimension and durability of ultra-high performance concrete (UHPC) with silica fume content publication-title: Arch Civ Mech Eng – volume: 30 start-page: 1423 year: 2021 end-page: 1449 ident: bib39 article-title: Statistical micromechanical damage model for SH-SFRC under tensile load considering the interfacial slip-softening and matrix spalling effects publication-title: Int J Damage Mech – volume: 39 start-page: 607 year: 1991 end-page: 625 ident: bib42 article-title: A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites publication-title: J Mech Phys Solids – volume: 48 start-page: 797 year: 2000 end-page: 826 ident: bib52 article-title: Numerical experiments in revisited brittle fracture publication-title: J Mech Phys Solids – volume: 278 year: 2023 ident: bib29 article-title: A mesoscale modeling approach coupling SBFEM, continuous damage phase-field model and discrete cohesive crack model for concrete fracture publication-title: Eng Fract Mech – volume: 106 year: 2020 ident: bib17 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theor Appl Fract Mech – volume: 103 year: 2019 ident: bib27 article-title: Phase field fracture in elasto-plastic solids: abaqus implementation and case studies publication-title: Theor Appl Fract Mech – volume: 400 year: 2022 ident: bib23 article-title: Variational crack phase-field model for ductile fracture with elastic and plastic damage variables publication-title: Comput Methods Appl Mech Eng – volume: 156 start-page: 182 year: 2019 end-page: 204 ident: bib54 article-title: A peridynamic plastic model based on von Mises criteria with isotropic, kinematic and mixed hardenings under cyclic loading publication-title: Int J Mech Sci – volume: 118 start-page: 2246 year: 1992 end-page: 2264 ident: bib44 article-title: Steady-state and multiple cracking of short random fiber composites publication-title: J Eng Mech – volume: 199 start-page: 2765 year: 2010 end-page: 2778 ident: bib14 article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Comput Methods Appl Mech Eng – volume: 66 start-page: 931 year: 2020 end-page: 961 ident: bib28 article-title: Phase field fracture in elasto-plastic solids: a length-scale insensitive model for quasi-brittle materials publication-title: Comput Mech – volume: 48 start-page: 53 year: 2014 end-page: 66 ident: bib56 article-title: Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading publication-title: Cem Concr Compos – volume: 153 start-page: 790 year: 2017 end-page: 806 ident: bib37 article-title: Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete publication-title: Constr Build Mater – volume: 266 year: 2021 ident: bib30 article-title: Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete publication-title: Constr Build Mater – volume: 398 year: 2022 ident: bib5 article-title: Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: numerical calibration and experimental validation publication-title: Comput Methods Appl Mech Eng – year: 1985 ident: bib46 article-title: The mechanics of matrix cracking in brittle-matrix fiber composites publication-title: Acta Metall – volume: 84 start-page: 1 year: 2016 end-page: 32 ident: bib55 article-title: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory publication-title: Int J Plast – volume: 149 year: 2023 ident: bib10 article-title: Shear design of strain-hardening fiber-reinforced concrete beams publication-title: J Struct Eng (U S) – volume: 158 year: 2022 ident: bib12 article-title: A cyclic plastic-damage multiphase model for evaluation of multiple cracking in strain hardening cementitious composites publication-title: J Mech Phys Solids – volume: 4 start-page: 83 year: 1995 end-page: 102 ident: bib50 article-title: Stochastic process of multiple cracking in discontinuous random fiber reinforced brittle matrix composites publication-title: Int J Damage Mech – reference: K. Pham, H. Amor, J.-J. Marigo, and C. Maurini. Gradient damage models and their use to approximate brittle fracture. 2011, vol. 20: SAGE Publications Ltd, in International Journal of Damage Mechanics, 4 ed., pp. 618-652, doi: – volume: 196 start-page: 2777 year: 2007 end-page: 2799 ident: bib8 article-title: A three-dimensional large deformation meshfree method for arbitrary evolving cracks publication-title: Comput Methods Appl Mech Eng – volume: 57 start-page: 1209 year: 2009 end-page: 1229 ident: bib51 article-title: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments publication-title: J Mech Phys Solids – volume: 57 start-page: 149 year: 2016 end-page: 167 ident: bib26 article-title: A phase-field model for ductile fracture at finite strains and its experimental verification publication-title: Comput Mech – start-page: 1 year: 2020 end-page: 183 ident: bib53 publication-title: Phase-field modeling of fracture, vol. 53, Advances in Applied Mechanics – volume: 252 start-page: 1 year: 2012 end-page: 10 ident: bib32 article-title: Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant publication-title: Nucl Eng Des – volume: 115 start-page: 314 year: 1993 end-page: 318 ident: bib49 article-title: Stochastic aspects of matrix cracking in brittle matrix composites publication-title: J Eng Mater Technol – reference: V.M. Reddy and M.V.S. Rao, Effect of w/c ratio on workability and mechanical properties of high strength Self Compacting Concrete (M70 grade). no. 5, 2014. – volume: 79 start-page: 353 year: 2016 end-page: 365 ident: bib47 article-title: A new model for the cracking process and tensile ductility of Strain Hardening Cementitious Composites (SHCC) publication-title: Cem Concr Res – reference: L. Q.W., Study on the axial tensile performance and conversion relationship between flexural and tensile properties of UHPC. 2021. – volume: 156 start-page: 382 year: 2019 end-page: 396 ident: bib24 article-title: Phase field fracture in elasto-plastic solids: Variational formulation for multi-surface plasticity and effects of plastic yield surfaces and hardening publication-title: Int J Mech Sci – volume: 90 start-page: 10 year: 2010 end-page: 12 ident: bib31 article-title: Appraisal of artificial sand concrete publication-title: J Inst Eng (India): Civ Eng Div – volume: 139 year: 2023 ident: bib40 article-title: Microstructure-based prediction of UHPC's tensile behavior considering the effects of interface bonding, matrix spalling and fiber distribution publication-title: Cem Concr Compos – reference: . – volume: 12 start-page: 147 year: 2000 end-page: 156 ident: bib48 article-title: Tensile stress-strain modeling of pseudostrain hardening cementitious composites publication-title: J Mater Civ Eng – volume: 365 year: 2020 ident: bib19 article-title: An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation publication-title: Comput Methods Appl Mech Eng – volume: 422 year: 2024 ident: bib16 article-title: Phase field cohesive zone modeling for fatigue crack propagation in quasi-brittle materials publication-title: Comput Methods Appl Mech Eng – volume: 430 year: 2024 ident: bib57 article-title: Influence of fibers on tensile behavior of ultra-high performance concrete: a review publication-title: Constr Build Mater – volume: 384 year: 2021 ident: bib20 article-title: Attaining regularization length insensitivity in phase-field models of ductile failure publication-title: Comput Methods Appl Mech Eng – volume: 51 start-page: 446 year: 2014 end-page: 450 ident: bib36 article-title: Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water-binder ratios publication-title: Constr Build Mater – year: 1992 ident: bib45 article-title: Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites publication-title: Appl Mech Rev – volume: 31 start-page: 2678 issue: 22 year: 2020 ident: 10.1016/j.istruc.2025.108448_bib11 article-title: Research progresses on coupling multi-scale simulation of deformation and microstructure evolution of titanium alloy in hot forming processes publication-title: Zhongguo Jixie Gongcheng/China Mech Eng – volume: 384 year: 2021 ident: 10.1016/j.istruc.2025.108448_bib20 article-title: Attaining regularization length insensitivity in phase-field models of ductile failure publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.113936 – volume: 158 year: 2022 ident: 10.1016/j.istruc.2025.108448_bib12 article-title: A cyclic plastic-damage multiphase model for evaluation of multiple cracking in strain hardening cementitious composites publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2021.104692 – volume: 22 issue: 3 year: 2022 ident: 10.1016/j.istruc.2025.108448_bib38 article-title: Changes in fractal dimension and durability of ultra-high performance concrete (UHPC) with silica fume content publication-title: Arch Civ Mech Eng doi: 10.1007/s43452-022-00443-3 – volume: 149 issue: 2 year: 2023 ident: 10.1016/j.istruc.2025.108448_bib10 article-title: Shear design of strain-hardening fiber-reinforced concrete beams publication-title: J Struct Eng (U S) – year: 1985 ident: 10.1016/j.istruc.2025.108448_bib46 article-title: The mechanics of matrix cracking in brittle-matrix fiber composites publication-title: Acta Metall doi: 10.1016/0001-6160(85)90124-5 – volume: 196 start-page: 2777 issue: 29-30 year: 2007 ident: 10.1016/j.istruc.2025.108448_bib8 article-title: A three-dimensional large deformation meshfree method for arbitrary evolving cracks publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2006.06.020 – volume: 266 year: 2021 ident: 10.1016/j.istruc.2025.108448_bib30 article-title: Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.121117 – volume: 91 year: 2024 ident: 10.1016/j.istruc.2025.108448_bib2 article-title: Synergistic effect of microfibers and oriented steel fibers on mechanical properties of UHPC publication-title: J Build Eng – volume: 48 start-page: 53 year: 2014 ident: 10.1016/j.istruc.2025.108448_bib56 article-title: Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2013.12.015 – ident: 10.1016/j.istruc.2025.108448_bib15 doi: 10.1177/1056789510386852 – ident: 10.1016/j.istruc.2025.108448_bib58 – volume: 30 start-page: 1423 issue: 9 year: 2021 ident: 10.1016/j.istruc.2025.108448_bib39 article-title: Statistical micromechanical damage model for SH-SFRC under tensile load considering the interfacial slip-softening and matrix spalling effects publication-title: Int J Damage Mech doi: 10.1177/10567895211011225 – volume: 146 issue: 7 year: 2020 ident: 10.1016/j.istruc.2025.108448_bib1 article-title: Triaxial constitutive law for ultra-high-performance concrete and other fiber-reinforced cementitious materials publication-title: J Eng Mech – volume: 173 start-page: 95 year: 2016 ident: 10.1016/j.istruc.2025.108448_bib6 article-title: Numerical modeling of mechanical behaviour of engineered cementitious composites under axial tension publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.05.025 – volume: 84 start-page: 1 year: 2016 ident: 10.1016/j.istruc.2025.108448_bib55 article-title: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory publication-title: Int J Plast doi: 10.1016/j.ijplas.2016.04.011 – volume: 156 start-page: 182 year: 2019 ident: 10.1016/j.istruc.2025.108448_bib54 article-title: A peridynamic plastic model based on von Mises criteria with isotropic, kinematic and mixed hardenings under cyclic loading publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.03.033 – volume: 125 year: 2023 ident: 10.1016/j.istruc.2025.108448_bib22 article-title: Phase field model for brittle fracture using threshold strategy publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2023.103831 – volume: 153 start-page: 790 year: 2017 ident: 10.1016/j.istruc.2025.108448_bib37 article-title: Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.07.130 – volume: 265 year: 2024 ident: 10.1016/j.istruc.2025.108448_bib13 article-title: 3D concrete fracture simulations using an explicit phase field model publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2023.108907 – volume: 32 start-page: 103 issue: 1 year: 2023 ident: 10.1016/j.istruc.2025.108448_bib41 article-title: A micromechanical crack bridging model considering the slip-softening interface with the residual shear stress for SFRCC publication-title: Int J Damage Mech doi: 10.1177/10567895221128057 – volume: 12 start-page: 147 issue: 2 year: 2000 ident: 10.1016/j.istruc.2025.108448_bib48 article-title: Tensile stress-strain modeling of pseudostrain hardening cementitious composites publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2000)12:2(147) – volume: 182 start-page: 703 year: 2018 ident: 10.1016/j.istruc.2025.108448_bib34 article-title: Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.06.150 – volume: 57 start-page: 149 issue: 1 year: 2016 ident: 10.1016/j.istruc.2025.108448_bib26 article-title: A phase-field model for ductile fracture at finite strains and its experimental verification publication-title: Comput Mech doi: 10.1007/s00466-015-1225-3 – volume: 79 start-page: 353 year: 2016 ident: 10.1016/j.istruc.2025.108448_bib47 article-title: A new model for the cracking process and tensile ductility of Strain Hardening Cementitious Composites (SHCC) publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2015.10.009 – volume: 286 year: 2023 ident: 10.1016/j.istruc.2025.108448_bib4 article-title: Elastoplastic and limit analysis of reinforced concrete with an equilibrium-based finite element formulation publication-title: Comput Struct doi: 10.1016/j.compstruc.2023.107095 – volume: 233 start-page: 2829 issue: 7 year: 2022 ident: 10.1016/j.istruc.2025.108448_bib21 article-title: Coupling of a phase-field method with a nonlocal micro-mechanical damage model for simulating ductile fracture publication-title: Acta Mech doi: 10.1007/s00707-022-03253-z – start-page: 1 year: 2020 ident: 10.1016/j.istruc.2025.108448_bib53 – volume: 106 year: 2020 ident: 10.1016/j.istruc.2025.108448_bib17 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2019.102447 – volume: 39 start-page: 607 issue: 5 year: 1991 ident: 10.1016/j.istruc.2025.108448_bib42 article-title: A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(91)90043-N – volume: 422 year: 2024 ident: 10.1016/j.istruc.2025.108448_bib16 article-title: Phase field cohesive zone modeling for fatigue crack propagation in quasi-brittle materials publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2024.116834 – volume: 365 year: 2020 ident: 10.1016/j.istruc.2025.108448_bib19 article-title: An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113004 – volume: 103 year: 2019 ident: 10.1016/j.istruc.2025.108448_bib27 article-title: Phase field fracture in elasto-plastic solids: abaqus implementation and case studies publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2019.102252 – volume: 115 start-page: 314 issue: 3 year: 1993 ident: 10.1016/j.istruc.2025.108448_bib49 article-title: Stochastic aspects of matrix cracking in brittle matrix composites publication-title: J Eng Mater Technol doi: 10.1115/1.2904224 – volume: 400 year: 2022 ident: 10.1016/j.istruc.2025.108448_bib23 article-title: Variational crack phase-field model for ductile fracture with elastic and plastic damage variables publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.115577 – volume: 278 year: 2023 ident: 10.1016/j.istruc.2025.108448_bib29 article-title: A mesoscale modeling approach coupling SBFEM, continuous damage phase-field model and discrete cohesive crack model for concrete fracture publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2022.109030 – ident: 10.1016/j.istruc.2025.108448_bib33 – volume: 4 start-page: 83 issue: 1 year: 1995 ident: 10.1016/j.istruc.2025.108448_bib50 article-title: Stochastic process of multiple cracking in discontinuous random fiber reinforced brittle matrix composites publication-title: Int J Damage Mech doi: 10.1177/105678959500400105 – volume: 51 start-page: 446 year: 2014 ident: 10.1016/j.istruc.2025.108448_bib36 article-title: Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water-binder ratios publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2013.11.023 – volume: 398 year: 2022 ident: 10.1016/j.istruc.2025.108448_bib5 article-title: Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: numerical calibration and experimental validation publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.115181 – volume: 430 year: 2024 ident: 10.1016/j.istruc.2025.108448_bib57 article-title: Influence of fibers on tensile behavior of ultra-high performance concrete: a review publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.136432 – volume: 139 year: 2023 ident: 10.1016/j.istruc.2025.108448_bib40 article-title: Microstructure-based prediction of UHPC's tensile behavior considering the effects of interface bonding, matrix spalling and fiber distribution publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2023.105015 – volume: 118 start-page: 2246 issue: 11 year: 1992 ident: 10.1016/j.istruc.2025.108448_bib44 article-title: Steady-state and multiple cracking of short random fiber composites publication-title: J Eng Mech – volume: 90 start-page: 10 issue: February year: 2010 ident: 10.1016/j.istruc.2025.108448_bib31 article-title: Appraisal of artificial sand concrete publication-title: J Inst Eng (India): Civ Eng Div – volume: 45 start-page: p.763 issue: 5 year: 1997 ident: 10.1016/j.istruc.2025.108448_bib43 article-title: Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(96)00095-6 – volume: 199 start-page: 2437 issue: 37 year: 2010 ident: 10.1016/j.istruc.2025.108448_bib9 article-title: A simple and robust three-dimensional cracking-particle method without enrichment publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2010.03.031 – volume: 362 year: 2020 ident: 10.1016/j.istruc.2025.108448_bib18 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications," publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.112790 – volume: 252 start-page: 1 year: 2012 ident: 10.1016/j.istruc.2025.108448_bib32 article-title: Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2012.07.004 – volume: 55 start-page: 1017 issue: 5 year: 2015 ident: 10.1016/j.istruc.2025.108448_bib25 article-title: Phase-field modeling of ductile fracture publication-title: Comput Mech doi: 10.1007/s00466-015-1151-4 – volume: 66 start-page: 931 issue: 4 year: 2020 ident: 10.1016/j.istruc.2025.108448_bib28 article-title: Phase field fracture in elasto-plastic solids: a length-scale insensitive model for quasi-brittle materials publication-title: Comput Mech doi: 10.1007/s00466-020-01887-1 – volume: 199 start-page: 2765 issue: 45-48 year: 2010 ident: 10.1016/j.istruc.2025.108448_bib14 article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2010.04.011 – volume: 57 start-page: 1209 issue: 8 year: 2009 ident: 10.1016/j.istruc.2025.108448_bib51 article-title: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2009.04.011 – volume: 61 start-page: 2316 issue: 13 year: 2004 ident: 10.1016/j.istruc.2025.108448_bib7 article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1151 – year: 1992 ident: 10.1016/j.istruc.2025.108448_bib45 article-title: Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites publication-title: Appl Mech Rev doi: 10.1115/1.3119767 – volume: 51 start-page: 1962 issue: 8 year: 2023 ident: 10.1016/j.istruc.2025.108448_bib35 article-title: Flowability and rheological properties of ultra-high performance concrete publication-title: Kuei Suan Jen Hsueh Pao/J Chin Ceram Soc – volume: 48 start-page: 797 issue: 4 year: 2000 ident: 10.1016/j.istruc.2025.108448_bib52 article-title: Numerical experiments in revisited brittle fracture publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(99)00028-9 – volume: 156 start-page: 382 year: 2019 ident: 10.1016/j.istruc.2025.108448_bib24 article-title: Phase field fracture in elasto-plastic solids: Variational formulation for multi-surface plasticity and effects of plastic yield surfaces and hardening publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.03.012 – volume: 148 issue: 1 year: 2022 ident: 10.1016/j.istruc.2025.108448_bib59 article-title: Impact of UHPC tensile behavior on steel reinforced UHPC flexural behavior publication-title: J Struct Eng (U S) – volume: 267 year: 2021 ident: 10.1016/j.istruc.2025.108448_bib3 article-title: Experimental investigation on the damage behavior of ultra-high performance concrete subjected to cyclic compression publication-title: Compos Struct doi: 10.1016/j.compstruct.2021.113855 |
| SSID | ssj0002140247 |
| Score | 2.3212514 |
| Snippet | Pre-peak multiple fine cracks and post-peak strain-hardening are features rendering ultra-high performance concrete (UHPC) different from conventional... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108448 |
| SubjectTerms | Ductile Meso-scale Phase field Strain-hardening UHPC |
| Title | Meso-structure based phase field modeling for tensile behavior of UHPC materials |
| URI | https://dx.doi.org/10.1016/j.istruc.2025.108448 |
| Volume | 74 |
| WOSCitedRecordID | wos001443987500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AIEXJ dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKdoC8gHbqusktiJ7WNVFRUkqpVIxd4ixw-xVZWsuhXqz2f8iJvSqtADl-yu15lYnm_t8ew3Mwh9EpXgXNd5xkVtMspylcnCFpmWlmjFayGV8sUm2MkJX63EMjpztr6cAOt7fnUlNv9V1dAGynahsw9QdxIKDfAelA5XUDtc_0nx38x2yEJaWPfngNum9HzzE17mnq4Wit-MBEpPYD83KVzfGY-nx8vDOViyYbRT8_X7KNb7akOw4cSX8CM6nxs5JKKPZwss0-cmUoAbE7fM1Ge1lkM3TL0QZTUhr_jFqgRDDhpCPPTC3NEWV1tGJ8tlkXMaEm3eWsmDU-FssfYTtnDPXFx3v5k4-48NLdEMRwbbWRuktE5KG6Q8RjslA6DO0M7Bl6PV1-SYK-HIWfrCdGn8Y8il5wXeHtDdJs3ETGleoOfxfIEPAi5eokemf4WeTbJOvkbLmwjBHiHYIwR7hOARIRj0iyNC8IgQPFjsEIITQt6g089HzeFxFgtrZKok9WVGREcJk1xUlSHKmciFkNxyOBtYV6JMs64zJrfCdmVe61wQylitiaREaVoV5C2a9UNv3iEMv3BZlaqrC95RTRWHE7JS2kpNrKa220VknJtWxazzrvjJeXufcnZRlu7ahKwrf-nPxmlvo-UYLMIW4HTvnXsPfNI-enoN__doBt-bD-iJ-nW53l58jFj6DU52j0U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meso-structure+based+phase+field+modeling+for+tensile+behavior+of+UHPC+materials&rft.jtitle=Structures+%28Oxford%29&rft.au=Wang%2C+Tao&rft.au=Li%2C+Po&rft.au=Tong%2C+Teng&rft.au=Li%2C+Xiaobo&rft.date=2025-04-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=74&rft.spage=108448&rft_id=info:doi/10.1016%2Fj.istruc.2025.108448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2025_108448 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon |