Research on E-learning interactive English vocabulary recommendation education system based on naive Bayes algorithm

•This article aims to develop an English vocabulary learning recommendation system based on decision tree algorithm and naive Bayesian algorithm to provide personalized learning suggestions and help learners learn and remember words more effectively.•In order to better understand learners' lear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entertainment computing Ročník 51; s. 100732
Hlavní autor: Xi, Wang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2024
Témata:
ISSN:1875-9521, 1875-953X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •This article aims to develop an English vocabulary learning recommendation system based on decision tree algorithm and naive Bayesian algorithm to provide personalized learning suggestions and help learners learn and remember words more effectively.•In order to better understand learners' learning progress, a naive Bayesian model was trained using learners' learning history and progress information to analyze their current learning progress and predict their future learning situation.•Through testing and evaluation of actual learners, the recommendation system performs well in providing personalized learning suggestions, and has a significant improvement effect on learners' vocabulary learning. E-learning is an interactive online learning mode that can enhance students' interest in learning in an entertainment environment. This article aims to develop an English vocabulary learning recommendation system based on decision tree algorithm and naive Bayesian algorithm to provide personalized learning suggestions and help learners learn and remember words more effectively. Firstly, a large amount of English vocabulary data was collected, preprocessed, and feature extracted. Decision tree algorithms were selected as the foundation, and through analysis of existing data, a decision tree was generated to classify new data. Using learners' characteristics (such as age, learning objectives, etc.) and learning history (such as learned words, learning time, etc.) as inputs, a personalized recommendation model was constructed, This model can recommend suitable learning content for learners based on their personalized needs and learning situation. In order to better understand learners' learning progress, a naive Bayesian model was trained using learners' learning history and progress information to analyze their current learning progress and predict their future learning situation. Through testing and evaluation of actual learners, the recommendation system performs well in providing personalized learning suggestions, and has a significant improvement effect on learners' vocabulary learning.
AbstractList •This article aims to develop an English vocabulary learning recommendation system based on decision tree algorithm and naive Bayesian algorithm to provide personalized learning suggestions and help learners learn and remember words more effectively.•In order to better understand learners' learning progress, a naive Bayesian model was trained using learners' learning history and progress information to analyze their current learning progress and predict their future learning situation.•Through testing and evaluation of actual learners, the recommendation system performs well in providing personalized learning suggestions, and has a significant improvement effect on learners' vocabulary learning. E-learning is an interactive online learning mode that can enhance students' interest in learning in an entertainment environment. This article aims to develop an English vocabulary learning recommendation system based on decision tree algorithm and naive Bayesian algorithm to provide personalized learning suggestions and help learners learn and remember words more effectively. Firstly, a large amount of English vocabulary data was collected, preprocessed, and feature extracted. Decision tree algorithms were selected as the foundation, and through analysis of existing data, a decision tree was generated to classify new data. Using learners' characteristics (such as age, learning objectives, etc.) and learning history (such as learned words, learning time, etc.) as inputs, a personalized recommendation model was constructed, This model can recommend suitable learning content for learners based on their personalized needs and learning situation. In order to better understand learners' learning progress, a naive Bayesian model was trained using learners' learning history and progress information to analyze their current learning progress and predict their future learning situation. Through testing and evaluation of actual learners, the recommendation system performs well in providing personalized learning suggestions, and has a significant improvement effect on learners' vocabulary learning.
ArticleNumber 100732
Author Xi, Wang
Author_xml – sequence: 1
  givenname: Wang
  surname: Xi
  fullname: Xi, Wang
  email: 18151221919@163.com
  organization: Changzhou Vocational Institute of Mechatronic Technology, Changzhou, Jiangsu 213164, China
BookMark eNqFkM1KAzEUhYNUsNa-gYu8wNRJMpkfF4KW-gMFQRTchUxyp02ZyUiSFvr2Zhxx4ULvJie5nHNzv3M0sb0FhC5JuiApya92C7BB9d2CpjSLT2nB6AmakrLgScXZ--RHU3KG5t7v0liMZCXPpii8gAfp1Bb3Fq-SNmpr7AYbG8BJFcwB8MpuWuO3-NArWe9b6Y7YQZzYgdUymGgEvVej8kcfoMO19KCHSCuHhDt5BI9lu-mdCdvuAp02svUw_z5n6O1-9bp8TNbPD0_L23WiKMtDQjlI4JWGQte8biijZVmypuIKcqZZ7GoCBallpVje5BnXtIQii_eU8CyjbIaux1zleu8dNEKZ8PXP4KRpBUnFgFDsxIhQDAjFiDCas1_mD2e6uPx_tpvRBnGxgwEnvDJgFWgToQWhe_N3wCe5YpIk
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3579865
crossref_primary_10_1016_j_sasc_2025_200302
crossref_primary_10_1007_s00521_024_10411_y
Cites_doi 10.17507/jltr.0904.24
10.1007/978-3-030-21562-0_7
10.1111/jcal.12610
10.1108/K-06-2017-0198
10.1155/2021/6624012
10.1109/TALE.2015.7386013
10.1109/ICSMC.2006.385081
10.4108/eai.23-12-2022.2329214
10.1017/S0958344012000031
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.entcom.2024.100732
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-953X
ExternalDocumentID 10_1016_j_entcom_2024_100732
S1875952124001009
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
C1A
EBS
EFJIC
EJD
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OKI
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c236t-25eae59de7db5bf2328883f95ce63d35ead1e71ba9c36f645d28e74ba90154423
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247484700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-9521
IngestDate Tue Nov 18 22:20:43 EST 2025
Sat Nov 29 02:21:57 EST 2025
Wed Jun 26 17:48:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Decision tree algorithm
E-learning
Naive Bayesian algorithm
Recommendation system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-25eae59de7db5bf2328883f95ce63d35ead1e71ba9c36f645d28e74ba90154423
ParticipantIDs crossref_citationtrail_10_1016_j_entcom_2024_100732
crossref_primary_10_1016_j_entcom_2024_100732
elsevier_sciencedirect_doi_10_1016_j_entcom_2024_100732
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Entertainment computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Susanto, Fazlinda (b0025) 2016; 1
Y. Zhang, W. Jia, C. Zhu, Y. Song, EVOV: A video recommendation system to support sustainable vocabulary learning. In 2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 43-48). IEEE, 2015.
Hasnine, Mouri, Flanagan, Akcapinar, Uosaki, Ogata (b0050) 2018
Sockett, Toffoli (b0070) 2012; 24
Derakhshan, Khatir (b0010) 2015; 2
H. Cai, Research on English Vocabulary Learning Platform Based on Personalized Recommendation, in: Proceedings of the 2nd International Conference on Internet Technology and Educational Informatization, ITEI 2022, December 23-25, 2022, Harbin, China, 2023, June.
Bahari (b0075) 2018; 18
Okhdar, Ghaffari (b0030) 2018; 47
Huang, Hew, Fryer (b0005) 2022; 38
Boyinbode (b0055) 2018; 7
Tang (b0080) 2021; 2021
Bai (b0015) 2018; 9
C.M. Chen, S.H. Hsu, Y.L. Li, C.J. Peng, Personalized intelligent m-learning system for supporting effective English learning, in: 2006 IEEE International Conference on Systems, Man and Cybernetics (Vol. 6, pp. 4898-4903). IEE, 2006, October.
H. Xie, M. Wang, D. Zou, F.L. Wang, A personalized task recommendation system for vocabulary learning based on readability and diversity. In Blended Learning: Educational Innovation for Personalized Learning: 12th International Conference, ICBL 2019, Hradec Kralove, Czech Republic, July 2–4, 2019, Proceedings 12 (pp. 82-92). Springer International Publishing.
Wang, Teng, Chen (b0020) 2015; 5
Le, Prasad, Alsadoon, Pham, Elchouemi (b0085) 2019; 46
Zarei, Khojasteh (b0065) 2020; 4
Tang (10.1016/j.entcom.2024.100732_b0080) 2021; 2021
Le (10.1016/j.entcom.2024.100732_b0085) 2019; 46
Huang (10.1016/j.entcom.2024.100732_b0005) 2022; 38
Zarei (10.1016/j.entcom.2024.100732_b0065) 2020; 4
Bahari (10.1016/j.entcom.2024.100732_b0075) 2018; 18
Sockett (10.1016/j.entcom.2024.100732_b0070) 2012; 24
Hasnine (10.1016/j.entcom.2024.100732_b0050) 2018
Susanto (10.1016/j.entcom.2024.100732_b0025) 2016; 1
10.1016/j.entcom.2024.100732_b0035
Derakhshan (10.1016/j.entcom.2024.100732_b0010) 2015; 2
Okhdar (10.1016/j.entcom.2024.100732_b0030) 2018; 47
10.1016/j.entcom.2024.100732_b0040
Wang (10.1016/j.entcom.2024.100732_b0020) 2015; 5
10.1016/j.entcom.2024.100732_b0060
10.1016/j.entcom.2024.100732_b0045
Bai (10.1016/j.entcom.2024.100732_b0015) 2018; 9
Boyinbode (10.1016/j.entcom.2024.100732_b0055) 2018; 7
References_xml – volume: 5
  start-page: 100
  year: 2015
  end-page: 104
  ident: b0020
  article-title: Using iPad to facilitate English vocabulary learning
  publication-title: Int. J. Informat. Educat. Technol.
– start-page: 669
  year: 2018
  end-page: 674
  ident: b0050
  article-title: Image recommendation for informal vocabulary learning in a context-aware learning environment
  publication-title: Proceedings of the 26th International Conference on Computer in Education
– reference: H. Cai, Research on English Vocabulary Learning Platform Based on Personalized Recommendation, in: Proceedings of the 2nd International Conference on Internet Technology and Educational Informatization, ITEI 2022, December 23-25, 2022, Harbin, China, 2023, June.
– volume: 1
  start-page: 173
  year: 2016
  ident: b0025
  article-title: English vocabulary acquisition through vocabulary learning strategy and socio-educational factors: a review
  publication-title: Appl. Sci. TEchnolog
– reference: C.M. Chen, S.H. Hsu, Y.L. Li, C.J. Peng, Personalized intelligent m-learning system for supporting effective English learning, in: 2006 IEEE International Conference on Systems, Man and Cybernetics (Vol. 6, pp. 4898-4903). IEE, 2006, October.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 14
  ident: b0080
  article-title: Optimization of english learning platform based on a collaborative filtering algorithm
  publication-title: Complexity
– volume: 9
  start-page: 849
  year: 2018
  end-page: 855
  ident: b0015
  article-title: An analysis of English vocabulary learning strategies
  publication-title: J. Language Teach. Res.
– volume: 38
  start-page: 237
  year: 2022
  end-page: 257
  ident: b0005
  article-title: Chatbots for language learning—Are they really useful? A systematic review of chatbot-supported language learning
  publication-title: J. Comput. Assist. Learn.
– volume: 18
  start-page: 69
  year: 2018
  end-page: 85
  ident: b0075
  article-title: Nonlinear dynamic motivation-oriented telecollaborative model of language learning via formulaic sequences to foster learner autonomy
  publication-title: Teaching English Technol.
– volume: 2
  start-page: 39
  year: 2015
  end-page: 47
  ident: b0010
  article-title: The effects of using games on English vocabulary learning
  publication-title: J. Appl. Linguistics Language Res.
– volume: 47
  start-page: 44
  year: 2018
  end-page: 57
  ident: b0030
  article-title: English vocabulary learning through recommender system based on sentence complexity and vocabulary difficulty
  publication-title: Kybernetes
– volume: 46
  start-page: 141
  year: 2019
  end-page: 148
  ident: b0085
  article-title: Text classification: Naïve bayes classifier with sentiment Lexicon
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 7
  start-page: 183
  year: 2018
  end-page: 191
  ident: b0055
  article-title: Development of a gamification based English vocabulary mobile learning system
  publication-title: Int. J. Comput. Sci. Mob. Comput.
– reference: Y. Zhang, W. Jia, C. Zhu, Y. Song, EVOV: A video recommendation system to support sustainable vocabulary learning. In 2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 43-48). IEEE, 2015.
– volume: 24
  start-page: 138
  year: 2012
  end-page: 151
  ident: b0070
  article-title: Beyond learner autonomy: A dynamic systems view of the informal learning of English in virtual online communities
  publication-title: ReCALL
– volume: 4
  start-page: 239
  year: 2020
  ident: b0065
  article-title: Models of dynamic assessment affecting the learning of English lexical collocations
  publication-title: J. Language Horizons
– reference: H. Xie, M. Wang, D. Zou, F.L. Wang, A personalized task recommendation system for vocabulary learning based on readability and diversity. In Blended Learning: Educational Innovation for Personalized Learning: 12th International Conference, ICBL 2019, Hradec Kralove, Czech Republic, July 2–4, 2019, Proceedings 12 (pp. 82-92). Springer International Publishing.
– volume: 18
  start-page: 69
  issue: 3
  year: 2018
  ident: 10.1016/j.entcom.2024.100732_b0075
  article-title: Nonlinear dynamic motivation-oriented telecollaborative model of language learning via formulaic sequences to foster learner autonomy
  publication-title: Teaching English Technol.
– volume: 9
  start-page: 849
  issue: 4
  year: 2018
  ident: 10.1016/j.entcom.2024.100732_b0015
  article-title: An analysis of English vocabulary learning strategies
  publication-title: J. Language Teach. Res.
  doi: 10.17507/jltr.0904.24
– ident: 10.1016/j.entcom.2024.100732_b0035
  doi: 10.1007/978-3-030-21562-0_7
– volume: 7
  start-page: 183
  issue: 8
  year: 2018
  ident: 10.1016/j.entcom.2024.100732_b0055
  article-title: Development of a gamification based English vocabulary mobile learning system
  publication-title: Int. J. Comput. Sci. Mob. Comput.
– volume: 38
  start-page: 237
  issue: 1
  year: 2022
  ident: 10.1016/j.entcom.2024.100732_b0005
  article-title: Chatbots for language learning—Are they really useful? A systematic review of chatbot-supported language learning
  publication-title: J. Comput. Assist. Learn.
  doi: 10.1111/jcal.12610
– volume: 2
  start-page: 39
  issue: 3
  year: 2015
  ident: 10.1016/j.entcom.2024.100732_b0010
  article-title: The effects of using games on English vocabulary learning
  publication-title: J. Appl. Linguistics Language Res.
– volume: 1
  start-page: 173
  issue: 1
  year: 2016
  ident: 10.1016/j.entcom.2024.100732_b0025
  article-title: English vocabulary acquisition through vocabulary learning strategy and socio-educational factors: a review
  publication-title: Appl. Sci. TEchnolog
– volume: 46
  start-page: 141
  issue: 2
  year: 2019
  ident: 10.1016/j.entcom.2024.100732_b0085
  article-title: Text classification: Naïve bayes classifier with sentiment Lexicon
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 47
  start-page: 44
  issue: 1
  year: 2018
  ident: 10.1016/j.entcom.2024.100732_b0030
  article-title: English vocabulary learning through recommender system based on sentence complexity and vocabulary difficulty
  publication-title: Kybernetes
  doi: 10.1108/K-06-2017-0198
– volume: 4
  start-page: 239
  issue: 2
  year: 2020
  ident: 10.1016/j.entcom.2024.100732_b0065
  article-title: Models of dynamic assessment affecting the learning of English lexical collocations
  publication-title: J. Language Horizons
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.entcom.2024.100732_b0080
  article-title: Optimization of english learning platform based on a collaborative filtering algorithm
  publication-title: Complexity
  doi: 10.1155/2021/6624012
– volume: 5
  start-page: 100
  issue: 2
  year: 2015
  ident: 10.1016/j.entcom.2024.100732_b0020
  article-title: Using iPad to facilitate English vocabulary learning
  publication-title: Int. J. Informat. Educat. Technol.
– start-page: 669
  year: 2018
  ident: 10.1016/j.entcom.2024.100732_b0050
  article-title: Image recommendation for informal vocabulary learning in a context-aware learning environment
– ident: 10.1016/j.entcom.2024.100732_b0040
  doi: 10.1109/TALE.2015.7386013
– ident: 10.1016/j.entcom.2024.100732_b0060
  doi: 10.1109/ICSMC.2006.385081
– ident: 10.1016/j.entcom.2024.100732_b0045
  doi: 10.4108/eai.23-12-2022.2329214
– volume: 24
  start-page: 138
  issue: 2
  year: 2012
  ident: 10.1016/j.entcom.2024.100732_b0070
  article-title: Beyond learner autonomy: A dynamic systems view of the informal learning of English in virtual online communities
  publication-title: ReCALL
  doi: 10.1017/S0958344012000031
SSID ssj0000314854
Score 2.3149772
Snippet •This article aims to develop an English vocabulary learning recommendation system based on decision tree algorithm and naive Bayesian algorithm to provide...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100732
SubjectTerms Decision tree algorithm
E-learning
Naive Bayesian algorithm
Recommendation system
Title Research on E-learning interactive English vocabulary recommendation education system based on naive Bayes algorithm
URI https://dx.doi.org/10.1016/j.entcom.2024.100732
Volume 51
WOSCitedRecordID wos001247484700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1875-953X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314854
  issn: 1875-9521
  databaseCode: AIEXJ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1ba9swFIBFaPewl627sXYX9LA3o4It2ZJfBu1I2cYog3Vb3oxsyVtL4pTUC-2_7zm6OAkZu8HyYBw5OjL6bF1OzoWQV0pZ0XJTM0xWxERmFFNCpyw3Gh32CiWcH_eXD_L0VE0m5cfR6HX0hVlOZdep6-vy8r-ihjKAja6zf4F7EAoFcA7Q4QjY4fhH4KMtHf4NMGbTqPrAuBDOI2ppk-C7myxhIqvRDvUmwY3xbGZDiqUQ0BXPfKjnBGc7gyI7jRKO9Y29SvT023xx3n-fbej3N8wMGpc1Is6PQHbizAe-6lASFA6ZGCyqghZsyxPGDZyw72Fl7r2dD-16mcv3O4y2Przs1sDtdQgXh3BnaMWD7ToDjqD83AyJ_QklY2NoAJs6_83dDEpgVNs9ejeevB-0bBicX7lUeMMNRv9JZ-S33dzP1ydra46zPXIvbBbokYf8gIxs95Dcj4k4aBiXH5E-Mqfzjq6Y0zXmNDCnK-Z0kzkdmFPPnDrmKNIxp445HZg_Jp9Pxmdv3rKQToM1GS96luVW27w0Vpo6r1tYSiuleFvmjS244XDVpFamtS4bXrSFyE2mrBTw3WWqy_gTstPNO_uU0LpoRC1brrWA7ag0SulCtjZLDTfwEfuEx06smhBrHlOeTKtoVHhR-a6vsOsr3_X7hA21Ln2sld_8XkY-VVgv-nVgBU_VL2se_HPNZ-Tu6p14Tnb6xQ_7gtxplv351eJlePxuAX_Jlio
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+E-learning+interactive+English+vocabulary+recommendation+education+system+based+on+naive+Bayes+algorithm&rft.jtitle=Entertainment+computing&rft.au=Xi%2C+Wang&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=1875-9521&rft.eissn=1875-953X&rft.volume=51&rft_id=info:doi/10.1016%2Fj.entcom.2024.100732&rft.externalDocID=S1875952124001009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-9521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-9521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-9521&client=summon